مطالب مرتبط با کلیدواژه

Reinforcement Learning


۱.

Advancing Natural Language Processing with New Models and Applications in 2025(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Natural Language Processing (NLP) transformer models hybrid NLP systems Reinforcement Learning Machine Translation (MT) Sentiment Analysis multilingual data AI applications bias mitigation ethical NLP

حوزه‌های تخصصی:
تعداد بازدید : ۲ تعداد دانلود : ۲
Background: Recent advancements in Natural Language Processing (NLP) have been significantly influenced by transformer models. However, challenges related to scalability, discrepancies between pretraining and finetuning, and suboptimal performance on tasks with diverse and limited data remain. The integration of Reinforcement Learning (RL) with transformers has emerged as a promising approach to address these limitations. Objective: This article aims to evaluate the performance of a transformer-based NLP model integrated with RL across multiple tasks, including translation, sentiment analysis, and text summarization. Additionally, the study seeks to assess the model's efficiency in real-time operations and its fairness. Methods: The hybrid model's effectiveness was evaluated using task-oriented metrics such as BLEU, F1, and ROUGE scores across various task difficulties, dataset sizes, and demographic samples. Fairness was measured based on demographic parity and equalized odds. Scalability and real-time performance were assessed using accuracy and latency metrics. Results: The hybrid model consistently outperformed the baseline transformer across all evaluated tasks, demonstrating higher accuracy, lower error rates, and improved fairness. It also exhibited robust scalability and significant reductions in latency, enhancing its suitability for real-time applications. Conclusion: This article illustrates that the proposed hybrid model effectively addresses issues related to scale, diversity, and fairness in NLP. Its flexibility and efficacy make it a valuable tool for a wide range of linguistic and practical applications. Future research should focus on improving time complexity and exploring the use of deep unsupervised learning for low-resource languages.