مطالب مرتبط با کلیدواژه

real-time assessment


۱.

AI-Driven Drones for Real-Time Network Performance Monitoring(مقاله علمی وزارت علوم)

کلیدواژه‌ها: AI-driven drones network performance monitoring UAV real-time assessment Machine Learning telecommunications Latency throughput signal strength Remote Monitoring

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The growing complexity of telecommunications networks, fueled by advancements like the Internet of Things (IoT) and 5G, necessitates dynamic and real-time network performance monitoring. Traditional static systems often fail to address challenges related to scalability, adaptability, and response speed in high-demand environments. Integrating artificial intelligence (AI) with unmanned aerial vehicles (UAVs) presents a transformative approach to overcoming these limitations. Objective: This study aims to evaluate the effectiveness of AI-driven drones for real-time network performance monitoring, focusing on key metrics such as latency, signal strength, throughput, and anomaly detection. Methods: A comprehensive framework was developed, employing reinforcement learning (RL) for path planning and a hybrid temporal-spectral anomaly detection (HTS-AD) algorithm. Experimental validation was conducted using 10 UAVs across simulated and real-world environments, collecting over 3.2 million data points. Statistical analyses, including MANOVA and Bayesian regression, were used to evaluate performance. Results: The proposed system demonstrated significant improvements over traditional methods, including a 24.6% increase in anomaly detection accuracy, a 30% reduction in energy consumption, and 99.9% network coverage in high-density UAV deployments. Conclusion: AI-driven drones offer a scalable, efficient, and reliable solution for network monitoring. By addressing limitations of traditional systems, this study establishes a foundation for next-generation telecommunications infrastructure. Future research should focus on real-world deployment and hybrid security models.