Hamid Alshareefi

Hamid Alshareefi

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۳ مورد از کل ۳ مورد.
۱.

Drone-Assisted Network Maintenance as a Revolutionizing Telecom Infrastructure(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Drones telecommunications Network Maintenance UAV 5G infrastructure Automated Inspection Cost Reduction AI integration Predictive maintenance

حوزه‌های تخصصی:
تعداد بازدید : ۴۴ تعداد دانلود : ۴۸
Background: Telecommunication infrastructure requires regular maintenance and upkeep for its networks’ matrices, but existing approaches have been associated with issues such as time consumption and concern costs, as well as safety hazards. Newer developments in drone technology present progressive opportunity through the improvement of current maintenance processes by means of automation, predictability, and real time computation. Objective: The article seeks to assess whether the use of drone in telecommunication maintenance enhances the operational productivity through increasing the efficiency, reducing cost, safety, environmental and scalability and in different terrains. Methods: The methods followed included the conduct of experimental surveys with drone operations in five different telecommunication settings. These areas of interest were inspection efficiency, the accuracy of condition-based maintenance, signal received signal power, delay reduction through edge computing, and energy consumption. Sophisticated numerical computations, like Kalman filters and various frameworks of edge computing, were used in this context to draw analytical insights on the collected data. Results: The methods that used drones lowered the time needed for inspections by ¾ and cut the expenses by 49.3% and increased safety and quality of the coverage. Predictive maintenance was found to have achieved 89.7% accuracy with the system response time being 246ms at different site. The results of energy consumption model depicted the errors under 2% confirming this approach’s suitability for operational planning. Conclusion: By evaluating the applicability of drones in telecoms maintenance, the paper shows that the notion of drones in this context is promising both now and in the future. These results signal existing and potential applications of drones is to incorporate drone technology into infrastructural management solutions to address emerging needs in the industry.
۲.

The Role of UAVs in Enhancing Network Resilience During Natural Disasters(مقاله علمی وزارت علوم)

کلیدواژه‌ها: UAVs network resilience Natural Disasters Emergency Response communication restoration LTE 5G Disaster recovery situational awareness infrastructure repair

حوزه‌های تخصصی:
تعداد بازدید : ۴۰ تعداد دانلود : ۴۲
Background: Failures of communication usually occur during natural disasters, therefore signaling the importance of flexible networks. Unmanned Aerial Vehicles (UAVs) are anticipated to solve this problem by acting as on-the-move networks in the disaster-stricken regions. However, barriers that include challenges in UAV control coordination, resources allocation as well as security of the data being drawn are still pushing the technology backward. Objective: The article seeks to design and analyze enhanced heuristics for employing UAVs in disaster communications to enhance performance, availability, and security. Methods: Both primary, semi-structured interview and survey and post-disaster reports as well as secondary, computational analysis based on MATLAB and NS - 3 simulations were used as the data collection technique. Five algorithms: Multi-UAV Coordination, Dynamic Resource Allocation with Security, Hybrid Communication Framework, AI-Driven Path Optimization, Privacy-Preserving Data Sharing were implemented and incorporated. Theoretical models built on the basis of multi- objective optimization and the theory of games confirmed work ability to scale. Results: The introduced algorithms increased coverage by 75%, decreased latency by 27 percent, and also introduced 30 percent energy efficiency. Average privacy compliance levels floated above 90%, and an advanced resource allocation model achieved equal distribution. All these enhancements were affirmed in urban, rural and mountainous regions further proving versatility and stability. Conclusion: The article proposes a framework for UAV-enabled disaster communication system that can incorporate advanced algorithm and theoretical models to overcome the coordination challenge while ensuring the efficiency and security of the system. The presented results can be considered to be the reliable base for the UAVs usage in disaster situations.
۳.

Low-Latency Communication with Drone-Assisted 5G Networks(مقاله علمی وزارت علوم)

کلیدواژه‌ها: UAVs 5G networks latency reduction Energy Efficiency Signal-to-Interference-Plus-Noise Ratio (SINR) Optimization Algorithms Particle Swarm Optimization (PSO) Genetic Algorithm (GA) the Multi-Objective Evolutionary Algorithm (MOEA) Task Scheduling

حوزه‌های تخصصی:
تعداد بازدید : ۳۴ تعداد دانلود : ۲۹
  Background: Unmanned Aerial Vehicles (UAVs) utilizing and active interface with 5G networks has become the new frontier to tackling problems of latency and energy efficiency, interference, and resource management. Although prior researches explained the benefits of UAV integrated networks; overall assessment of various parameters and cases is still scarce. Objective: The article seeks to assess the performance of UAV integrated 5G network in terms of latency, power, signal quality, task coordination and coverage optimization and to ascertain the efficiency of optimization algorithms in the improvement of the integrated 5G network. Methods: Emulations were done in MATLAB and NS3 platforms in urban / suburban / emergency call settings. Latency, power consumption, SINR, and completion time were the performance indicator chosen in the paper. Optimization algorithms: Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), and the Multi-Objective Evolutionary Algorithm (MOEA) is evaluated in terms of Convergence time and Solution quality. Results : UAV-aided networks showed 36.7% and 29.2 % improvement in latency and energy consumption, while 33.6 % enhancement in SINR. MOEA offered the best results with 98.3% solution quality, and the PSO being the most convergence oriented. Minor deviations between simulation and real results highlight the need for adaptive mechanisms. Conclusion: The results presented focus on the enough potential of UAV-assisted 5G networks and their potential influence on improving performances in case of different criteria. Further research should focus on successfully implementing and deploying the proposed solutions and broadening the context of study to include 6G technologies.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان