مطالب مرتبط با کلیدواژه

UAV


۱.

Drone-Based Network Coverage Expansion in 6G Networks(مقاله علمی وزارت علوم)

کلیدواژه‌ها: UAV 6G network coverage interference management Energy Efficiency multi-agent reinforcement learning (MARL) trajectory optimization latency reduction SINR Real-time optimization

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The emergence of 6G networks requires new approaches to extend coverage, increase network availability and optimize performance in difficult conditions, including urban and rural areas. Thus, UAVs or UAV systems have developed as a powerful candidate to counter these problems by offering on-demand contingent coverage and differing communication services.   Objective: The opportunity of the development of UAVs’ application in the extension of the network’s coverage is studied in the context of energy efficiency, latency, and Inter-UE interference in high-density 6G environment. Methods: A three-layered optimization architecture was devised, including multi-agent reinforcement learning (MARL) for interference control, trajectory optimization techniques, and energy-aware deployment schemes. Small scale scenarios including urban, suburban and rural environment were considered and the results were analyzed based on the network coverage, energy efficiency, end to end latency and interference encountered on UAVs. Results: The outcome significantly revealed the enhancements in the spatial coverage of the network; UAVs prevented considerable gaps and offered enhancements of network coverage in rural and suburban regions. These achievements include up to 30.5% energy efficiency enhancement, more than 50% latency minimization and interference management that enabled 35.4% enhancement of SINR. Conclusion: Integrating of drones in 6G network is invaluable in enhancing coverage in the networks by providing massive coverage while at the same time providing scalable solutions to problems of coverage gaps, power demands and real-time network adjustments. In future studies, researchers should channel their efforts toward increasing real-time dynamism and energy consumption that suit large-scale executions.
۲.

AI-Driven Drones for Real-Time Network Performance Monitoring(مقاله علمی وزارت علوم)

کلیدواژه‌ها: AI-driven drones network performance monitoring UAV real-time assessment Machine Learning telecommunications Latency throughput signal strength Remote Monitoring

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The growing complexity of telecommunications networks, fueled by advancements like the Internet of Things (IoT) and 5G, necessitates dynamic and real-time network performance monitoring. Traditional static systems often fail to address challenges related to scalability, adaptability, and response speed in high-demand environments. Integrating artificial intelligence (AI) with unmanned aerial vehicles (UAVs) presents a transformative approach to overcoming these limitations. Objective: This study aims to evaluate the effectiveness of AI-driven drones for real-time network performance monitoring, focusing on key metrics such as latency, signal strength, throughput, and anomaly detection. Methods: A comprehensive framework was developed, employing reinforcement learning (RL) for path planning and a hybrid temporal-spectral anomaly detection (HTS-AD) algorithm. Experimental validation was conducted using 10 UAVs across simulated and real-world environments, collecting over 3.2 million data points. Statistical analyses, including MANOVA and Bayesian regression, were used to evaluate performance. Results: The proposed system demonstrated significant improvements over traditional methods, including a 24.6% increase in anomaly detection accuracy, a 30% reduction in energy consumption, and 99.9% network coverage in high-density UAV deployments. Conclusion: AI-driven drones offer a scalable, efficient, and reliable solution for network monitoring. By addressing limitations of traditional systems, this study establishes a foundation for next-generation telecommunications infrastructure. Future research should focus on real-world deployment and hybrid security models.
۳.

Drone-Assisted Network Maintenance as a Revolutionizing Telecom Infrastructure(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Drones telecommunications Network Maintenance UAV 5G infrastructure Automated Inspection Cost Reduction AI integration Predictive maintenance

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: Telecommunication infrastructure requires regular maintenance and upkeep for its networks’ matrices, but existing approaches have been associated with issues such as time consumption and concern costs, as well as safety hazards. Newer developments in drone technology present progressive opportunity through the improvement of current maintenance processes by means of automation, predictability, and real time computation. Objective: The article seeks to assess whether the use of drone in telecommunication maintenance enhances the operational productivity through increasing the efficiency, reducing cost, safety, environmental and scalability and in different terrains. Methods: The methods followed included the conduct of experimental surveys with drone operations in five different telecommunication settings. These areas of interest were inspection efficiency, the accuracy of condition-based maintenance, signal received signal power, delay reduction through edge computing, and energy consumption. Sophisticated numerical computations, like Kalman filters and various frameworks of edge computing, were used in this context to draw analytical insights on the collected data. Results: The methods that used drones lowered the time needed for inspections by ¾ and cut the expenses by 49.3% and increased safety and quality of the coverage. Predictive maintenance was found to have achieved 89.7% accuracy with the system response time being 246ms at different site. The results of energy consumption model depicted the errors under 2% confirming this approach’s suitability for operational planning. Conclusion: By evaluating the applicability of drones in telecoms maintenance, the paper shows that the notion of drones in this context is promising both now and in the future. These results signal existing and potential applications of drones is to incorporate drone technology into infrastructural management solutions to address emerging needs in the industry.