فیلترهای جستجو:
فیلتری انتخاب نشده است.
نمایش ۱۲۱ تا ۱۴۰ مورد از کل ۲٬۸۶۶ مورد.
حوزههای تخصصی:
The article defines that the composition and structure of creative industries, their branch specialization and cooperation, the scale and directions of development of industrial and other relations are determined by means of solving spatial problems and are conditioned by the level of digital transformation as imperative system-reflex management of information security of society at parity-legal principles. The process of formation of digital transformation of creative industries as an imperative of system-reflexive management of information security of society on a parity-legal basis in modern conditions today must meet globalization challenges that dictate the development of the country's economy as a whole. This should be manifested in the application of modern integration models for the formation and development of creative industries. It is substantiated that the main tasks of the strategy of financial capacity for digital transformation of creative industries as an imperative of system-reflexive management of information security of society on a parity-legal basis are to achieve balance of financial opportunities and needs of industries, efficiency of their financial relations, efficiency of processes of formation, movement, allocation and use of financial resources, rational structure of sources of financial resources, under which is possible stable financial support of digital transformation.
Generation of Syntax Parser on South Indian Language using Bottom-Up Parsing Technique and PCFG(مقاله علمی وزارت علوم)
حوزههای تخصصی:
In our research, we provide a statistical syntax parsing method experimented on Kannada texts, which is an official language of Karnataka, India. The dataset is downloaded from TDIL website. Using the Cocke-Younger-Kasami (CYK) parsing technique, we generated Kannada Treebank dataset from 1000 annotated sentences in the first stage. The Treebank generated in this stage contains 1000 syntactically structured sentences and it is used as input to train the syntax parser model in the second stage. We have adopted Probabilistic Context Free Grammar (PCFG) while training the parser model and extracting the Chmosky Normal Form (CNF) grammar from a Treebank dataset. The developed syntax parser model is tested on 150 raw Kannada sentences. It outputs with the most likely parse tree for each sentence and this is verified with golden Treebank. The syntax parser model generated 74.2% precision, 79.4% recall, and 75.3% F1-score respectively. The similar technique may be adopted for other low resource languages.
Analyzing Hospital Services Quality Using a Hybrid Approach: Evidence from Information Technology(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Hospitals are the most important part of the healthcare system. Statistics show that a significant portion of health budgets are allocated to hospitals. The continuous impact of information technology on hospitals’ performance has led to perfect competition. Accordingly, this study aimed to evaluate the quality indicators of hospital services considering information technology using a hybrid approach of the Kano model, Analytical Hierarchy Process (AHP), and Quality Function Deployment (QFD). In this regard, based on related studies, a total of 18 needs were recognized to evaluate the service quality of a hospital. The statistical population of the study consisted of patients of the hospital and due to the difficulty of access to the patient, a limited sample of 50 patients was selected. After collecting data, the identified needs were classified into three categories called basic, functional, and motivational using the Kano model, and 7 needs were set as basic needs. Then, using the AHP technique, the importance of the basic needs was calculated and considered as the input of the QFD model in the next phase. After providing some solutions based on the literature to meet these 7 needs, solutions were ranked and prioritized using the QFD model. Since the organization had limited resources, the Pareto technique was used to respond to 20% of these strategies and achieve 80% satisfaction. The results of the study showed that the hospitals can achieve 80% satisfaction by implementing the strategies of “holding ethics training courses online” and “creating team spirit and using health information technology in the hospital”, respectively.
Informational and Analytical Systems for Forecasting the Indicators of Financial Security of the Banking System of Ukraine(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The article is devoted to the modern development of high technologies and computer technology greatly enhanced the development of automated banking systems of banking sector organizations and allowed the synthesis of information and communication technologies for their formation. The main purpose of the article is to select the main indicators for assessing the level of financial security of the banking system of the state and identify promising areas of its development using forecasting models. In the process of research such analytical functions have been used: polynomial, exponential, power and logarithmic. The authors believe that the information and analytical provision of the financial security of the bank is an information provision that combines, on the one hand, information work, that is, ways, means and methods of collecting the necessary information, and on the other - analytical work, which includes forms and methods of information analysis and processing, which ensures an objective assessment of the situation and the adoption of a balanced management decision. As a result, forecast models were built for each of the indicators and also, it has been found that most indicators of the banking system of Ukraine in 2021-2023 will remain at “unsatisfactory” and “critical” levels. In conclusions it was proposed to introduce measures that would be aimed at improving the reliability and stability of the banking system of Ukraine.
Cucumber Leaf Disease Detection and Classification Using a Deep Convolutional Neural Network(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Due to obstruction in photosynthesis, the leaves of the plants get affected by the disease. Powdery mildew is the main disease in cucumber plants which generally occurs in the middle and late stages. Cucumber plant leaves are affected by various diseases, such as powdery mildew, downy mildew and Alternaria leaf spot, which ultimately affect the photosynthesis process; that’s why it is necessary to detect diseases at the right time to prevent the loss of plants. This paper aims to identify and classify diseases of cucumber leaves at the right time using a deep convolutional neural network (DCNN). In this work, the Deep-CNN model based on disease classification is used to enhance the performance of the ResNet50 model. The proposed model generates the most accurate results for cucumber disease detection using data enhancement based on a different data set. The data augmentation method plays an important role in enhancing the characteristics of cucumber leaves. Due to the requirements of the large number of parameters and the expensive computations required to modify standard CNNs, the pytorch library was used in this work which provides a wide range of deep learning algorithms. To assess the model accuracy large quantity of four types of healthy and diseased leaves and specific parameters such as batch size and epochs were compared with various machine learning algorithms such as support vector machine method, self-organizing map, convolutional neural network and proposed method in which the proposed DCNN model gave better results.
State Regulation Improvement of the Military-Industrial Complex Development in Ukraine in Terms of Transition to Modern Information Technologies(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The military and political leadership of Ukraine considers the domestic military-industrial complex as an important component of the country's national security and defense strategy and pays special attention to increasing the efficiency of production and scientific and technical activities of defense industry enterprises and organizations. The study represents directions for improving the state regulation for the further development of the military-industrial complex in Ukraine under the conditions of the transition to modern information technologies. Proposals have been made for the formation of the organizational and economic mechanism for state regulation development of the military-industrial complex, aimed at ensuring its innovativeness, stimulating scientific and technical activity, and implementing modern information technologies systematically during the production of weapons, ammunition and military goods.
Prediction of Type - I and Type –II Diabetes: A Hybrid Approach using Fuzzy Logic and Machine Learning Algorithms(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Diseases like diabetes are chronic and require long-term management. Inadequate production of insulin results in high blood sugar levels. Such diseases lead to serious health issues such as heart ailments, blood vessel complaints, eye ailments, kidney function disorders, and nerve ailments. Hence, accurate assessment and management of risk factors are crucial for the onset of diabetes. Our proposed approach combines fuzzy logic & machine learning algorithms for diabetes risk prediction. Three machine learning models were trained to classify patients into two categories of diabetes (Type-I and Type-II) based on their clinical dataset collected from Katihar Medical College & Hospital and Suvadhan Lab. The polynomial regression algorithm achieved a score of 0.947, while the support vector regression algorithm with the rbf kernel achieved a score of 0.954, with a linear kernel achieved a score of 0.73. Our proposed approach performed well with respect to the conventional approaches with improved accuracy by identifying the patients at diabetes risk. In future work, we further analyze the relationship between other ignored factors which contribute to diabetes risk.
Net Asset Value (NAV) Prediction using Dense Residual Models(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Net Asset Value (NAV) has long been a key performance metric for mutual fund investors. Due to the considerable fluctuation in the NAV value, it is risky for investors to make investment decisions. As a result, accurate and reliable NAV forecasts can help investors make better decisions and profit. In this research, we have analysed and compared the NAV prediction performance of our proposed deep learning models, such as N-BEATS and NBSL, with the FLANN model in both univariate and multivariate settings for five Indian mutual funds for forecast periods of 15, 20, 45, 63, 126, and 252 days using RMSE, MAPE, and R2 as evaluation metrics. A large forecast horizon was chosen to assess the model's consistency, reliability, and accuracy. The result reveals that the N-BEATS model outperforms the FLANN and NBSL models in the univariate setting for all datasets and all prediction horizons. In a multivariate setting, the outcome demonstrates that the N-BEATS model outperforms the FLANN model across all datasets and prediction horizons. The result also shows that, as the number of forecast days grew, our suggested models, notably N-BEATS, maintained consistency and attained the highest R2 value throughout the longest forecast duration.
Efficient Machine Learning Algorithms in Hybrid Filtering Based Recommendation System(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The widespread use of E-commerce websites has drastically increased the need for automatic recommendation systems with machine learning. In recent years, many ML-based recommenders and analysers have been built; however, their scope is limited to using a single filtering technique and processing with clustering-based predictions. This paper aims to provide a systematic year-wise survey and evolution of these existing recommenders and analysers in specific deep learning-based hybrid filtering categories using movie datasets. They are compared to others based on their problem analysis, learning factors, data sets, performance, and limitations. Most contributions are found with collaborative filtering using user or item similarity and deep learning for the IMDB datasets. In this direction, this paper introduces a new and efficient Hybrid Filtering based Recommendation System using Deep Learning (HFRS-DL), which includes multiple layers and stages to provide a better solution for generating recommendations.
نقش تفکر انتقادی در فرایند مدیریت دانش(مقاله علمی وزارت علوم)
حوزههای تخصصی:
مدیریت دانش[1] و تفکر انتقادی[2] دو پدیده گسترده و مهم برای سازمان ها و جامعه معاصر هستند و به خوبی مفاهیم مرتبط با آنها در ادبیات نظری علم مدیریت دانش و تفکر انتقادی بحث شده است. بااین حال، پیوندهای مفهومی موجود بین مدیریت دانش و تفکر انتقادی کمتر مورد تجزیه وتحلیل قرار گرفته و نقش تفکر انتقادی در فرایند مدیریت دانش به خوبی تبیین نشده است. هدف از این نوشتار، پر کردن این شکاف نظری و ارائه ارتباطات مفهومی بین مدیریت دانش و تفکر انتقادی است. تجزیه وتحلیل مفاهیم تفکر انتقادی و مدیریت دانش امکان شناسایی پیوندها را در سه بعد فراهم می کند.
بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی (نمونه پژوهش: اداره کل امور مالیاتی مودیان بزرگ)(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم تابستان ۱۴۰۲ شماره ۲۱
83 - 140
حوزههای تخصصی:
هدف از پژوهش حاضر، بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی می باشد. این پژوهش از نظر نوع هدف، کاربردی و از نظر نوع ماهیت، توصیفی- پیمایشی است. جامعه آماری پژوهش حاضر، شامل کارکنان اداره امور مالیاتی مودیان بزرگ که مشتمل بر 400 نفر می باشند که تعداد 227 نفر به روش تصادفی ساده و به روش تحلیل توان به عنوان نمونه آماری انتخاب گردیدند. جهت گردآوری اطلاعات از پرسشنامه استاندارد استفاده شده است و داده ها بوسیله تحلیل چندمتغیره مبتنی بر مدل سازی معادلات ساختاری با رویکرد کواریانس محور در بستر نرم افزار Amos ورژن 24 مورد تجزیه و تحلیل قرار گرفت. نتایج تحقیق حاکی از تایید تاثیر پنهان کاری منطقی بر سکوت تدافعی، پنهان کاری گریزان بر سکوت رابطه ای، پنهان کاری منطقی بر سکوت رابطه ای، پنهان کاری گریزان بر سکوت بی اثر، پنهان کاری منطقی بر سکوت بی اثر و سکوت تدافعی بر رفتار منحرف سازمانی، سکوت رابطه ای بر رفتار منحرف سازمانی و سکوت بی اثر بر رفتار منحرف سازمانی می باشد و همچنین نتایج حاصل از تحلیل میانجی نشان می دهد که سازه "نقض قرارداد روانشناختی" برای تمامی روابط میان ابعاد پنهان کاری و ابعاد سکوت دارای نقش میانجی است، به طوری که فرآیند میانجی گری مذکور برای روابط علی میان "پنهان کاری خاموش" و "سکوت تدافعی/ سکوت بی اثر" به صورت کامل و برای مابقی روابط به صورت جزئی است. در نهایت، از میان بیست و یک فرضیه مطروحه، هفده فرضیه مورد تائید قرار گرفت که از این بین تاثیر سکوت رابطه ای بر رفتار منحرف سازمانی از بالاترین ضریب مسیر (0.33) برخوردار است.
Brain Computer Interface using Genetic Algorithm with modified Genome and Phenotype Structures(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The human machine interface research in the light of modern fast computers and advanced sensors is taking new heights. The classification and processing of neural activity in the brain accessed by Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electrocorticography (ECoG), EEG Electroencephalogram (EEG) etc., are peeling off new paradigms for pattern recognition in human brain-machine interaction applications. In the present paper, an effective novel scheme based upon a synergetic approach employing the Genetic Algorithm (GA), Support Vector Machine and Wavelet packet transform for motor imagery classification and optimal Channel selection is proposed. GA with SVM acting as the objective function is employed for simultaneous selection of features and channels optimally. The binary population of GA is uniquely represented in three-dimensional structure and a new cross-over operator for GA are introduced. The new modified cross-over operator is proposed for the modified three-dimensional population. The ‘data set I’ of ‘BCI Competition IV’ is taken for evaluation of the efficacy of the proposed scheme. For subject ‘a’ accuracy is 88.9 6.9 with 10 channels, for subject ‘b’ accuracy is 79.20±5.36with 11 channels, for subject ‘f’ accuracy is 90.50±3.56 with 13 channels, and for subject ‘g’ accuracy is 92.23±3.21with 12 channels. The proposed scheme outperforms in terms of classification accuracy for subjects ‘a, b, f, g’ and in terms of number of channels for subject ‘a’ and that for subject ‘b’ is same as reported earlier in literature. Therefore, proposed scheme contributes a significant development in terms of new three-dimensional representation of binary population for GA as well as significant new modification to the GA operators. The efficacy of the scheme is evident from the results presented in the paper for dataset under consideration.
Digitalization of Business Development Marketing Tools in the B2C Market(مقاله علمی وزارت علوم)
حوزههای تخصصی:
With the development of a new stage of the industrial revolution, the importance of digitalization of business development tools is growing. The purpose of this article is to study the applied aspects of digital marketing tools usage for business development in the B2C market. To achieve the purpose and objectives of the study general and special methods are used: comparative analysis of the results of economic and statistical surveys; method of expert assessments by questionnaires using a 5-point Likert scale. The concordance coefficient was used to determine the consistency of the experts' opinions taking into account the related ranks in method of expert assessments. According to the results of the research, it is established that the Ukrainian business of the B2C sector was actively mastering digital marketing tools. The analysis of penetration level of digital technologies in the development of trade business showed the emergence of basic conditions for updating marketing tools to influence the B2C market. There is a rapid coverage rate of multi-purpose use of the Internet among consumers and businesses; gradual growth of digital skills among practitioners; positive dynamics of development of interactive services in the trade sphere. However, the level of use of the retail businesses websites remains low in many spheres of customer service. An important trend of the current development stage of the consumer market is the usage of business Internet platforms designed for mass dissemination of information. Effective marketing channels of interaction with consumers include social media (social networks, blogs or microblogs, websites with multimedia content, knowledge sharing tools), websites, e-shops, and sales via mobile devices. According to the results of expert evaluation, foreground digital technologies, which are able to bring business to a qualitatively new level of interaction with consumers and the provision of trade services have been identified. These are artificial intelligence and cognitive technologies, BigData, Internet of Things (IoT), and cloud computing. The structural and logical scheme of research of digital marketing tools is used for business development which includes two stages is offered. In the first stage, trendwatching, benchmarking and evaluation of internal opportunities for the use of digital marketing tools are performed. In the second stage, three components of digital readiness of business are defined: technological; competence; institutional. The obtained results form the basis of further research to determine the priorities of adaptive digital business behavior for the productive use of existing digital opportunities.
The Influence of the Shadow Economy on the Financial Security of Ukraine in the Conditions of Informatization of Society(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The article presents the results of the analysis of the indicators of the level of the shadow economy in Ukraine in the period from 2010 to 2020. The level of shadow economy calculated on the basis of such methods as: unprofitable enterprises, monetary, population expenditures - retail trade - services and electricity was used for the analysis. The causes and consequences of shadow economic activity in Ukraine are given. The study found that the downward trend in the shadow economy persists despite the spread of the negative effects of the COVID - 19 pandemic and declining real GDP. In particular, three of the four methods used to assess the level of the shadow economy recorded a decrease in the level of the shadow economy (the method of "population expenditure - retail trade and services"; the electric method; the monetary method). At the same time, the method of enterprise losses showed an increase in the shadow economy, which is largely due to a significant deterioration in the financial situation of enterprises under the restrictions imposed to prevent the rapid spread of the coronavirus pandemic in the world and Ukraine, as well as logistical problems. The practical value of the results is determined by the fact that the conclusions and proposals can be used to more accurately and objectively calculate the level of the shadow economy, which in turn can be the basis for effective decisions to de-shadow and legalize Ukraine's economy.
Process model of development of leadership qualities of public servants in the conditions of digital transformation(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The purpose of this study is to develop proposals and recommendations for the implementation of a process model for the development of leadership qualities of public servants and justification of the conditions for ensuring its effectiveness in terms of digital transformation. The relevance of this study is due to the need to ensure development of the process of professionalization of the senior civil service personnel on the basis of development of leadership qualities that will contribute to the effective operation of the civil service of Ukraine, change management and successful implementation of reforms in Ukraine, taking into account the best world practices. The methodology for assessing the level of managerial competencies of public servants according to the degree of implementation of strategic (key) competencies has been developed. The assessment of managerial competencies according to the degree of their significance for civil servants, the expert group identified the most important management competencies. An approach to understanding has proposed interaction of leadership competencies with managerial competencies, a diagnostic model for assessing the leadership of public servants has been developed. To implement the model, a system of indicators has been developed - single, complex and integrated indicators of civil servants' leadership, using tools: a tree of civil servants' leadership indicators, matrices for the calculated civil servants' leadership indicator, measurement scales for the corresponding level of indicators.
Early Diagnosis of Alzheimer Disease from Mri Using Deep Learning Models(مقاله علمی وزارت علوم)
حوزههای تخصصی:
On a global scale, one of the prevalent causes of dementia is Alzheimer’s disease (AD). It will cause a steady deterioration in the individual from the mild stage to the severe stage, and thus impair their capacity to finish any tasks with no aid. The diagnosis is done with the utilization of existing methods which include medical history; neuropsychological testing as well as MRI (Magnetic Resonance Imaging), a lack of sensitivity as well as precision does affect the consistency of efficient procedures. With the deep learning network’s utilization, it is possible to create a framework for detecting specific AD characteristics from the MRI images. While automatic diagnosis is done with the application of diverse machine learning techniques, the existing ones do suffer from certain constraints with regards to accuracy. Thus, this work’s key goal is to increase the classification’s accuracy through the inclusion of a pre-processing approach prior to the deep learning model. The Alzheimer's disease Neuroimaging Initiative (ADNI) database of AD patients was used to develop a deep learning approach for AD identification. In addition, this study will present ideas for Haralick features, feature extraction from Local Binary Pattern (LBP), Artificial Neural Network (ANN), and Visual Geometry Group (VGG)-19 network techniques. The results of the experiments show that the deep learners offered are more effective than other systems already in use.
The Pandemic Benefits Reaped by Online Teaching Platforms: A Case study of Whitehat Junior(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Pandemic has brought all together a new environment of working and compelled all the off line educational institutions to become online educational platforms and strengthen their online resources. We need to understand online platforms as universities, institutes, schools, colleges or any educational institute which are working online and providing degrees, certificates, diplomas for several courses and programs. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teachers perspective. Literature review has showed the gap in exploring the turnaround strategies inspired by the parent’s perspective for online education especially with respect to young children (Age group 8 to 12 years). Apart from literature review and analysis of secondary data from websites and search engines, qualitative research was undertaken to know about parent’s views in general about the online platforms and particularly about WHJ (White Hat Junior). The focused group discussion and the indepth interviews revealed very useful information with regard to Online educational platforms and especially WHJ in relation to Covid -19 times. Findings relate to awareness, acceptability, perception change, costs, safety issues, etc. It has brought out elaborately in this case based research, how parents expectation may impact the turnaround strategies of their wards’ online educational platforms. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teacher’s perspective.
بررسی نقش مدیریت ارتباط با مشتری در رابطه بین مدیریت دانش مشتری و توسعه محصول جدید (نمونه پژوهش: شرکتهای صنعتی فعال در بخش پلاستیک)(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم پاییز ۱۴۰۲ شماره ۲۲
81 - 122
حوزههای تخصصی:
در این پژوهش تلاش شده است تا تاثیر مدیریت ارتباط با مشتری (CRM) در رابطه بین مدیریت دانش مشتری (CKM) و توسعه محصول جدید (NPD) بررسی شود. این پژوهش از نظر هدف کاربردی و از نظر ماهیت توصیفی-پیمایشی است. جامعه آماری پژوهش شرکت های فعال استان خوزستان و آذربایجان غربی می باشد که از بین آن ها 169 شرکت به عنوان نمونه انتخاب شده اند. ابزار جمع آوری داده ها پرسشنامه استاندارد بوده است. در پرسشنامه مورد استفاده ابعاد متغیر مدیریت دانش مشتری شامل دانش درباره مشتری، از مشتری، و برای مشتری به ترتیب بر اساس مقیاس های بوچنوسکا (2011)، موسی خانی، حقیقت و ترک زاده (2012)، و شامی زنجانی و نجف لو (2011) سنجیده شده است. ابعاد متغیر مدیریت ارتباط با مشتری نیز شامل اطلاعات، ارزش، و ارتباطات چندکاناله به ترتیب بر اساس مقیاس های کوهلی و جاورسکی (1990)، جارویس، و همکاران (2003)، و جیندال، و همکاران (2007) سنجیده شده است. همچنین متغیر محصول جدید بر اساس مقیاس کوپر و کلین اشمیت (1995) سنجیده شده است. جهت تجزیه و تحلیل اطلاعات از روش حداقل مربعات جزئی و نرم افزار SmartPLS استفاده شده است. بررسی پایایی داده ها با استفاده از آزمون ضریب آلفای کرونباخ و پایایی مرکب نشان داد که کمترین مقدار آلفای کرونباخ مربوط به متغیر دانش از مشتری با مقدار 775/0 و کمترین مقدار پایایی مرکب مربوط به متغیر دانش از مشتری با مقدار 843/0شده است و از این رو پایایی همه متغیرهای آزمون مورد تایید قرار گرفته شد. بررسی نتایج پژوهش نشان داد که ضریب مسیر CKM-CRM و CKM-NPD به ترتیب دارای مقادیر 833/0 و 612/0، ضریب مسیر CRM-NPD دارای مقدار 774/0، و اثر میانجی CRM بر رابطه CKM-NPD مقدار 648/0 شده است که همه موارد درسطح خطای 5 درصد معنی دار است. این یافته ها چندین پیامد مهم علمی و عملی دارند و از این رو پیشنهاد می شود شرکت ها اهمیت مدیریت ارتباط با مشتری را در فعال سازی استعداد مدیریت دانش و توسعه محصول جدید مورد توجه ویژه قرار دهند.
Economic and mathematical modeling of innovative development of the agglomeration on the basis of information technologies(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Management of innovation processes is one of the functions of local governments and, therefore, they should be the initiators and moderators of communication between research organizations and enterprises. The program formation of agglomeration innovative development involves the creation of promoting innovation body, which allows to achieve the maximum involvement degree of all the participants in the innovation process. The article is devoted to the research of urban agglomeration innovative development, the need to create a special body or center for innovation, which will form a set and interconnected, and will be integrated into the urban agglomeration and carry out innovation and technological activities as part of research and production infrastructure. The article develops a method for predicting the effectiveness of the advancement of this body through the digital space using trend models. It is expected to receive three forecasts: optimistic, realistic and pessimistic. This will accelerate the establishment of links between the players of the regional innovation market and contribute to a qualitative change in the spatial and functional structure of urban agglomerations. The development of information and communication technologies allows to create effective systems that will stimulate the agglomerations innovative development . Therefore, the communicative activities of regional governments should be carried out through the use of information and communication technologies. Thus, the urgency of developing a methodology for assessing the increase of the innovative component of agglomeration economic development is due to the low percentage of implementation research results, low science-intensive gross value added in the Ukrainian regions, the possibility of using information and communication technologies. Increasing the number of targeted visits will simplify and speed up the process of establishing links between innovation market players at the agglomeration spatial level in both the short and long term
Speech Enhancement using Greedy Dictionary Learning and Sparse Recovery(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and background noises, among other things. The goal of speech denoising is to extract the clean speech signal from as many distorted components as possible. For speech denoising, many researchers worked on sparse representation and dictionary learning algorithms. These algorithms, however, have many disadvantages, including being overcomplete, computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of arithmetic precision due to the usage of double-precision. We propose a greedy technique for dictionary learning with sparse representation to overcome these concerns. In this technique, the input signal's singular value decomposition is used to exploit orthogonality, and here the ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary learning by overcoming the orthogonality constraint, the three-sigma rule-based number of iterations, and the overcomplete nature. And this technique has resulted in improved performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point arithmetic, this approach is also used in resource-constrained embedded systems, and the performance is considerably better than other algorithms. The greedy approach outperforms the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time.