مطالب مرتبط با کلیدواژه

6G Networks


۱.

A Pathway to Ultra-Fast Data Transmission for Next-Generation Networks through Terahertz Communication in 6G(مقاله علمی وزارت علوم)

کلیدواژه‌ها: terahertz communication 6G Networks Ultra-Fast Data Transmission High-Frequency Bands THz Technology Spectrum Allocation Signal Integrity Low-Latency Communication Next-Generation Networks Data Throughput

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: As the demand for ultra-fast, low-latency communication continues to rise, Terahertz (THz) communication has emerged as a promising candidate for enabling next-generation 6G networks. However, environmental sensitivity and hardware challenges pose significant limitations. Objective: This study investigates the potential of THz communication to support ultra-high data transfer rates in 6G networks, with a focus on the impact of environmental conditions, hardware complexity, and modulation techniques. Method: Through simulation analysis under both optimal and adverse environmental conditions, the performance of THz communication was assessed. The study also explores emerging materials and adaptive technologies to mitigate performance degradation. Results: Under optimal conditions, THz communication demonstrated the ability to achieve data rates up to 8.5 Tbps with approximately 1 ms latency at 10 THz. However, in high humidity and non-line-of-sight (NLOS) scenarios, performance declined significantly, with the signal-to-noise ratio (SNR) dropping from 35 dB to 18 dB and the bit error rate (BER) increasing from 3×10⁻³ to 4×10⁻². Orthogonal Frequency Division Multiplexing (OFDM) outperformed Quadrature Amplitude Modulation (QAM) in BER under varying conditions. The integration of advanced materials such as graphene and photonic crystals, along with intelligent reflecting surfaces (IRS), showed promise in enhancing signal quality and thermal management. Conclusion: While THz communication exhibits strong potential for supporting the high-speed, low-latency demands of 6G, environmental vulnerabilities and hardware complexity remain key challenges. Future research should prioritize the development of cost-effective, scalable materials and adaptive technologies to improve performance and deployment feasibility in diverse conditions.