مطالب مرتبط با کلیدواژه

throughput


۱.

Optimizing Telecommunications Network Performance through Big Data Analytics: A Comprehensive Evaluation(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Big data analytics telecommunications Network Performance Latency throughput Reliability predictive analytics Machine Learning Data Traffic Optimization

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The telecommunication industry is currently witnessing an unparalleled growth in traffic data with a concomitant growth in the complexity of networks. As operators seek to achieve high availability of the networks, it is almost compulsory to employ the BDA for improved quality of service and increased operational performance. Objective: The study aims to provide a systematic review of the deployment of BDA in enhancing the primary characteristic indicators of telecommunications networks, to include availability of upgraded latency and throughput levels and network dependability. Methods: The research method used was summed up by quantitative analyses of the key performance parameters of the networks, along with the qualitative results of case studies conducted with major telecommunications operators. Information was collected from multiple networks as well as analyzed with the use of machine learning to be able to predict possible performance issues. Results: The study demonstrates that there is the possibility for reducing latency utilizing BDA with enhancements of up to 40%. In addition, the throughput has been raised by an average of 30% and the predictable analytics lead to 25% reducing in network downtime to improve the reliability and satisfaction of the user experience. Conclusion: The information provided in this study highlights the importance of Big Data Analytics for the telecommunication industry, proving that the proper integration can bring tangible improvements to the existing networks. One future development that constitutes the need for innovative analytical technologies is the rise in data traffic and sophisticated network requirements.
۲.

AI-Driven Drones for Real-Time Network Performance Monitoring(مقاله علمی وزارت علوم)

کلیدواژه‌ها: AI-driven drones network performance monitoring UAV real-time assessment Machine Learning telecommunications Latency throughput signal strength Remote Monitoring

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The growing complexity of telecommunications networks, fueled by advancements like the Internet of Things (IoT) and 5G, necessitates dynamic and real-time network performance monitoring. Traditional static systems often fail to address challenges related to scalability, adaptability, and response speed in high-demand environments. Integrating artificial intelligence (AI) with unmanned aerial vehicles (UAVs) presents a transformative approach to overcoming these limitations. Objective: This study aims to evaluate the effectiveness of AI-driven drones for real-time network performance monitoring, focusing on key metrics such as latency, signal strength, throughput, and anomaly detection. Methods: A comprehensive framework was developed, employing reinforcement learning (RL) for path planning and a hybrid temporal-spectral anomaly detection (HTS-AD) algorithm. Experimental validation was conducted using 10 UAVs across simulated and real-world environments, collecting over 3.2 million data points. Statistical analyses, including MANOVA and Bayesian regression, were used to evaluate performance. Results: The proposed system demonstrated significant improvements over traditional methods, including a 24.6% increase in anomaly detection accuracy, a 30% reduction in energy consumption, and 99.9% network coverage in high-density UAV deployments. Conclusion: AI-driven drones offer a scalable, efficient, and reliable solution for network monitoring. By addressing limitations of traditional systems, this study establishes a foundation for next-generation telecommunications infrastructure. Future research should focus on real-world deployment and hybrid security models.