مطالب مرتبط با کلیدواژه

Resource Optimization


۱.

Quantum Key Distribution Protocols for Enhancing Cryptographic Resilience in Next-Generation 5G Network Infrastructures(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Quantum cryptography QKD PQC Hybrid Cryptography Quantum Computing Post-Quantum Security Scalability Quantum Threats Cryptographic Vulnerabilities Resource Optimization

حوزه‌های تخصصی:
تعداد بازدید : ۳۱ تعداد دانلود : ۳۰
  Background: Quantum computing has posed a profound threat to the classical cryptographic systems as it is advancing at an exponential rate with the help of quantum algorithms like Shor’s and Grover’s which can easily decipher the Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) algorithms. Huge requirements for cryptographic frameworks that can withstand quantum hacking have inspired Quantum Key Distribution (QKD), Post-Quantum Cryptography (PQC), and systems that use both. Objective: The aim of this article is to review the performance, scalability and integration of quantum-secure cryptographic services, with a practical lens on how they can be used in real-time environments like self-driving cars, industrial IoT, and intelligent health systems. It also aims at establishing the drawback of the current model and directions for further enhancement. Methods: The study employs simulative experimentation to understand lest exposures to quantum algorithms and rates cryptographic systems on standards such as latency, Quantum Bit Error Rate (QBER), computational overhead, scalability, and cost. Comparative assessment furniture integrated analysis of QKD, PQC, and hybrid system by identifying the advantages and disadvantage of each system. Results: As a result, adopting hybrid systems provided the best or comparable median results with lowest latency in real-time applications of ~45 ms or lower compared to alternative Multi-Access Edge Computing (MEC) architectures and types of security elements at high scalability. Thus, QKD, while being exceptional in security, has the problem of scalability, while PQC had average results on the given parameters. Conclusion : Quantum threats are adequately dealt with by hybrid cryptographic systems as this study has also pointed out. It is seen that initiation to future work may someday distribute resources effectively, expedite PQC standardization, and embrace artificially intelligent network frameworks for flexibility and expansiveness across different networks.
۲.

Revolutionizing Telecom Latency with Edge Computing and 5G(مقاله علمی وزارت علوم)

کلیدواژه‌ها: edge computing 5G latency reduction Network slicing telecommunications mobile edge computing (MEC) low-latency networks real-time processing autonomous vehicles Resource Optimization

حوزه‌های تخصصی:
تعداد بازدید : ۳۶ تعداد دانلود : ۳۶
Background: The telecommunications’ growth, especially with the emergence of 5G, has led to the requirement of low latency solutions. Current cloud computing models possess architectural flaws that prevent real-time service delivery, critical in applications of autonomous vehicles, augmented reality among others. Objective: This article reviews how edge computing can be combined with 5G networks to overcome the latency issues in today’s telecommunication systems. They look at how this combination can cut down latency by processing data closer to the end consumer and its potential to disrupt several industries. Methods: This research uses the literature review of current information in 5G and edge computing systems, architectures, practices, and theoretical frameworks. The result of the work is based on the assessment of the existing solutions in the implementation of edge computing within the 5G environment based on case analysis. Results: The analysis shows that all the applications such as self-driving cars and industrial robotics experienced 40 to 70% reduced latency. Also, edge computing results in better resources management in case of telecommunications since it deems many computing tasks to localized edge nodes from cloud. Conclusion: Combining edge computing with networking also provides a distinctive model for addressing latency problems while enhancing the network and boosting industry development. Concerning the research limitations, the future research should explore ways of improving the efficiency of resource allocation to meet the company’s needs and explore the scalability issues.