مدیریت هوشمند ترافیک با به کارگیری تکنیک های بینایی ماشین در شهرهای هوشمند (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
فناوری های شهر هوشمند عنصر مهمی برای مدیریت مؤثر صنعتی شدن سریع جهان امروزی هستند، زیرا می توانند به رفع مشکلات اقتصادی و زیست محیطی ناشی از افزایش جمعیت شهری کمک کنند. شهرهای هوشمند زیرساخت های سنتی و خدمات عمومی را با فناوری ادغام می کنند تا سیستمی کارآمدتر، پایدارتر و قابل دسترس تر ایجاد کنند و ضمن اینکه نیازهای ساکنان شهر را برآورده می کنند، درک سنتی مدیریت شهر را نیز متحول می کنند. سیستم های حمل و نقل هوشمند، که از اجزای کلیدی شهرهای هوشمند به شمار می آیند، برای بهبود ایمنی سیستم حمل و نقل، کاهش اثرات زیست محیطی، ترویج توسعه حمل و نقل پایدار و افزایش بهره وری، توسعه یافته اند. این سیستم ها راه حل های مدرنی را برای مشکلات مربوط به حمل ونقل، از جمله ترافیک و تصادفات ارائه می دهند و با استفاده از داده های جمع آوری شده از زیرساخت ها، شبکه ها و وسایل نقلیه، به کارآمدی سیستم حمل و نقل و تضمین ایمنی شهروندان کمک می کنند. سیستم حمل و نقل هوشمند به عنوان سیستم یکپارچه مدیریت حمل ونقل، متشکل از ارتباطات پیشرفته، پردازش اطلاعات و فناوری های مدیریت ترافیک، می تواند داده های بلادرنگ جمع آوری شده از منابع ناهمگن را بلافاصله پردازش کرده و آن ها را برای تسهیل تصمیم گیری موثر تجزیه و تحلیل کند. بینایی ماشین یکی از برجسته ترین زیرشاخه های کاربردی هوش مصنوعی است که سیستم ها را قادر می سازد تا اطلاعات معنا داری را از تصاویر دیجیتال و سایر ورودی های بصری استخراج کنند و همچنین بر اساس این اطلاعات تصمیم گیری و عمل کنند. بینایی ماشین، که بر پایه یادگیری ماشین از شبکه های عصبی عمیق استفاده می کند، راه حل هایی را ارائه می کند که می توانند در فرایند خودکارسازی سیستم های حمل و نقل و افزایش سطح ایمنی آن، به کار گرفته شوند. قابل تصور است که معماری های وسایل نقلیه خودران و مدیریت هوشمند ترافیک در شهرهای هوشمند تسلط خواهند یافت و سیستم های حمل ونقل را متحول خواهند کرد و در این راستا توسعه تکنیک های بینایی ماشین نقش مهمی ایفا خواهند کرد. در این مقاله میزان اثربخشی روش های یادگیری عمیق مبتنی بر بینایی ماشین در کاربردهای مدیریت ترافیک شامل تشخیص و شناسایی خودکار پلاک خودرو، تشخیص و شناسایی علائم ترافیکی، تشخیص و طبقه بندی خودرو، تشخیص عابر پیاده و تشخیص خطوط جاده مورد بررسی قرارگرفته است و لذا با جمع آوری تحقیقات از منابع مختلف و بررسی معماری های مؤثر شبکه های عصبی عمیق همراه با تعیین معیارهای ارزیابی عملکرد هر یک، نشان داده شده است که چگونه به کارگیری تکنیک های بینایی ماشین در مدیریت ترافیک، می تواند در هوشمندتر شدن سیستم های حمل ونقل در شهرهای هوشمند تأثیر به سزایی داشته باشد.Intelligent Traffic Management Using Machine Vision Techniques in Smart Cities
Smart city technologies are an important element to effectively manage the rapid industrialization of today's world, as they can help solve the economic and environmental problems caused by the increase in urban population. Smart cities integrate traditional infrastructure and public services with technology to create a more efficient, sustainable and accessible system, while meeting the needs of city residents and transforming the traditional understanding of city management. Intelligent transportation systems, which are key components of smart cities, have been developed to improve transportation system safety, reduce environmental impacts, promote sustainable transportation development, and increase productivity. These systems provide modern solutions to transportation-related problems, including traffic and accidents, and use data collected from infrastructure, networks, and vehicles to help improve the efficiency of the transportation system and ensure the safety of citizens. Intelligent transportation system as an integrated transportation management system, consisting of advanced communication, information processing and traffic management technologies, can immediately process real-time data collected from heterogeneous sources and analyze them to facilitate effective decision-making. Machine vision is one of the most prominent applied subfields of artificial intelligence, which enables systems to extract meaningful information from digital images and other visual inputs, as well as make decisions and act based on this information. Machine vision, which uses deep neural networks based on machine learning, provides solutions that can be used in the process of automating transportation systems and increasing its safety level. It is conceivable that autonomous vehicle architectures and intelligent traffic management will dominate smart cities and transform transportation systems, and in this regard, the development of machine vision techniques will play an important role. In this article, the effectiveness of deep learning methods based on machine vision in traffic management applications, including automatic recognition and recognition of license plates, recognition and identification of traffic signs, recognition and classification of cars, recognition of pedestrians and recognition of road lines, has been investigated. Research from different sources and the investigation of the effective architectures of deep neural networks along with the determination of performance evaluation criteria for each one, it has been shown how the use of machine vision techniques in traffic management can have a significant impact on making transportation systems smarter in smart cities.