Khalid Waleed Nassar Almansoori

Khalid Waleed Nassar Almansoori

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

The Role of Software-Defined Networking (SDN) in Modern Telecommunications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Software-Defined Networking (SDN) telecommunications 5G IoT Network Management Scalability latency reduction Bandwidth Optimization control plane data plane

حوزه‌های تخصصی:
تعداد بازدید : ۳۴ تعداد دانلود : ۲۵
Background: Software-Defined Networking (SDN) is widely considered a new paradigm shift in today’s telecommunication evolving method of centralized control, program interface, and dynamic resource configuration. Members of such a network can be reached through single-hop or multi-hop communication and is, however, still faced with inexhaustible challenges in scalability, security, energy consumption as well as Quality of Service (QoS). Objective: Specifically, the article will seek to compare both SDN enabled network as well as legacy networks as regards to established parameters like scalability, security, power consumption, traffic control and path finding. The research aims to fill these gaps by employing state-of-art methods and offer useful recommendations of SDN implementation. Methods: Both simulation and analytical modeling were used to evaluate the proposed SDN architectures under different loads. Metrics were assessed with the congestion control based on the neural network, optimization involved the multiple objectives, and security assessment via game theory. Analyses for statistical significance further supported the performance enhancements determined. Results: The results show 44% improved latency, 33% better energy consumption, and better load balancing in SDN-enabled network. Neural network-based mechanisms were able to reroute 95% of the time under low traffic conditions, while distributed controller-based strategy had high scalability and security. Conclusion: This study points to the capacity of SDN to revolutionize the contemporary telecommunication with strong techniques for comprehensive problems. For the future work it is recommended to conduct validations in operational conditions, and include underdevelopment technologies into the system hierarchy to improve its flexibility and operation characteristics.
۲.

Quantum Cryptography in Telecommunications as a New Era of Secure Communications(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Quantum cryptography telecommunications quantum key distribution (QKD) secure communications data security quantum-resistant algorithms Encryption Cyber Threats quantum mechanics post-quantum cryptography

حوزه‌های تخصصی:
تعداد بازدید : ۲۶ تعداد دانلود : ۲۷
Background: Quantum Key Distribution (QKD) has turned into a crucial point for secure communication in the era of quantum networks. Quantum key distribution provides the client with a theoretically secure key by taking advantage of the principles of quantum mechanics to counteract what could be posed by quantum computing to classical cryptography. Photons are lost in the system and there are some limitations which don’t allow scalability and integration with already existing networks. Objective: The study seeks to assess the viability of QKD systems, review some of the challenges associated with it, and investigate possible methods of utilizing both QKD and PQC to cope with new security threats in telecommunication industry. Methods: An in-depth analysis was made based on the experimental observations of key generation rates, photon loss, error correction, data throughput, and latency. Performance of quantum repeaters was experimented with for the purposes of measuring distance improvement abilities. A combined QKD-PQC approach was assessed for integrated integration for restricted settings. Results: QKD was seen to have high security and high performance in short distances and when quantum repeaters were implemented the distance could be greatly enhanced. In the QKD-PQC model, the rate of error correction, throughput, and scalability was noticed to be higher than in standalone QKD. Challenges that faced the work were photon loss, processing latency, and system vulnerabilities. Conclusion: New opportunities for secure communication are opened with QKD supported by quantum repeaters and hybrid cryptographic approaches. The technical and operational issues need to be resolved to realize the potential role of B3G evolution in enabling global telecommunications for the mass market.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان