Ghanim Magbol Alwan

Ghanim Magbol Alwan

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Leveraging AI for Predictive Maintenance with Minimizing Downtime in Telecommunications Networks(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Predictive maintenance artificial intelligence (AI) Machine Learning Telecom Networks Downtime Reduction Network Reliability deep learning Failure Prediction Operational Efficiency Network Optimization

حوزه‌های تخصصی:
تعداد بازدید : ۲۹ تعداد دانلود : ۴۶
Background: Telecommunications networks are exposed to numerous issues concerning equipment and that causes network outage, which proves very expensive. Basic maintenance methodologies like reactive or even scheduled preventive maintenance cannot cope up with the increasing trends in the facilities of telecom companies. Objective: The article examines how AI is applied to support predictive maintenance so that telecommunication networks can perform as intended with reduced downtime. Methods: The review of existing AI algorithms is presented, focusing on the ML models and deep learning methods. Network operations and maintenance logs are analyzed for data to assess the capabilities of the AI models in terms of prediction. It identifies and analyses such quantifiable parameters as the failure rate prediction accuracy and the response time cut. Results: Computerisation of the forecast maintenance revealed a corresponding decrease in equipment failure incidences and generally reduced time lost due to unscheduled stops. Through the improved network performance, the response to potential threats was quicker than before and services became more reliable and inexpensive to offer. Conclusion: To reduce network outages, reduce network vulnerability, and maximize the efficiency of telecommunications operations, the use of AI-based predictive maintenance can be viewed as a prospect. As technology advances, newer versions of AI algorithms will provide improved predictive strength and incorporation into the telecommunications system.
۲.

Optimizing Telecommunications Network Performance through Big Data Analytics: A Comprehensive Evaluation(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Big data analytics telecommunications Network Performance Latency throughput Reliability predictive analytics Machine Learning Data Traffic Optimization

حوزه‌های تخصصی:
تعداد بازدید : ۲۹ تعداد دانلود : ۲۷
Background: The telecommunication industry is currently witnessing an unparalleled growth in traffic data with a concomitant growth in the complexity of networks. As operators seek to achieve high availability of the networks, it is almost compulsory to employ the BDA for improved quality of service and increased operational performance. Objective: The study aims to provide a systematic review of the deployment of BDA in enhancing the primary characteristic indicators of telecommunications networks, to include availability of upgraded latency and throughput levels and network dependability. Methods: The research method used was summed up by quantitative analyses of the key performance parameters of the networks, along with the qualitative results of case studies conducted with major telecommunications operators. Information was collected from multiple networks as well as analyzed with the use of machine learning to be able to predict possible performance issues. Results: The study demonstrates that there is the possibility for reducing latency utilizing BDA with enhancements of up to 40%. In addition, the throughput has been raised by an average of 30% and the predictable analytics lead to 25% reducing in network downtime to improve the reliability and satisfaction of the user experience. Conclusion: The information provided in this study highlights the importance of Big Data Analytics for the telecommunication industry, proving that the proper integration can bring tangible improvements to the existing networks. One future development that constitutes the need for innovative analytical technologies is the rise in data traffic and sophisticated network requirements.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان