فیلترهای جستجو:
فیلتری انتخاب نشده است.
نمایش ۱۸۱ تا ۲۰۰ مورد از کل ۲٬۹۱۰ مورد.
حوزههای تخصصی:
With the development of a new stage of the industrial revolution, the importance of digitalization of business development tools is growing. The purpose of this article is to study the applied aspects of digital marketing tools usage for business development in the B2C market. To achieve the purpose and objectives of the study general and special methods are used: comparative analysis of the results of economic and statistical surveys; method of expert assessments by questionnaires using a 5-point Likert scale. The concordance coefficient was used to determine the consistency of the experts' opinions taking into account the related ranks in method of expert assessments. According to the results of the research, it is established that the Ukrainian business of the B2C sector was actively mastering digital marketing tools. The analysis of penetration level of digital technologies in the development of trade business showed the emergence of basic conditions for updating marketing tools to influence the B2C market. There is a rapid coverage rate of multi-purpose use of the Internet among consumers and businesses; gradual growth of digital skills among practitioners; positive dynamics of development of interactive services in the trade sphere. However, the level of use of the retail businesses websites remains low in many spheres of customer service. An important trend of the current development stage of the consumer market is the usage of business Internet platforms designed for mass dissemination of information. Effective marketing channels of interaction with consumers include social media (social networks, blogs or microblogs, websites with multimedia content, knowledge sharing tools), websites, e-shops, and sales via mobile devices. According to the results of expert evaluation, foreground digital technologies, which are able to bring business to a qualitatively new level of interaction with consumers and the provision of trade services have been identified. These are artificial intelligence and cognitive technologies, BigData, Internet of Things (IoT), and cloud computing. The structural and logical scheme of research of digital marketing tools is used for business development which includes two stages is offered. In the first stage, trendwatching, benchmarking and evaluation of internal opportunities for the use of digital marketing tools are performed. In the second stage, three components of digital readiness of business are defined: technological; competence; institutional. The obtained results form the basis of further research to determine the priorities of adaptive digital business behavior for the productive use of existing digital opportunities.
Speech Enhancement using Greedy Dictionary Learning and Sparse Recovery(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Most real-time speech signals are frequently disrupted by noise such as traffic, babbling, and background noises, among other things. The goal of speech denoising is to extract the clean speech signal from as many distorted components as possible. For speech denoising, many researchers worked on sparse representation and dictionary learning algorithms. These algorithms, however, have many disadvantages, including being overcomplete, computationally expensive, and susceptible to orthogonality restrictions, as well as a lack of arithmetic precision due to the usage of double-precision. We propose a greedy technique for dictionary learning with sparse representation to overcome these concerns. In this technique, the input signal's singular value decomposition is used to exploit orthogonality, and here the ℓ1-ℓ2 norm is employed to obtain sparsity to learn the dictionary. It improves dictionary learning by overcoming the orthogonality constraint, the three-sigma rule-based number of iterations, and the overcomplete nature. And this technique has resulted in improved performance as well as reduced computing complexity. With a bit-precision of Q7 fixed-point arithmetic, this approach is also used in resource-constrained embedded systems, and the performance is considerably better than other algorithms. The greedy approach outperforms the other two in terms of SNR, Short-Time Objective Intelligibility, and computing time.
Online Education as a New Normal: Are We Ready for this New Teaching and Learning Mode?(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The spread of COVID-19 pandemic starting in late 2019 has changed the way we conduct our teaching and learning activities especially in Higher Education Institutions (HEIs). Since March 2020, classes have been conducted via online platforms. As a consequence, students missed the campus life, teamwork has been given less emphasis, fieldwork, industry visits and community service have been put aside, and most importantly the achievement of the learning outcomes towards a certain extent has been compromised. The implications of these changes need to be highly considered as they might affect the quality of graduates. This paper intends to discuss the impact of COVID-19 pandemic on the education system and highlight some potential solutions that can be considered by the academics and the top management of HEIs to address the negative repercussions of the current practices. Some research implications are also highlighted in the paper.
Analysis of Diabetes disease using Machine Learning Techniques: A Review(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Diabetes is a type of metabolic disorder with a high level of blood glucose. Due to the high blood sugar, the risk of heart-related diseases like heart attack and stroke got increased. The number of diabetic patients worldwide has increased significantly, and it is considered to be a major life-threatening disease worldwide. The diabetic disease cannot be cured but it can be controlled and managed by timely detection. Artificial Intelligence (AI) with Machine Learning (ML) empowers automatic early diabetes detection which is found to be much better than a manual method of diagnosis. At present, there are many research papers available on diabetes detection using ML techniques. This article aims to outline most of the literature related to ML techniques applied for diabetes prediction and summarize the related challenges. It also talks about the conclusions of the existing model and the benefits of the AI model. After a thorough screening method, 74 articles from the Scopus and Web of Science databases are selected for this study. This review article presents a clear outlook of diabetes detection which helps the researchers work in the area of automated diabetes prediction.
بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی (نمونه پژوهش: اداره کل امور مالیاتی مودیان بزرگ)(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم تابستان ۱۴۰۲ شماره ۲۱
83 - 140
حوزههای تخصصی:
هدف از پژوهش حاضر، بررسی تاثیر رفتارهای پنهان کننده دانش بر سکوت کارکنان و رفتارهای منحرف سازمانی با نقش میانجی نقض قرارداد روانشناختی می باشد. این پژوهش از نظر نوع هدف، کاربردی و از نظر نوع ماهیت، توصیفی- پیمایشی است. جامعه آماری پژوهش حاضر، شامل کارکنان اداره امور مالیاتی مودیان بزرگ که مشتمل بر 400 نفر می باشند که تعداد 227 نفر به روش تصادفی ساده و به روش تحلیل توان به عنوان نمونه آماری انتخاب گردیدند. جهت گردآوری اطلاعات از پرسشنامه استاندارد استفاده شده است و داده ها بوسیله تحلیل چندمتغیره مبتنی بر مدل سازی معادلات ساختاری با رویکرد کواریانس محور در بستر نرم افزار Amos ورژن 24 مورد تجزیه و تحلیل قرار گرفت. نتایج تحقیق حاکی از تایید تاثیر پنهان کاری منطقی بر سکوت تدافعی، پنهان کاری گریزان بر سکوت رابطه ای، پنهان کاری منطقی بر سکوت رابطه ای، پنهان کاری گریزان بر سکوت بی اثر، پنهان کاری منطقی بر سکوت بی اثر و سکوت تدافعی بر رفتار منحرف سازمانی، سکوت رابطه ای بر رفتار منحرف سازمانی و سکوت بی اثر بر رفتار منحرف سازمانی می باشد و همچنین نتایج حاصل از تحلیل میانجی نشان می دهد که سازه "نقض قرارداد روانشناختی" برای تمامی روابط میان ابعاد پنهان کاری و ابعاد سکوت دارای نقش میانجی است، به طوری که فرآیند میانجی گری مذکور برای روابط علی میان "پنهان کاری خاموش" و "سکوت تدافعی/ سکوت بی اثر" به صورت کامل و برای مابقی روابط به صورت جزئی است. در نهایت، از میان بیست و یک فرضیه مطروحه، هفده فرضیه مورد تائید قرار گرفت که از این بین تاثیر سکوت رابطه ای بر رفتار منحرف سازمانی از بالاترین ضریب مسیر (0.33) برخوردار است.
Brain Computer Interface using Genetic Algorithm with modified Genome and Phenotype Structures(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The human machine interface research in the light of modern fast computers and advanced sensors is taking new heights. The classification and processing of neural activity in the brain accessed by Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electrocorticography (ECoG), EEG Electroencephalogram (EEG) etc., are peeling off new paradigms for pattern recognition in human brain-machine interaction applications. In the present paper, an effective novel scheme based upon a synergetic approach employing the Genetic Algorithm (GA), Support Vector Machine and Wavelet packet transform for motor imagery classification and optimal Channel selection is proposed. GA with SVM acting as the objective function is employed for simultaneous selection of features and channels optimally. The binary population of GA is uniquely represented in three-dimensional structure and a new cross-over operator for GA are introduced. The new modified cross-over operator is proposed for the modified three-dimensional population. The ‘data set I’ of ‘BCI Competition IV’ is taken for evaluation of the efficacy of the proposed scheme. For subject ‘a’ accuracy is 88.9 6.9 with 10 channels, for subject ‘b’ accuracy is 79.20±5.36with 11 channels, for subject ‘f’ accuracy is 90.50±3.56 with 13 channels, and for subject ‘g’ accuracy is 92.23±3.21with 12 channels. The proposed scheme outperforms in terms of classification accuracy for subjects ‘a, b, f, g’ and in terms of number of channels for subject ‘a’ and that for subject ‘b’ is same as reported earlier in literature. Therefore, proposed scheme contributes a significant development in terms of new three-dimensional representation of binary population for GA as well as significant new modification to the GA operators. The efficacy of the scheme is evident from the results presented in the paper for dataset under consideration.
The Pandemic Benefits Reaped by Online Teaching Platforms: A Case study of Whitehat Junior(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Pandemic has brought all together a new environment of working and compelled all the off line educational institutions to become online educational platforms and strengthen their online resources. We need to understand online platforms as universities, institutes, schools, colleges or any educational institute which are working online and providing degrees, certificates, diplomas for several courses and programs. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teachers perspective. Literature review has showed the gap in exploring the turnaround strategies inspired by the parent’s perspective for online education especially with respect to young children (Age group 8 to 12 years). Apart from literature review and analysis of secondary data from websites and search engines, qualitative research was undertaken to know about parent’s views in general about the online platforms and particularly about WHJ (White Hat Junior). The focused group discussion and the indepth interviews revealed very useful information with regard to Online educational platforms and especially WHJ in relation to Covid -19 times. Findings relate to awareness, acceptability, perception change, costs, safety issues, etc. It has brought out elaborately in this case based research, how parents expectation may impact the turnaround strategies of their wards’ online educational platforms. In different researches related to online education and Covid -19, investigations addressed student’s perspective or teacher’s perspective.
Implementation of Intrusion detection and prevention with Deep Learning in Cloud Computing(مقاله علمی وزارت علوم)
حوزههای تخصصی:
An administrator is employed to identify network security breaches in their organizations by using a Network Intrusion Detection and Prevention System (NIDPS), which is presented in this paper that can detect and preventing a wide range of well-known network attacks. It is now more important than ever to recognize different cyber-attacks and network abnormalities that build an effective intrusion detection system plays a crucial role in today's security. NSL-KDD benchmark data set is extensively used in literature, although it was created over a decade ago and will not reflect current network traffic and low-footprint attacks. Canadian Institute of Cyber security introduced a new data set, the CICIDS2017 network data set, which solved the NSL-KDD problem. With our approach, we can apply a variety of machine learning techniques like linear regression, Random Forest and ID3. The efficient IDPS is indeed implemented and tested in a network environment utilizing several machine learning methods. A model that simulates an IDS-IPS system by predicting whether a stream of network data is malicious or benign is our objective. An Enhanced ID3 is proposed in this study to identify abnormalities in network activity and classify them. For benchmark purposes, we also develop an auto encoder network, PCA, and K-Means Clustering. On CICIDS2017, a standard dataset for network intrusion, we apply Self-Taught Learning (STL), which is a deep learning approach. To compare, we looked at things like memory, Recall, Accuracy, and Precision.
Early Diagnosis of Alzheimer Disease from Mri Using Deep Learning Models(مقاله علمی وزارت علوم)
حوزههای تخصصی:
On a global scale, one of the prevalent causes of dementia is Alzheimer’s disease (AD). It will cause a steady deterioration in the individual from the mild stage to the severe stage, and thus impair their capacity to finish any tasks with no aid. The diagnosis is done with the utilization of existing methods which include medical history; neuropsychological testing as well as MRI (Magnetic Resonance Imaging), a lack of sensitivity as well as precision does affect the consistency of efficient procedures. With the deep learning network’s utilization, it is possible to create a framework for detecting specific AD characteristics from the MRI images. While automatic diagnosis is done with the application of diverse machine learning techniques, the existing ones do suffer from certain constraints with regards to accuracy. Thus, this work’s key goal is to increase the classification’s accuracy through the inclusion of a pre-processing approach prior to the deep learning model. The Alzheimer's disease Neuroimaging Initiative (ADNI) database of AD patients was used to develop a deep learning approach for AD identification. In addition, this study will present ideas for Haralick features, feature extraction from Local Binary Pattern (LBP), Artificial Neural Network (ANN), and Visual Geometry Group (VGG)-19 network techniques. The results of the experiments show that the deep learners offered are more effective than other systems already in use.
Economic and mathematical modeling of innovative development of the agglomeration on the basis of information technologies(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Management of innovation processes is one of the functions of local governments and, therefore, they should be the initiators and moderators of communication between research organizations and enterprises. The program formation of agglomeration innovative development involves the creation of promoting innovation body, which allows to achieve the maximum involvement degree of all the participants in the innovation process. The article is devoted to the research of urban agglomeration innovative development, the need to create a special body or center for innovation, which will form a set and interconnected, and will be integrated into the urban agglomeration and carry out innovation and technological activities as part of research and production infrastructure. The article develops a method for predicting the effectiveness of the advancement of this body through the digital space using trend models. It is expected to receive three forecasts: optimistic, realistic and pessimistic. This will accelerate the establishment of links between the players of the regional innovation market and contribute to a qualitative change in the spatial and functional structure of urban agglomerations. The development of information and communication technologies allows to create effective systems that will stimulate the agglomerations innovative development . Therefore, the communicative activities of regional governments should be carried out through the use of information and communication technologies. Thus, the urgency of developing a methodology for assessing the increase of the innovative component of agglomeration economic development is due to the low percentage of implementation research results, low science-intensive gross value added in the Ukrainian regions, the possibility of using information and communication technologies. Increasing the number of targeted visits will simplify and speed up the process of establishing links between innovation market players at the agglomeration spatial level in both the short and long term
The Influence of the Shadow Economy on the Financial Security of Ukraine in the Conditions of Informatization of Society(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The article presents the results of the analysis of the indicators of the level of the shadow economy in Ukraine in the period from 2010 to 2020. The level of shadow economy calculated on the basis of such methods as: unprofitable enterprises, monetary, population expenditures - retail trade - services and electricity was used for the analysis. The causes and consequences of shadow economic activity in Ukraine are given. The study found that the downward trend in the shadow economy persists despite the spread of the negative effects of the COVID - 19 pandemic and declining real GDP. In particular, three of the four methods used to assess the level of the shadow economy recorded a decrease in the level of the shadow economy (the method of "population expenditure - retail trade and services"; the electric method; the monetary method). At the same time, the method of enterprise losses showed an increase in the shadow economy, which is largely due to a significant deterioration in the financial situation of enterprises under the restrictions imposed to prevent the rapid spread of the coronavirus pandemic in the world and Ukraine, as well as logistical problems. The practical value of the results is determined by the fact that the conclusions and proposals can be used to more accurately and objectively calculate the level of the shadow economy, which in turn can be the basis for effective decisions to de-shadow and legalize Ukraine's economy.
The Effect of COVID-19 on Information Technology (IT) Marketing and Digital Business in Global Market(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The worldwide Covid-19 epidemic while affecting numerous places, has had a profound effect on virtual advertising and advertising and, globally, in the provinces and at the neighborhood level. except, this effect for the most element become positive, in contrast to what has seen in exclusive sectors which include economy, human sources, etc., whilst contamination reasons a variety of incapacity amongst clients and advertisers alike, in phrases of welfare, social work, inflation, business, and many others., the equal shifted conduct goes as a long way as running. , investing strength, getting into self-schooling, adopting new programs from the internet, expanding social and hygiene concerns, retaining distance strategies from complete regions, internet-based media willpower, get right of entry to online sources, etc., and this has greatly impacted the display and endorsed efforts. The moral movement has moved past the PC and digital international, which places open doors for advertisers and products to connect with clients more efficiently than ever before. With the arrival of expanded online media and the call for pc-generated content material, the evolved Media have given advertisers a part of the monetary freedom. At the equal time, this has, in turn, enabling advertisers to be extra proactive and to engage with the public at the same time as appearing excessive excellent demonstration programs. The purpose of this study is to explore, investigate, and recognize the effect of coronavirus on the digital market and businesses.
Stress-Testing Technologies of Financial Stability of Financial Corporations: Aspect of Insurance Companies(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The purpose of the article is to perform stress-testing technologies of the financial stability of an insurance company based on the constructed mathematical model of the insurance company's activity, which would meet the established requirements (adequate reproduction of the main parameters of the insurance company's functioning; taking into account the stochastic nature of insurance processes; flexible management of model parameters describing company's behaviour; the ability to influence the intensity of flows; suitability for algorithmization and construction of computational simulation model. The relevance of this study is due to the need to address the problem of changes and complications, the growing variety of strategies and products implemented by insurance companies. There is a need for innovative methods to assess and monitor the vulnerability of these institutions to various types of risks. One of these methods, which is gaining widespread recognition both among regulators and financial corporations, is stress testing. It has been established that stress testing as a risk management tool is used both to assess the insurance company's readiness for a crisis situation, and to develop a plan of adequate measures to counteract and eliminate its negative impact. The development and application of the proposed mathematical and simulation model of stress testing of the financial stability of the insurance company allows to solve issues of ensuring sufficiency of capital level, control of financial stability and solvency, reliability of efficiency of activities, taking into account the probabilistic nature of insurance activities, various typical insurance risks and time horizons.
Information Systems in Fiscal Administration and Modeling of Excise Tax(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The purpose of the article is to substantiate the fiscal role of the excise tax by studying its information and functional potential and to model the dynamics of its payment by the brewing industry. Excise tax occupies a special place in a tax system of each state because, in addition to significant fiscal importance, it has a considerable regulatory impact on the production and consumption of certain categories of goods. Based on information systems in the article analyses and monitors the indicators of the excise tax payments on goods produced in Ukraine on the example of a particular enterprise in the brewing industry. By means of the initial data analysis of autocorrelation functions of volumes’ indicators of the accrued excise taxes on beer the expediency of modelling realization of such indicator dynamics on the basis of ARIMA model is proved. The analytical and statistical approaches to the formation of models for the implementation of forecast for the calculation of excise tax on beer of brewing industry enterprises are improved. The proposed approach is based on the values of autocorrelation of balances and partial autocorrelation, as well as methods of analysis of time series with gaps, which allows to use it in the economic activity of enterprises to make forecasts for the calculation and payment of the excise tax. This will produce financial effects for the brewing industry in terms of cost optimization and minimization of the excise tax risks.
Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Co-Saliency object detection is the process of identifying common and repetitive objects from the group of images. Earlier studies have looked over several state-of-art deep neural network methodologies for co-saliency detection approach. The Deep CNN approaches rely heavily on co-saliency detection due to their potent feature extraction capabilities both deep and wide. This article assess the performance of several state-of-art deep learning model (VGG19, Inceptionv3, modifiedResNet, MobileNetV2 and PoolNet) for the purpose of co-saliency detection among images from benchmark datasets. All the models were trained on 70% part of the dataset and remaining were used for testing purpose. Experimental results show that modified ResNetmodel outperforms getting 96.53% accuracy as compared to other state-of-the-art deep neural network models.
نقش واسطه ای تسهیم دانش در تاثیر جو نوآورانه بر رفتارهای نوآورانه (نمونه پژوهش: معلمان شهر کاشان)(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم تابستان ۱۴۰۲ شماره ۲۱
243 - 269
حوزههای تخصصی:
درک اهمیت رفتار نوآورانه و خلاقانه معلمان در مدرسه، موضوع حیاتی و چالش برانگیزی برای مسئولان آموزش و پژوهشگران می باشد، زیرا مدارس به عنوان اجتماعات یادگیری حرفه ای وظیفه دارند حامی رفتارهای نوآورانه باشند. در واقع، از آنجایی که از مدارس و معلمان انتظار می رود دانش آموزانی را تربیت نمایند که در آینده، نیروی کاری خلاق و نوآور باشند، اهمیت رفتار نوآورانه معلمان به عنوان عاملان تغییر و الگوی دانش آموزان در این مسیر، امری مبرهن است. لذا هدف پژوهش، بررسی تاثیر جو نوآورانه بر رفتارهای نوآورانه معلمان با نقش واسطه ای تسهیم دانش بود. پژوهش حاضر از نظر هدف، کاربردی و از نظر اجرا، توصیفی-همبستگی بود. جامعه آماری، شامل معلمان شهر کاشان به تعداد 3252 نفر بود که با استفاده از فرمول کوکران و به روش نمونه گیری تصادفی طبقه ای 351 نفر به عنوان نمونه انتخاب شدند. جهت گردآوری داده ها از سه پرسشنامه جو سازمانی نوآورانه سیگل و کایمر (1978)، تسهیم دانش واندن هوف و دریدر (2004) و رفتار نوآورانه کانتر (1988) استفاده شد. روایی پرسشنامه ها به صورت صوری و سازه (تحلیل عاملی تاییدی) انجام شد. از طریق ضریب آلفای کرونباخ، پایایی پرسشنامه جو نوآورانه 88/0، رفتار نوآورانه 90/0 و تسهیم دانش 77/0 بدست آمد. تحلیل داده های پژوهش با استفاده از نرم افزارهای آماری SPSS و اسمارت در دو سطح توصیفی و استنباطی انجام گردید. نتایج نشان داد میانگین جو نوآورانه (96/2) کمی پایین تر از حد متوسط (3)، میانگین رفتار نوآورانه (95/3) بالاتر از حد متوسط (3) و میانگین تسهیم دانش (11/4) بالاتر از حد متوسط (5/2) بود. ضرایب مسیر نشان داد جو نوآورانه با (425/0=Beta، 001/0=P) روی رفتار نوآورانه، تسهیم دانش با (15/0=Beta، 002/0=P) روی رفتار نوآورانه و جو نوآورانه با (40/0=Beta، 001/0=P) روی تسهیم دانش معلمان، تاثیر مثبت و معنادار دارد و نقش میانجی تسهیم دانش، در تاثیر جو نوآورانه روی رفتار نوآورانه معلمان تایید شد. در واقع، هنگامی که معلمان جو سازمان را جوی حمایتی و حامی نوآوری ادراک می کنند، تمایل بیشتری به تسهیم دانش و تبدیل دانش ضمنی به دانش آشکار خواهند داشت و در حقیقت، بستری مناسب برای توزیع دانش بین معلمان فراهم می شود، تبادل اطلاعات صورت می گیرد و همین مسئله، زمینه ساز و پتانسیل بالقوه ای است برای بروز رفتار نوآورانه.
الگوسازی بعد دانشی در نظام نوآوری با رویکرد فراترکیب و دیماتل خاکستری(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم تابستان ۱۴۰۲ شماره ۲۱
183 - 241
حوزههای تخصصی:
پژوهش حاضر به بررسی مدل ها و ادبیات علمی حول نقش دانش در نظام نوآوری به استخراج مدلی از بعد دانشی نظام نوآوری جهت ارائه در یک سازمان نظامی پرداخته و نحوه تعاملات بین اجزای مدل را کشف می نماید. پارادایم تحقیق تفسیری، با رویکرد کاربردی و توسعه ای، با استراتژی قیاسی- استقرائی و روش آمیخته شکل گرفته است. جمع آوری داده های پژوهش بصورت کتابخانه ای و میدانی و روش نمونه گیری بصورت نظری بود. جامعه آماری این پژوهش در بخش کیفی مقالات علمی موجود در پایگاه های پژوهشی بودند و به صورت تمام شمار مورد بازبینی قرار گرفتند. در بخش کمی نیز جامعه آماری شامل خبرگان حوزه نوآوری و تحصیلکردگان دانشگاهی بودند. در این پژوهش ابزار گرداوری داده شامل بررسی اسناد و مدارک و همینطور ماتریس ورودی روش دیماتل در قالب پرسشنامه مورد استفاده قرار گرفتند. جامعه پژوهش در بخش کیفی شامل اسناد علمی مشخص با روش نمونه گیری نظری مورد بازبینی قرار گرفت. همینطور در بخش کمی جامعه پژوهش خبرگان این حوزه با روش نمونه گیری هدفمند مورد توجه قرار گرفتند. در این پژوهش با استفاده از رویکرد فراترکیب مبتنی بر رویکرد باروسو و ساندلوفسکی که شامل هفت گام اساسی است و کنکاش پژوهش های گذشته که با توجه به معیارهای ورودی شامل مقالات علمی با درجه مشخص و بعد از سال 2000 میلادی ، مفاهیم استخراج شده و در نهایت اجزای بعد دانشی نظام نوآوری شناسایی شدند. این اجزا که پس از غربالگری منابع، از 48 منبع گرداوری گردیدند، در قالب 84 کد استخراج گردید که در بطن ده مضمون اساسی جای دهی شدند. این مضامین در قالب مقولات سه گانه پژوهش، یادگیری و مدیریت دانش بعد دانشی نظام نوآوری را شکل دادند. مدل استخراج یافته طی یک پرسشنامه توسط 10 نفر از خبرگان یک سازمان نظامی مورد نظر قرار گرفته و بومی شد. در ادامه با استفاده از روش دیماتل به بررسی نحوه اتصال اجزا و بررسی کنش های متقابل بین آن ها در بین خبرگان یک سازمان نظامی پرداخته شد. اعتبار پژوهش در بخش کیفی با روش حیاتی و کاپای کوهن و در بخش کمی با مراجعه به خبرگان مورد تایید قرار گرفت. نتایج نشان داد که دو متغیر "مقدمات یادگیری" و "صیانت از دانش" به عنوان عواملی که بیشترین میزان مجموع اثرگذاری و اثر پذیری را دارا هستند( به ترتیب با مقادیر 2.0841 و 1.5240) در مجموعه عوامل به عنوان بازیگران مهمی شناخته می شوند. همچنین دو متغیر "مقدمات یادگیری" و " آموزش" دارای بیشترین مقدار تاثیر گذاری خالص(کسر میزان اثرگذاری از اثر پذیری) در مجموعه این عوامل، به ترتیب با مقادیر 0.9726 و 0.2763، را دارا بودند. از این رو این دو عامل به عنوان بیشترین تحریک کننده مجموعه عوامل به شمار آمده و نیاز است در طرحریزی ها مورد توجه قرار گرفته شوند.
شناخت اینرسی نوآوري در شرکت هاي دانش بنیان و پیامدهاي آن؛ تحلیل عوامل پیشایندي و پسایندي با نقشه شناختی فازي(مقاله علمی وزارت علوم)
منبع:
مدیریت دانش سازمانی سال ششم پاییز ۱۴۰۲ شماره ۲۲
149 - 178
حوزههای تخصصی:
در محیط متلاطم جهان امروز، اگر شرکت یا سازمانی قابلیت انطباق با تغییرات و تحولات جهانی را نداشته باشد، محکوم به سقوط و نابودی است. بنابراین شرکت ها و سازمان ها، اگر خواهان آن هستند که بقای آن ها تهدید نشود، باید خلاقیت و نوآوری را به عنوان کلیدواژه اصلی راهبردها، برنامه ها و سیاست های اصلی خود بپذیرند. از این رو پژوهش حاضر با هدف شناخت و فهم اینرسی نوآوری در شرکت های دانش بنیان انجام شد. این پژوهش بر پایه پژوهش آمیخته و به صورت کیفی و کمی است که از نظر هدف، کاربردی و از حیث ماهیت و روش، توصیفی پیمایشی است. جامعه آماری پژوهش مدیران و اساتید شرکت های دانش بنیان هستند که به عنوان خبرگان، نظرات آن ها در بخش کیفی و کمی پژوهش مورد بررسی قرار می گیرد. اعضای نمونه آماری این پژوهش به وسیله روش نمونه گیری هدفمند انتخاب گردیدند. در بخش کیفی پژوهش ابزار گردآوری اطلاعات مصاحبه نیمه ساختاریافته است که روایی و پایایی آن با استفاده از ضریب CVR و آزمون درون کدگذار و میان کدگذار تایید شد. ابزار گردآوری اطلاعات در بخش کمی نیز پرسشنامه است که روایی و پایایی آن با استفاده از روایی محتوا و آزمون مجدد تایید شد. در بخش کیفی، داده های کیفی بدست آمده از مصاحبه با استفاده از نرم افزار Atlas.ti و روش کدگذاری تحلیل شد و عوامل ایجاد کننده اینرسی نوآوری در شرکت های دانش بنیان ایران شناسایی شدند. به علاوه در بخش کمی پژوهش، با استفاده از روش FCM عوامل ایجاد کننده و همچنین پیامدهای اینرسی نوآوری درشرکت های دانش-بنیان ایران اولویت یابی شده و مهمترین عوامل ایجاد کننده و پیامدهای اینرسی نوآوری در شرکت های دانش بنیان شناسایی شدند. نتایج پژوهش نشان دهنده آن است که حاکمیت فرهنگ تقلید به جای فرهنگ نوآوری، گرفتاری به سندروم آرتروز فکری، ترس و روحیه محافظه کارانه، انجماد فکری و استفاده از تجربیات قبلی در حل مسئله جدید، مهمترین عوامل ایجاد کننده اینرسی نوآوری هستند همچنین چهار عامل از جمله، کاهش کارایی و بهره وری، ضعف در یادگیری و حل مسئله، اخذ تصمیمات نامطلوب و مخاطره بقای سازمان و پدیدایی انسداد و بن بست استراتژیک پیامدهای بسیار مهم اینرسی نوآوری در شرکتهای دانش بنیان هستند.
Social Media Value Creation Practices and Interactivity of Electronic Word of Mouth Systems(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The main drivers of value creation in a ‘brand community’ are social networking, community engagement, impression management, and brand use. Marketers are therefore interested in determining which factors affect the value creation practices. This study examines the impact of the Interactivity of Electronic Word of Mouth (EWOM) systems on value creation practices in a brand community, which in turn influences the loyalty of the customers. In this regard, a conceptual model was developed and tested by the researchers of the current study. The results indicate that perceptions of the users regarding the interactivity of EWOM systems, highly impact only three of the four value creation practices including community engagement practices, impression management practices, and brand use practices. Furthermore, the researchers found that collective value creation practices could significantly and directly enhance brand loyalty. Several theoretical contributions and managerial implications were also discussed
Artificial Intelligence Driven Human Identification(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Human Identification has been widely implemented to enhance the efficiency of surveillance systems, however, systems based on common CCTV (closed-circuit television) cameras are mostly incompatible with the advanced identification algorithms which aim to extract the facial features or speech of an individual for identification. Gait (i.e., an individual’s unique walking pattern/style) is a leading exponent when compared to first-generation biometric modalities as it is unobtrusive (i.e., it requires no contact with the individual), hence proving gait to be an optimal solution to human identification at a distance. This paper proposes an automatic identification system that analyzes gait to identify humans at a distance and predicts the strength of the match (i.e., probability of the match being positive) between two gait profiles. This is achieved by incorporating computer vision, digital image processing, vectorization, artificial intelligence, and multi-threading. The proposed model extracts gait profiles (from low-resolution camera feeds) by breaking down the complete gait cycle into four quarter-cycles using the variations in the width of the region-of-interest and then saves the gait profile in the form of four distinct projections (i.e., vectors) of length 20 units each, thus, summing up to 80 features for each individual’s gait profile. The focus of this study revolved around the speed-accuracy tradeoff of the proposed model where, with a limited dataset and training, the model runs at a speed of 30Hz and yields 85% accurate results on average. A Receiver Operating Characteristic Curve (ROC) is obtained for comparison of the proposed model with other machine learning models to better understand the efficiency of the system