مطالب مرتبط با کلیدواژه

transformer models


۱.

Advancing Natural Language Processing with New Models and Applications in 2025(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Natural Language Processing (NLP) transformer models hybrid NLP systems Reinforcement Learning Machine Translation (MT) Sentiment Analysis multilingual data AI applications bias mitigation ethical NLP

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: Recent advancements in Natural Language Processing (NLP) have been significantly influenced by transformer models. However, challenges related to scalability, discrepancies between pretraining and finetuning, and suboptimal performance on tasks with diverse and limited data remain. The integration of Reinforcement Learning (RL) with transformers has emerged as a promising approach to address these limitations. Objective: This article aims to evaluate the performance of a transformer-based NLP model integrated with RL across multiple tasks, including translation, sentiment analysis, and text summarization. Additionally, the study seeks to assess the model's efficiency in real-time operations and its fairness. Methods: The hybrid model's effectiveness was evaluated using task-oriented metrics such as BLEU, F1, and ROUGE scores across various task difficulties, dataset sizes, and demographic samples. Fairness was measured based on demographic parity and equalized odds. Scalability and real-time performance were assessed using accuracy and latency metrics. Results: The hybrid model consistently outperformed the baseline transformer across all evaluated tasks, demonstrating higher accuracy, lower error rates, and improved fairness. It also exhibited robust scalability and significant reductions in latency, enhancing its suitability for real-time applications. Conclusion: This article illustrates that the proposed hybrid model effectively addresses issues related to scale, diversity, and fairness in NLP. Its flexibility and efficacy make it a valuable tool for a wide range of linguistic and practical applications. Future research should focus on improving time complexity and exploring the use of deep unsupervised learning for low-resource languages.
۲.

Next-Gen Machine Learning Models: Pushing the Boundaries of AI(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Next-gen machine learning artificial intelligence (AI) transformer models reinforcement learning (RL) neural architecture search (NAS) Quantum Computing model interpretability cross-domain tasks Automation Scalability

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
Background: Machine learning (ML) has developed significantly over the years, changing several industries through the use of automation and Big Data. By building better next-generation machine learning models, AI’s future has the potential of improving on existing problematic methods such as scalability, interpretability, and generalization. Objective: This article examines about how new generation of ML models are developed and used to explain about the capabilities of AI in different fields. In particular, it is focused on changes in structural models, certain methods of training them, and the application of brand-new technologies as quantum computing. Methods: A review of the state of the art and several case studies were carried out with regard to the latest work being done on different types of ML algorithms such as transformer models, reinforcement learning, and Neural Architecture Search. Moreover, the given models were tested in experiments concerning the applicability of these models in tasks including image recognition, natural language processing, and in autonomous systems. Results: The next-gen models, thereby outperformed the traditional models in terms of accuracy, computational speed, and flexibility. The identified benefits were decreased training time, better interpretability, and better performance with multi-modal and cross-domain tasks. Conclusion: These new generation of ML models are the game changers in AI development solving previous challenges while providing opportunities across numerous sectors. In this vein, further research in this field is needed to achieve AI’s solving of problems.