سیده زهره حسینی

سیده زهره حسینی

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۳ مورد از کل ۳ مورد.
۱.

الگوریتم های یادگیری ماشین برای پیشگیری از انتشار بیماری های واگیر بر پایه ویژگی های مؤثر در تشخیص کووید-19(مقاله علمی وزارت علوم)

کلیدواژه‌ها: اینترنت اشیاء بیماری های واگیر کووید19- یادگیری ماشین هوش مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۸ تعداد دانلود : ۲۷۲
این مطالعه باهدف توسعه الگوریتم های هوش مصنوعی بر پایه اینترنت اشیاء انجام شده است که ضمن تشخیص و پیش بینی همه گیری در زمان واقعی با استفاده از مکان افراد، بر مراقبت و بهبود نیز تأکید می کند.بیماری هدف در این پژوهش باتوجه به اهمیت و فراگیری، کووید19 است.بر اساس نوع گردآوری داده ها از نوع پژوهش های کیفی بوده و باتوجه به توسعه الگوریتم ها، روش تحقیق در این پژوهش مبتنی بر علم طراحی است. رویکرد تحقیق آینده نگر است، به طوری که مکانیزم انتقال بیماری و ویژگی های تأثیرگذار آن ما را قادر به پیش بینی هایی در مورد بیماری و در نتیجه طرح استراتژی های کنترل بیماری و مراقبت های بهداشتی می نماید.پژوهش در یک فرایند 7 مرحله ای انجام شد. ویژگی های اینترنت اشیاء در پژوهش حاضر با نظر خبرگان استخراج شد و ویژگی های به دست آمده در آزمایش 2 الگوریتم مختلف «k نزدیک ترین همسایگی» و «درخت تصمیم» بر روی داده ها برای تعیین بهترین مدل ایجاد شد.پس از انتخاب بهترین عمق و بهترین همسایگی در الگوریتم ها، اعتبار و تصدیق مدل با تحلیل ماتریس ابهام انجام شد.نتایج اجرای الگوریتم ها برای پیش بینی بیماری کووید19، دقت بالاتر از 98 درصد را نشان دادند. حساسیت بالاتر (99 درصد) که برای تشخیص بیماری کووید19 اهمیت بالایی دارد و نشان دهنده حداقل موارد منفی کاذب در نتایج آزمون است، در الگوریتم درخت تصمیم به دست آمد.
۲.

بررسی تطبیقی میزان تأکید بر استفاده از عوامل موثر در پرورش تفکر نقاد در آموزش عالی

کلیدواژه‌ها: آموزش عالی تفکر نقاد پرورش

حوزه‌های تخصصی:
تعداد بازدید : ۲۴۹ تعداد دانلود : ۲۴۷
این پژوهش با هدف کاربردی و از نوع کیفی و برای شناسایی عوامل مؤثر در پرورش تفکر نقاد در آموزش عالی صورت گرفته است. نتایج برگرفته از 58 مقاله پژوهشی در فواصل سال های2000 تا 2022 بوده است و به تأیید 11 صاحب نظر رسیده است. برای بررسی و تحلیل یافته ها در میان کشورها از روش تطبیقی- مقایسه ای بر اساس الگوی بردی در ﭼﻬﺎر ﻣﺮﺣﻠﻪ ﺗﻮﺻیف، تفسیر، هم جواری و مقایسه استفاده شده است. یافته ها نشان داده اند که آموزش عالی کشورهای موردمطالعه کمتر به این عوامل توجه داشته اند. ایران نیز از این امر مستنثنی نیست و در 5 عامل: محیط امن، آشنایی به اصول استدلال ورزی و قضاوت مبتنی بر شواهد، اجتناب از قضاوت عجولانه و تعهد به اصول اخلاق نقادی و دانش و مهارت و همسانی باور و عملکرد و تناسب زمان برای پوشش دادن سرفصل برنامه درسی نیاز به توجه ویژه دارد.
۳.

توسعه الگوریتم درخت تصمیم برای تشخیص سریع بیماری کووید 19 برپایه اینترنت اشیاء(مقاله علمی وزارت علوم)

کلیدواژه‌ها: کووید19 بیماری های واگیردار الگوریتم درخت تصمیم برای تشخیص بیماری اینترنت اشیاء یادگیری ماشین هوش مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۱۳ تعداد دانلود : ۵
هدف: چالش های بهداشتی بدون شک مهم ترین موانع توسعه پایدار جهانی است و با مشکلات اجتماعی و اقتصادی مختلف و ناکافی بودن منابع رشد می کند. در مقابل سلامت جامعه به توسعه اقتصاد ملی و جهانی کمک کرده و بنابراین در شکل گیری ثبات و رفاه یک ملت یا منطقه، نقش زیادی دارد. امروزه با توجه به مهم بودن مسئله سلامت در حوزه بیماری های واگیر، وجود سیستمی به منظور پیش بینی و کنترل همه گیری ها لازم است؛ زیرا با پیشگیری از شیوع همه گیری، می تواند علاوه بر ارزش بالای انسانی در جوامع، سودآوری اقتصادی نیز برای نظام های سلامت داشته باشد. بنابراین، مطالعه حاضر با هدف توسعه الگوریتم هوش مصنوعی بر پایه ویژگی های بدست آمده از اینترنت اشیاء برای تشخیص سریع کووید19 انجام شده است. روش: روش پژوهش حاضر از نظر پارادایم، تفسیری و از لحاظ استراتژی اکتشافی است. همچنین براساس نوع گردآوری داده ها از نوع پژوهش های کیفی بوده و با توجه به توسعه الگوریتم، روش تحقیق در این پژوهش مبتنی بر علم طراحی است. رویکرد تحقیق آینده نگر است، به طوری که مکانیزم انتقال بیماری و ویژگی های تاثیرگذار آن، ما را قادر به پیش بینی هایی در مورد بیماری و در نتیجه طرح استراتژی های کنترل بیماری و مراقبت های بهداشتی می نماید. این پژوهش در یک فرآیند 7 مرحله ای انجام شد. ویژگی های اینترنت اشیاء در پژوهش حاضر با نظر خبرگان استخراج گردید و ویژگی های بدست آمده در آزمایش الگوریتم «درخت تصمیم» بر روی داده ها، برای تعیین بهترین مدل ایجاد شد. یافته ها: نتایج مرور سیستماتیک رشد سریع مستندات از سال 2015 را نشان داد که می تواند نشان دهنده کاربردی شدن حوزه های مختلف فناوری اطلاعات مانند اینترنت اشیاء و یادگیری ماشین در زمینه سلامت عمومی و پیش گیری از بیماری های واگیر باشد. در الگوریتم مقادیر K از 1 تا 20 همسایگی محاسبه شد و بهترین دقت در K برابر 2 بدست آمد. بنابراین، برای پیش بینی بیماری کووید19، دقت الگوریتم بالاتر از 98 درصد است. پس از محاسبه دقت، تحلیل ماتریس ابهام نشان داد در K برابر 2، حساسیت 99 درصد و ویژگی 92 درصد است. نتیجه گیری: مقایسه نتایج الگوریتم نشان می دهد که علاوه بر دقت، حساسیت و ویژگی بدست آمده، بالاتر از روش های سنّتی تشخیص بیماری های واگیردار است. همچنین به دلیل نداشتن ویژگی های پیچیده غیرضروری که صرفاً زمان پیاده سازی مدل را افزایش می دهند، الگوریتم در چند دقیقه ران شده و بنابراین سرعت تشخیص بسیار بالا است. حساسیت بالای 99 درصد که نشان دهنده کم ترین موارد منفی کاذب است، در این پژوهش بدست آمد و بنابراین الگوریتم پیشنهادی برای شناسایی حداکثر افراد مبتلاء به کووید19 بسیار مناسب و کاربردی است.  

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان