مطالب مرتبط با کلیدواژه

Network Management


۱.

AI-Powered Network Management with Enhancing Reliability and Security(مقاله علمی وزارت علوم)

کلیدواژه‌ها: AI Network Management Reliability Security Machine Learning (ML) Deep Learning (DL) Anomaly Detection 5G IoT Predictive maintenance

حوزه‌های تخصصی:
تعداد بازدید : ۲ تعداد دانلود : ۲
Background: Contemporary multi-protocol networks necessitate scalability, reliability, energy efficiency, and security due to the increasing number of devices and the diversification of network traffic. Conventional network management methods are inadequate to meet these demands, necessitating sophisticated solutions. Artificial intelligence (AI) has emerged as a significant field, offering advanced methods including predictive maintenance, anomaly detection, and intelligent resource management. Objective: This article aims to critically evaluate the effectiveness, flexibility, and productivity of AI-based applications in addressing major challenges in network management, including performance, scalability, energy consumption, threat detection rates, and cost. Methods: The study employs simulations and modeled datasets to assess AI-oriented solutions across various network environments, such as industrial IoT, smart cities, and telecommunications. The evaluation encompasses factors including Mean Time Between Failure (MTBF), resource utilization, delay minimization, and operating cost reduction. Digital twins, intelligent routing algorithms, and self-attention-based anomaly detection models are utilized, and the overall performance of these integrated technologies is analyzed. Results: The analysis demonstrates that AI-powered systems achieve near-optimal performance across all evaluated indicators. Specifically, the Manufacturing and Automotive Knowledge (MAK) sector observed a 52% increase in MTBF, the Banking, Financial Services, and Insurance (BFSI) sector noted a 32.39% improvement in energy efficiency, and the Defense and Public Enterprise (DPE) sector experienced a 94% increase in advanced threat detection. Conclusion: The findings indicate that AI solutions can effectively address many of the challenges present in current networks, offering cost-efficient and secure methods for implementing new communication networks with vast potential. Nonetheless, further empirical research is necessary to generalize these results and validate their applicability in real-world scenarios.
۲.

The Role of Software-Defined Networking (SDN) in Modern Telecommunications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Software-Defined Networking (SDN) telecommunications 5G IoT Network Management Scalability latency reduction Bandwidth Optimization control plane data plane

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: Software-Defined Networking (SDN) is widely considered a new paradigm shift in today’s telecommunication evolving method of centralized control, program interface, and dynamic resource configuration. Members of such a network can be reached through single-hop or multi-hop communication and is, however, still faced with inexhaustible challenges in scalability, security, energy consumption as well as Quality of Service (QoS). Objective: Specifically, the article will seek to compare both SDN enabled network as well as legacy networks as regards to established parameters like scalability, security, power consumption, traffic control and path finding. The research aims to fill these gaps by employing state-of-art methods and offer useful recommendations of SDN implementation. Methods: Both simulation and analytical modeling were used to evaluate the proposed SDN architectures under different loads. Metrics were assessed with the congestion control based on the neural network, optimization involved the multiple objectives, and security assessment via game theory. Analyses for statistical significance further supported the performance enhancements determined. Results: The results show 44% improved latency, 33% better energy consumption, and better load balancing in SDN-enabled network. Neural network-based mechanisms were able to reroute 95% of the time under low traffic conditions, while distributed controller-based strategy had high scalability and security. Conclusion: This study points to the capacity of SDN to revolutionize the contemporary telecommunication with strong techniques for comprehensive problems. For the future work it is recommended to conduct validations in operational conditions, and include underdevelopment technologies into the system hierarchy to improve its flexibility and operation characteristics.