Ibraheem Mohammed Khalil

Ibraheem Mohammed Khalil

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Beyond 5G. Strategic Pathways to 6G Development and Emerging Applications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: 6G Beyond 5G terahertz communication smart cities Autonomous Systems AI integration latency reduction spectrum management network architecture Industrial Automation

حوزه‌های تخصصی:
تعداد بازدید : ۲۸ تعداد دانلود : ۲۵
Background: The rapid evolution from 4G to 5G has transformed the telecommunications landscape, but as technological demands continue to grow, the shift toward 6G is gaining attention. 6G aims to address the limitations of 5G, such as latency and bandwidth constraints, while introducing new capabilities like terahertz communication and ubiquitous AI integration. Objective: This article explores the development roadmap of 6G, highlighting its applications across industries and addressing key challenges in its deployment. Methods: A comprehensive review of current literature on 5G advancements and emerging 6G technologies was conducted. Comparative analyses were performed on the theoretical frameworks of 6G’s core capabilities, including network architecture, spectrum management, and AI integration. Results: The study identified key applications for 6G, such as smart cities, autonomous transportation, healthcare, and industrial automation. It also highlighted the anticipated improvements in data transmission speed, reliability, and connectivity. Conclusion: 6G represents a pivotal evolution in telecommunications, offering transformation in numerous sectors. However, challenges such as infrastructure development, regulatory frameworks, and energy efficiency must be addressed.
۲.

Neuromorphic Computing with a Paradigm Shift in Energy-Efficient and Scalable AI Hardware for Real-Time Applications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Neuromorphic computing AI hardware spiking neural networks (SNNs) brain-inspired architecture Loihi TrueNorth Energy Efficiency real-time processing edge computing scalable AI systems

حوزه‌های تخصصی:
تعداد بازدید : ۳۲ تعداد دانلود : ۳۳
Background: Neuromorphic computing is a newly developed technology that is based on data-flow architectures similar to the brain, which has the potential to power energy-constrained, latency-sensitive, and large-scale applications. The lack of flexibility in energy consumption and response time of traditional systems is a problem where neuromorphic platforms shine in real-time applications like robotics, IoT and autonomous systems. Objective: The article aims to assess the capabilities of neuromorphic computing platforms with respect to conventional schemes, both quantitatively and qualitatively, in terms of energy consumption, response time, modularity, and application-dependent adaptability, and to determine the drawbacks and application prospects for its further development. Methods: The study uses a comparative analysis approach to compare the identified factors and make statistical comparisons of the performance measures. The performance of the neuromorphic platforms as compared to non-neuromorphic platforms like Intel Loihi, IBM TrueNorth, NVIDIA Tesla V100, and Google TPU is compared based on its applications in robotics, IoT, and especially in healthcare. Data is derived from the experimental assessments of knowledge and theoretical paradigms encountered in prior research studies. Results: Neuromorphic systems showed better energy consumption, system size, and delay characteristics. Nevertheless, that the algorithm so excellently solves particular tasks does not mean that it can successfully be used regardless of its purpose, or can be adapted freely to new, further-reaching trends, such as quantum computing. Regression results demonstrate a high degree of dependency between these measures as well as their potential for real time data processing. Conclusion: Neuromorphic computing can be regarded as a new paradigm of energy-efficient and scalable AI and is especially promising for latency-sensitive deployment. Their shortcomings have been discussed earlier, yet it is worth stating that extension of these approaches by hybrid systems and more sophisticated integration frameworks might open new opportunities and eventually promote them as a foundation for new-generation computation models.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان