مطالب مرتبط با کلیدواژه

شبکه عصبی مصنوعی


۲۲۱.

برآورد رسوب معلق در حوضه آبریز قره سو استان اردبیل با استفاده از مدل های شبکه عصبی مصنوعی RBF و MLP(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه عصبی مصنوعی روش RBF روش MLP قره سو

حوزه‌های تخصصی:
تعداد بازدید : ۱۴۷ تعداد دانلود : ۷۳
فرسایش به وسیله آب، جدی ترین شکل تخریب زمین در بسیاری از نقاط جهان به ویژه در مناطق خشک و نیمه خشک است که در آن میزان تشکیل خاک معمولاً کمتر از میزان فرسایش آن می باشد. در این تحقیق کارایی مدل های شبکه عصبی مصنوعی به دو روش تابع شعاع محور(RBF) و پرسپترون چند لایه(MLP) در تخمین رسوب معلق در حوضه قره سو استان اردبیل مورد بررسی قرار گرفت. در این مطالعه از داده های 3834 رسوب روزانه ثبت شده مربوط به دوره آماری سال 1350 تا 1399 استفاده شد. به منظور بررسی همبستگی بین متغیرها برای ورود به عملیات مدلسازی از روش همبستگی پیرسون استفاده گردید و جهت پیش بینی و مدلسازی رسوب در حوضه موردنظر از مدل شبکه عصبی مصنوعی استفاده شد. نتایج نشان می دهد که انتخاب تعداد 3 نرون در لایه پنهان با داده های ارزیابی، آموزش و جدانگه داشته شده به ترتیب با مقادیر 2618، 701 و 515 برای مدل RBF و تعداد 8 نرون در لایه پنهان با داده های ارزیابی، آموزش و جدانگه داشته شده به ترتیب با مقادیر 2592، 709 و 533 برای مدل MLP، بیشترین دقت پیش بینی را دارا می باشند. بطوریکه دقت پیش بینی در مدل RBF با ضریب همبستگی 941/0R2= و 002/65RMSE= و در مدل MLP با ضریب همبستگی 917/0R2= و 244/88RMSE= می باشد. با توجه به مشکلات اندازه گیری رسوبات بار کف و اریب زیاد ناشی از محاسبه بار بستر به عنوان درصدی از بار معلق، می توان توصیه نمود که از مدل شبکه عصبی مصنوعی RBF به عنوان یک روش قدرتمند، سریع و با دقت بالا برای تخمین رسوب استفاده شود. همچنین نتایج حاضر ضمن معرفی عوامل تاثیرگذار بر میزان تولید رسوب در حوزه مورد مطالعه ، می تواند برای برآورد رسوب به مناطق فاقد آمار تعمیم داده شود.
۲۲۲.

طراحی مدلی فرا ابتکاری برای پیش بینی مصرف گاز طبیعی در صنایع ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی مصرف گاز شبکه عصبی مصنوعی الگوریتم ژنتیک

حوزه‌های تخصصی:
تعداد بازدید : ۱۱۹ تعداد دانلود : ۵۳
به منظور کنترل عرضه و تقاضای انرژی و برنامه ریزی صحیح در هدایت مصرف، میزان مصرف گاز ماهانه صنایع کشور با شبکه عصبی مصنوعی و الگوریتم ژنتیک در این پژوهش برای سال 1402 موردبررسی قرار گرفت. اطلاعات جمعیت کشور، شاخص بهای تولیدکننده صنعت، تولید ناخالص داخلی به قیمت ثابت 90 و مصرف گاز صنایع کشور به عنوان متغیرهای تأثیرگذار بررسی شدند. نتایج نشان داد بهترین شبکه عصبی مصنوعی ترکیب شده با الگوریتم ژنتیک، شبکه ای با نرخ جهش 5/0، نرخ تقاطع 5/0، تعداد تکرار 150 و اندازه جمعیت اولیه 150 است. ترکیب شبکه عصبی مصنوعی و الگوریتم ژنتیک نشان داد که در فصل بهار درمجموع 7/2957 میلیون بشکه معادل نفت خام، در تابستان این رقم به 6/3502، در پاییز 9/4329 و در زمستان با رشد 15/8 درصدی به 4683 میلیون بشکه معادل نفت خام خواهد رسید.
۲۲۳.

شناسایی پیشران های اثربخشی تیمی از راه شبکه عصبی مصنوعی (موردمطالعه: شرکت فولاد خوزستان)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تیم اثربخشی تیمی شبکه عصبی مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۶۵ تعداد دانلود : ۳۱
هدف این پژوهش، شناسایی پیشران های اثربخشی تیمی در شرکت فولاد خوزستان از راه شبکه عصبی مصنوعی است. این پژوهش بر اساس هدف، از نوع پژوهش های کاربردی-توسعه ای بر مبنای روش و نحوه گردآوری داده ها، پژوهشی توصیفی- پیمایشی و از نظر نوع داده ها، رویکرد پژوهش کمی است. جامعه آماری پژوهش را 1020 نفر از کارکنان و مدیران شرکت فولاد خوزستان تشکیل می دهند که با روش نمونه گیری تصادفی ساده و هدفمند، 360 نفر برای نمونه انتخاب شدند. نتایج نشان داد شبکه عصبی مصنوعی با درصد دقت بالا (در شناسایی شاخص هایی که اثربخشی را افزایش می دهند: یعنی 3/97 در بخش آموزش و 8/95 در بخش آزمایش، همچنین در شناسایی شاخص هایی که اثربخشی را افزایش نمی دهند: یعنی 5/96 درصد در بخش آموزش و 9/92 در بخش آزمایش) توانسته است درست عمل کرده و پیش بینی کند که این موضوع بیانگر کارایی و حساسیت بسیار بالای این سیستم است. همچنین، از تعداد 125 شاخص ارائه شده، تعداد 65 شاخص مستقل فعال در پیش بینی اثربخشی تیمی موفق عمل کردند که این روش توانست با تعریف متغیر صفر و یک آنها را شناسایی کند. شبکه عصبی مصنوعی در تحلیل داده ها ما را به این نتیجه رساند که به ترتیب شاخص های یادگیری تیمی، جهت سازی یکسان تیمی و ذهنیت چابک، مهم ترین پیشران ها در اثربخشی تیمی محسوب می شوند و نیاز است مطالعه عمیقی روی این ابعاد انجام شود.
۲۲۴.

کاربرد شبکه های عصبی مصنوعی در مدل سازی توسعه کالبدی شهری (مطالعه موردی: شهر رشت)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدل سازی توسعه کالبدی شهری شبکه عصبی مصنوعی شهر رشت

حوزه‌های تخصصی:
تعداد بازدید : ۵۳ تعداد دانلود : ۲۴
مقدمه: امروزه توسعه کالبدی شهرها به صورت روزافزون در حال افزایش است. مدیریت صحیح این توسعه از جهات گوناگون در زمره مسائل مهمی است که باید مدنظر قرار بگیرد. روش های متعددی برای پیش بینی و تعیین جهت توسعه شهری وجود دارد که یکی از این روش ها در تعیین مناطق مناسب، روش مبتنی بر شبکه های عصبی است. هدف تحقیق: هدف این پژوهش مدل سازی توسعه شهر رشت طی بیست سال اخیر و پیش بینی جهات توسعه این شهر تا سال 2032 می باشد. روش شناسی تحقیق: با استفاده از تصاویر ماهواره ای ETM+ لندست 7 و8 سال های 2002، 2012 و 2021 شهر رشت و با نرم افزار GIS تصاویر با ترکیب باندی مناسب آماده و سپس با استفاده از روش شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) تصاویر طبقه بندی شده اند. شاخص های در نظر گرفته شده برای مدل همسایگی مناطق شهری، فاصله از نقاط شهری، فاصله تا مناطق مرکزی شهر و فاصله تا خیابان ها و راههای اصلی می باشند. قلمرو جغرافیایی پژوهش: شهر رشت، مرکز استان گیلان و در ۴۹ درجه و ۳۵ دقیقه و ۴۵ ثانیه طول شرقی و ۳۷ درجه و ۱۶ دقیقه و ۳۰ ثانیه عرض شمالی از نصف النهار گرینویچ قرار دارد و مساحت آن حدود ۱۰۲۴۰ هکتار می باشد. یافته ها: در این مدل در حالت آموزش مرحله اول (ورودی اعمال چهار شاخص بر تصاویر سال 2002)، شبکه 104 تکرار انجام داد و کمترین میزان خطا که با معیار آنتروپی متقاطع ارزیابی می شود در تکرار 98ام برابر با 058526/0 گردید. در مرحله دوم ورودی مدل اعمال چهار شاخص بر روی تصاویر 2012 بوده که کمترین میزان خطا 076657/0 ارزیابی شد. نتایج: در مجموع مدل توانسته است برای پیش بینی توسعه شهر رشت در سال 2012، 9/95 درصد و برای سال 2021، 8/93 درصد برآورد درستی داشته باشد که این عددها می تواند قابل قبول باشد. خطای مدل در این بخش اول 1/4 درصد و در بخش دوم 2/6 درصد بوده است. با بررسی دوره بیست ساله روند توسعه کالبدی، جهات توسعه شهر رشت در سال 2032 پیش بینی شد.
۲۲۵.

انتخاب پرتفوی مبتنی بر شبکه عصبی مصنوعی با استفاده از شبکه یادگیری عمیق در بورس اوراق بهادار تهران

کلیدواژه‌ها: شبکه عصبی مصنوعی انتخاب پرتفوی یادگیری عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۱۵ تعداد دانلود : ۱۸
هدف: مسایل بهینه سازی یکی از زمینه های جالب، مهم و پرطرفدار در ریاضیات مالی هستند. مدل بهتر بهینه سازی سبد سهام می تواند به سرمایه گذاران کمک کند تا سود پایدارتری کسب کنند. ادبیات موجود نشان می دهد که عملکرد استراتژی های سنتی پرتفوی میانگین-واریانس مناسب نیست. برای پرداختن به این موضوع، در این مطالعه از شبکه عصبی پرسپترون چندلایه و شبکه عصبی کانولوشن برای پیش بینی جهت آتی قیمت سهام استفاده شده است.روش شناسی پژوهش: دقت پیش بینی این دو روش با یکدیگر مقایسه می شود و خروجی های هر روشی که دارای دقت بالاتری بود، وارد مدل پیشنهادی می گردند. سپس با در اختیار داشتن جهت آتی قیمت سهام، یک طرح انتخاب سهام کارآمد برای سرمایه گذاران پیشنهاد می دهیم. همچنین یک آزمون بر روی طرح انتخاب سهام پیشنهادی و استراتژی های سرمایه گذاری انجام می دهیم که در آن اجزای شاخص بورس اوراق بهادار تهران به عنوان نمونه های آزمایشی انتخاب می شوند.یافته ها: نتایج تجربی نشان می دهد که طرح انتخاب سهام پیشنهادی می تواند به طور موثر عملکرد همه استراتژی های سرمایه گذاری را بهبود بخشد. علاوه بر این، استراتژی سرمایه گذاری پیشنهادی در مقایسه با استراتژی سرمایه گذاری حداقل واریانس سراسری سنتی عملکرد بهتری دارد.اصالت/ارزش افزوده علمی: این پژوهش با ارایه چارچوبی نوآورانه برای انتخاب پرتفوی مبتنی بر شبکه های یادگیری عمیق، نقشی کلیدی در افزایش کارایی سرمایه گذاری، مدیریت ریسک و بهبود تصمیم گیری در بازار سرمایه ایران ایفا می کند و الگویی پیشرفته برای سایر بازارهای مشابه فراهم می نماید.
۲۲۶.

پیش بینی قیمت سهام در بازار سرمایه با رویکرد هوش مصنوعی(مقاله پژوهشی دانشگاه آزاد)

کلیدواژه‌ها: شبکه عصبی مصنوعی حافظه کوتاه مدت ماندگار شبکه عصبی پیچشی پیش بینی قیمت

حوزه‌های تخصصی:
تعداد بازدید : 0 تعداد دانلود : 0
هدف این پژوهش پیش بینی قیمت سهام با استفاده از دو نوع شبکه عصبی در بورس اوراق بهادار تهران است. شبکه های عصبی بازگشتی [1] عموماً در پیش بینی داده های سری زمانی توانایی خوبی دارند، اما شبکه ی عصبی پیچشی [2] عمدتا برای کاربردهایی چون بینایی کامپیوتر استفاده می شوند. برای انجام این پژوهش از زبان پایتون در ویرایشگر VS code استفاده شده است. جامعه آماری این پژوهش بورس اوراق بهادار تهران می باشد. حجم نمونه آماری این پژوهش شامل داده های سه نماد بورس اوراق بهادار تهران به شرح ایران خودرو، البرز دارو و توسعه معادن روی ایران است. در این پژوهش از هشت ویژگی قیمت در چارچوب زمانی روزانه از تاریخ 1380 تا تاریخ 1400 استفاده می شود که شامل بالاترین قیمت، پایین ترین قیمت، قیمت بسته شدن، قیمت باز شدن، ارزش معاملات، حجم معاملات، اختلاف قیمت بسته شدن دو روز متوالی، و بازده روزانه است. برای ارزیابی عملکرد مدل ها از سه معیار خطای میانگین خطای مطلق، ریشه میانگین مربعات خطا و ضریب تعیین استفاده شده است. نتایج نشان می دهد که مدل شبکه عصبی پیچشی توانایی پیش بینی با دقت خوبی را دارا می باشد. شبکه های عصبی بازگشتی از بهترین نوع شبکه ها برای پیش بینی قیمت هستند، اما نتایج نشان می دهد که شبکه عصبی پیچشی عملکرد بهتری از شبکه عصبی حافظه کوتاه مدت ماندگار داشته است. نتایج نشان می دهد که مدل های یادگیری عمیق در صورتی که در انتخاب ویژگی هایی (متغیرهای مستقل) که بتوانند بیشترین میزان معناداری را در تفسیر علل فراز و فرودهای قیمت در دوره های رونق و رکود بازار داشته باشند، قابلیت و توانایی پیش بینی قیمت، با دقت قابل قبول را خواهند داشت. [1] . Recurrent Neural Network (RNN) [2] . Convolutional neural network (CNNs)