مطالب مرتبط با کلیدواژه

terahertz communication


۱.

Beyond 5G. Strategic Pathways to 6G Development and Emerging Applications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: 6G Beyond 5G terahertz communication smart cities Autonomous Systems AI integration latency reduction spectrum management network architecture Industrial Automation

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: The rapid evolution from 4G to 5G has transformed the telecommunications landscape, but as technological demands continue to grow, the shift toward 6G is gaining attention. 6G aims to address the limitations of 5G, such as latency and bandwidth constraints, while introducing new capabilities like terahertz communication and ubiquitous AI integration. Objective: This article explores the development roadmap of 6G, highlighting its applications across industries and addressing key challenges in its deployment. Methods: A comprehensive review of current literature on 5G advancements and emerging 6G technologies was conducted. Comparative analyses were performed on the theoretical frameworks of 6G’s core capabilities, including network architecture, spectrum management, and AI integration. Results: The study identified key applications for 6G, such as smart cities, autonomous transportation, healthcare, and industrial automation. It also highlighted the anticipated improvements in data transmission speed, reliability, and connectivity. Conclusion: 6G represents a pivotal evolution in telecommunications, offering transformation in numerous sectors. However, challenges such as infrastructure development, regulatory frameworks, and energy efficiency must be addressed.
۲.

A Pathway to Ultra-Fast Data Transmission for Next-Generation Networks through Terahertz Communication in 6G(مقاله علمی وزارت علوم)

کلیدواژه‌ها: terahertz communication 6G Networks Ultra-Fast Data Transmission High-Frequency Bands THz Technology Spectrum Allocation Signal Integrity Low-Latency Communication Next-Generation Networks Data Throughput

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: As the demand for ultra-fast, low-latency communication continues to rise, Terahertz (THz) communication has emerged as a promising candidate for enabling next-generation 6G networks. However, environmental sensitivity and hardware challenges pose significant limitations. Objective: This study investigates the potential of THz communication to support ultra-high data transfer rates in 6G networks, with a focus on the impact of environmental conditions, hardware complexity, and modulation techniques. Method: Through simulation analysis under both optimal and adverse environmental conditions, the performance of THz communication was assessed. The study also explores emerging materials and adaptive technologies to mitigate performance degradation. Results: Under optimal conditions, THz communication demonstrated the ability to achieve data rates up to 8.5 Tbps with approximately 1 ms latency at 10 THz. However, in high humidity and non-line-of-sight (NLOS) scenarios, performance declined significantly, with the signal-to-noise ratio (SNR) dropping from 35 dB to 18 dB and the bit error rate (BER) increasing from 3×10⁻³ to 4×10⁻². Orthogonal Frequency Division Multiplexing (OFDM) outperformed Quadrature Amplitude Modulation (QAM) in BER under varying conditions. The integration of advanced materials such as graphene and photonic crystals, along with intelligent reflecting surfaces (IRS), showed promise in enhancing signal quality and thermal management. Conclusion: While THz communication exhibits strong potential for supporting the high-speed, low-latency demands of 6G, environmental vulnerabilities and hardware complexity remain key challenges. Future research should prioritize the development of cost-effective, scalable materials and adaptive technologies to improve performance and deployment feasibility in diverse conditions.