مطالب مرتبط با کلیدواژه

سنجنده AIRS


۱.

تحلیل همبستگی مکانی و زمانی بین بخار آب قابل بارش سنجنده AIRS و داده های 29 ایستگاه سینوپتیک ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: آب قابل بارش سنجنده AIRS شیدسنج خورشیدی همبستگی

حوزه‌های تخصصی:
تعداد بازدید : ۶۵۵ تعداد دانلود : ۴۷۳
بخار آب قابل بارش (PWV) یکی از کمیت های مهم در هواشناسی و تغییرات اقلیم است. شیدسنج خورشیدی، سنجنده AIRS و رادیوسوندها ابزارهایی هستند که PWV را از سطح، فضا و داخل جو زمین اندازه گیری می کنند. در این مقاله از داده های PWV اندازه گیری شده با شیدسنج خورشیدی دانشگاه تحصیلات تکمیلی زنجان، سنجنده AIRS و داده های ایستگاه های سینوپتیک شامل دما، دمای نقطه شبنم، فشار و رطوبت نسبی 29 ایستگاه سینوپتیک ایران استفاده شده است. داده های شیدسنج خورشیدی دربازه اندازه گیری دسامبر 2009 تا دسامبر 2013 و داده های سنجنده AIRS و 29 ایستگاه سینوپتیک از سپتامبر 2002 تا دسامبر 2015 می باشد. برای اعتبارسنجی داده های سنجنده AIRS از اندازه گیری های شیدسنج خورشیدی استفاده شد که همبستگی 90 بین آنها بدست آمد. میانگین PWV اندازه گیری شده با شیدسنج خورشیدی و سنجنده AIRS به ترتیب برابر 9/8 و 10/8 میلی متر است. مقدار PWV بیشترین مقدار را در سواحل دریای عمان، خلیج فارس و دریای خزر دارد و کمترین مقدار آن در داخل ایران و در بالای رشته کوهای زاگرس می باشد. میانگین همبستگی PWV و دما، دمای نقطه شبنم، فشار و رطوبت نسبی به ترتیب 73، 74، 40 - و 30 – درصد بدست آمد. نقشه همبستگی دما و PWV یک روند افزایشی با عرض جغرافیایی را نشان می دهند که به ازای افزایش هر درجه در عرض جغرافیایی 2/8 درصد همبستگی افزایش می یابد.
۲.

ارتقای توان تفکیک مکانی بخار آب ستونی جو، به دست آمده از سنجنده AIRS، برای بهبود دقت بازیابی دمای سطح خاک(مقاله علمی وزارت علوم)

کلیدواژه‌ها: سنجنده AIRS بخار آب ستونی جو ارتقای توان تفکیک مکانی دمای سطح زمین روش نسبت گیری

حوزه‌های تخصصی:
تعداد بازدید : ۲۶۲ تعداد دانلود : ۲۵۸
یکی از مهم ترین پارامترها، در تمامی تعاملات بین سطح و جو، بخار آب ستونی جو است که در بسیاری از مطالعات هواشناسی، محیطی، کاربردهای اکولوژیک و کشاورزی نقش کلیدی دارد. اندازه گیری این پارامتر در ایستگاه های هواشناسی مستلزم استفاده از رادیوسوند است که، علاوه بر نقطه ای و محدودبودن مشاهدات، بسیار پر هزینه است. ازآنجاکه این پارامتر، در مقایسه با سایر پارامترهای جوّی، بیشترین تأثیر را در رادیانس رسیده به سنجنده دارد، سنجش از دور راهکاری جایگزین برای برآورد این پارامتر بسیار مهم جوّی محسوب می شود. یکی از سنجنده هایی که این پارامتر را اندازه گیری می کند AIRS است که توان تفکیک پایین (حدود 40 کیلومتر) آن، در بسیاری از کاربردها، مطلوب نیست. بنابراین، هدف اصلی این تحقیق ارتقای توان تفکیک مکانی بخار آب ستونی این سنجنده، با استفاده از روشی مبتنی بر نسبت گیری باندی و تلفیق آن با داده های سنجنده MODIS است. در ادامه، با توجه به تأثیر مهم این پارامتر در برآورد دمای سطح خاک (LST)، نقش بخار آب ستونی ارتقایافته جوّ در برآورد LST بررسی می شود. به منظور اعتبارسنجی و تعیین دقت برآورد پارامترها، از سری داده های مستقل استفاده شد. نتایج نشان داد که روش پیشنهادی پتانسیل بالایی در ارتقای توان تفکیک مکانی بخار آب ستونی به دست آمده جو ازطریق سنجنده AIRS دارد؛ بدون اینکه کاهش چشمگیری در دقت آن مشاهده شود. همچنین، این نتیجه حاصل شد که بخار آب ستونی ارتقایافته جو ممکن است دقت برآورد LST را افزایش چشمگیری دهد.
۳.

برآورد بارش بهاره ایران از طریق تابش موج بلند خروجی زمین (با تأکید بر شمال غرب ایران)

کلیدواژه‌ها: بارش تابش موج بلند خروجی سنجنده AIRS ماهواره GPM ایران

حوزه‌های تخصصی:
تعداد بازدید : ۱۰ تعداد دانلود : ۷
بارش هایی که اغلب در فصل بهار و در مناطق کوهستانی شمال غرب کشور اتفاق می افتد، با ایجاد سیلاب موجب تخریب محیط زیست و زیرساخت های انسانی می شوند. تابش موج بلند خروجی زمین به عنوان پارامتری مهم جهت شناسایی ابرها و برآورد این نوع بارش، مورد مطالعه قرار می گیرد. هدف از پژوهش حاضر این است که با استفاده از محصولات سنجنده AIRS ماهواره آکوا و ماهواره GPM، ارتباط و تحلیل متغیرهای تابش موج بلند زمینی و مقادیر بارش را در محیط نرم افزار Arc GIS به مدت 17 سال آماری برای کشور ایران بررسی نماید. از مدل های همبستگی و رگرسیون و برآورد سطح اطمینان به منظور ارتباط سنجی تابش موج بلند خروجی در پیش بینی الگوهای بارشی و نحوه تغییرات آن استفاده شد. با توجه به نتایج بدست آمده در ماه آپریل و می در شمال غرب کشور همبستگی های منفی بالای 60 درصد مشاهده شد که عامل ابرناکی می تواند دلیل آن باشد، در ماه ژوئن به جز مناطقی در شمال غرب و جنوب شرق ایران که حاکی از همبستگی منفی بارش و تابش موج بلند خروجی زمین است، همبستگی های منفی قوی دیگر در سایر مناطق کشور به دلیل رطوبت حبس شده در جو زمین و عدم وجود عامل صعود و ناپایداری به دلیل وجود پرفشار جنب حاره ای می باشد که باعث کاهش تابش موج بلند خروجی زمین است، ولی در واقع هیچ گونه بارشی انجام نگرفته است بنابراین با استفاده از نقشه های سطح اطمینان، می توان از متغیر تابش موج بلند خروجی در ماه آپریل دراکثر مناطق کشور، در ماه می در محدوده شمال غرب و در ماه ژوئن در نقاطی در عرض های جغرافیایی بالا در شمال غرب و در جنوب شرق کشور جهت برآورد بارش های همرفتی استفاده کرد، در سایر مناطق این ارتباط معکوس نمی تواند جهت پیش بینی استفاده گردد.
۴.

بازیابی بخارآب نزدیک به سطح جَو با دقت و توان تفکیک مکانی ارتقایافته ازطریق تلفیق داده های چندسنجنده ای و مشاهدات زمینی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بخارآب نزدیک به سطح داده چندسنجنده ای اریبی سنجنده مادیس سنجنده AIRS

حوزه‌های تخصصی:
تعداد بازدید : ۵ تعداد دانلود : ۵
سابقه و هدف: بخارآب موجود در جَو پارامتری محوری در مدل سازی تعادل انرژی در سطح زمین است و در متعادل نگاه داشتن دمای جَوّ کره زمین نقش مهمی دارد. بازیابی این پارامتر، به منزله تأثیرگذارترین عامل جَوّی در رادیانس دریافتی سنجنده، از اهمیت بسزایی برخوردار است. ازآنجاکه محتوای بخارآب جَو در لایه نزدیک به سطح بیشتر و تغییرات زمانی و مکانی آن شدیدتر است، اندازه گیری ایستگاه های هواشناسی زمینی به رغم دقت بالا، به دلیل محدودیت های زمانی و مکانی و اندازه گیری نقطه ای، قابلیت تعمیم پذیری ندارند. ازاین رو ارائه روش های ماهواره محور کاربردی به منظور بازیابی دقیق و مداوم آن، با توزیع مکانی مناسب ضروری به نظر می رسد. هدف این تحقیق بیان چهار روش نوآورانه و دقیق برای برآورد نسبت اختلاط بخارآب نزدیک به سطح جَوّ استان اصفهان در سال 1399، با توان تفکیک 1 کیلومتر، ازطریق تلفیق داده های ایستگاه های هواشناسی، داده های سنجنده و درنَهایت، اعتبارسنجی و مقایسه عملکرد آنهاست. بدین منظور تصحیح خطای اریبی داده های بخارآب سنجنده طی مرحله هم مقیاس سازی و تصحیح خطای درون یابی مشاهدات ایستگاه های زمینی در دستورکار قرار گرفت. مواد و روش ها: سنجنده های گوناگون قابلیت اندازه گیری بخارآب، با توان تفکیک های مکانی و حساسیت های متفاوت به این پارامتر را دارند. ازاین رو مطرح کردن روش هایی، مبتنی بر استفاده و تلفیق هم زمان داده های سنجنده ها و مشاهدات ایستگاه های زمینی، به منظور ارتقای هم زمان توان تفکیک مکانی (یک کیلومتر) و دقت بازیابی بخارآب نزدیک به سطح جَو ضروری است. در نخستین روش به کاررفته در این تحقیق، با استفاده از باندهای جذب و غیرجذب بخارآب سنجنده مادیس (MODIS) طی روش نسبت باندی و با استفاده از مشاهدات زمینی، بخارآب نزدیک به سطح بازیابی می شود. در روش دوم، ابتدا مشاهدات بخارآب نزدیک به سطح ایستگاه های زمینی، با روش درون یابی معکوس فاصله، به داده های بخارآب سطحی یک کیلومتری تبدیل می شود. سپس طی مراحل روش پیشنهادی و با استفاده از مقادیر نسبت اختلاط بخارآب برآوردشده با روش اول، خطای درون یابی در هر پیکسل حذف می شود. در روش سوم، با تلفیق داده های مادیس طی عملیاتی شبیه مراحل روش دوم، توان تفکیک محصول بخارآب سنجنده AIRS به یک کیلومتر ارتقا داده می شود؛ با این تفاوت که به جای مشاهدات ایستگاه های هواشناسی زمینی، از محصول سنجنده AIRS استفاده می شود. ازآنجاکه محصول نسبت اختلاط بخارآب نزدیک به سطح سنجنده AIRS دارای خطا و اریبی است، ابتدا باید با اعتبارسنجی محصولات این سنجنده، خطای اریبی محصول بخارآب نزدیک به سطح سنجنده AIRS، طی مرحله هم مقیاس سازی، حذف شود. برآورد بخارآب نزدیک به سطح جَو با استفاده از محصول بخارآب جَوّ ستونی سنجنده مادیس آخرین روش به کار رفته است. البته به دلیل تفاوت محتوایی، لازم است دو مجموعه داده هم واحد شوند و با روشی معادل سازی شوند. نتایج و بحث: به منظور مدل سازی و اعتبارسنجی برآورد بخارآب نزدیک به سطح جَو در توان تفکیک یک کیلومتر با استفاده از چهار روش اشاره شده، 3/66% داده ها به صورت تصادفی برای آموزش و 33% مابقی برای ارزیابی دقت و اعتبارسنجی نتایج به کار رفته است. درنَهایت نیز، نتایج اجرای روش ها با یکدیگر مقایسه شد. در این تحقیق، ضریب تعیین (R2) و جذر میانگین مربعات خطاها (RMSE) ملاک ارزیابی دقت و عملکرد مدل سازی قرار گرفته اند. نتایج اعتبارسنجی نشان می دهد روش دوم که مبتنی بر استفاده از تعمیم مشاهدات دقیق بخارآب نزدیک به سطح ایستگاه های زمینی و حذف خطای درون یابی آنها، طی تلفیق با مقادیر بخارآب بازیابی شده از سنجنده مادیس ازطریق روش نسبت باندی است، بهترین عملکرد (R2=0.55، RMSE=1.05 Gr/Kr) را در تخمین بخارآب نزدیک به سطح جو را دارد. نتیجه گیری: روش دوم، با توجه به عملکرد بهتر در بازیابی نسبت اختلاط بخارآب نزدیک به سطح جَو با دقت بالا و توان تفکیک یک کیلومتر و با هدف استفاده از قابلیت محصولات و داده های ماهواره محور، تلفیق آنها با یکدیگر و همچنین با مشاهدات زمینی، توصیه می شود.