Basma Mohammed Khaleel

Basma Mohammed Khaleel

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Low-Latency Communication with Drone-Assisted 5G Networks(مقاله علمی وزارت علوم)

کلیدواژه‌ها: UAVs 5G networks latency reduction Energy Efficiency Signal-to-Interference-Plus-Noise Ratio (SINR) Optimization Algorithms Particle Swarm Optimization (PSO) Genetic Algorithm (GA) the Multi-Objective Evolutionary Algorithm (MOEA) Task Scheduling

حوزه‌های تخصصی:
تعداد بازدید : ۳۴ تعداد دانلود : ۲۹
  Background: Unmanned Aerial Vehicles (UAVs) utilizing and active interface with 5G networks has become the new frontier to tackling problems of latency and energy efficiency, interference, and resource management. Although prior researches explained the benefits of UAV integrated networks; overall assessment of various parameters and cases is still scarce. Objective: The article seeks to assess the performance of UAV integrated 5G network in terms of latency, power, signal quality, task coordination and coverage optimization and to ascertain the efficiency of optimization algorithms in the improvement of the integrated 5G network. Methods: Emulations were done in MATLAB and NS3 platforms in urban / suburban / emergency call settings. Latency, power consumption, SINR, and completion time were the performance indicator chosen in the paper. Optimization algorithms: Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), and the Multi-Objective Evolutionary Algorithm (MOEA) is evaluated in terms of Convergence time and Solution quality. Results : UAV-aided networks showed 36.7% and 29.2 % improvement in latency and energy consumption, while 33.6 % enhancement in SINR. MOEA offered the best results with 98.3% solution quality, and the PSO being the most convergence oriented. Minor deviations between simulation and real results highlight the need for adaptive mechanisms. Conclusion: The results presented focus on the enough potential of UAV-assisted 5G networks and their potential influence on improving performances in case of different criteria. Further research should focus on successfully implementing and deploying the proposed solutions and broadening the context of study to include 6G technologies.
۲.

Drone-Based Network Coverage Expansion in 6G Networks(مقاله علمی وزارت علوم)

کلیدواژه‌ها: UAV 6G network coverage interference management Energy Efficiency multi-agent reinforcement learning (MARL) trajectory optimization latency reduction SINR Real-time optimization

حوزه‌های تخصصی:
تعداد بازدید : ۳۵ تعداد دانلود : ۲۹
Background: The emergence of 6G networks requires new approaches to extend coverage, increase network availability and optimize performance in difficult conditions, including urban and rural areas. Thus, UAVs or UAV systems have developed as a powerful candidate to counter these problems by offering on-demand contingent coverage and differing communication services.   Objective: The opportunity of the development of UAVs’ application in the extension of the network’s coverage is studied in the context of energy efficiency, latency, and Inter-UE interference in high-density 6G environment. Methods: A three-layered optimization architecture was devised, including multi-agent reinforcement learning (MARL) for interference control, trajectory optimization techniques, and energy-aware deployment schemes. Small scale scenarios including urban, suburban and rural environment were considered and the results were analyzed based on the network coverage, energy efficiency, end to end latency and interference encountered on UAVs. Results: The outcome significantly revealed the enhancements in the spatial coverage of the network; UAVs prevented considerable gaps and offered enhancements of network coverage in rural and suburban regions. These achievements include up to 30.5% energy efficiency enhancement, more than 50% latency minimization and interference management that enabled 35.4% enhancement of SINR. Conclusion: Integrating of drones in 6G network is invaluable in enhancing coverage in the networks by providing massive coverage while at the same time providing scalable solutions to problems of coverage gaps, power demands and real-time network adjustments. In future studies, researchers should channel their efforts toward increasing real-time dynamism and energy consumption that suit large-scale executions.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان