بررسی اثرات آلاینده های جوی معیار و پارامترهای هواشناسی بر تغییر غلظت کربن سیاه در تهران و تبریز(مقاله علمی وزارت علوم)
منبع:
مخاطرات محیط طبیعی سال ۱۴ بهار ۱۴۰۴ شماره ۴۳
35 - 58
حوزههای تخصصی:
کربن سیاه (BC) یکی از اجزای مهم ذرات ریز معلق در هواست که تأثیر قابل توجهی بر آب و هوا و سلامت انسان دارد و فعالیت های انسانی همراه با شرایط آب و هوایی بر تغییرپذیری آن در طولانی مدت تأثیر می گذارد. از این رو، مطالعه حاضر به بررسی روابط آماری بین پارامترهای هواشناسی (دما، بارش، سرعت باد، رطوبت نسبی، فشار هوا، ساعات آفتابی، تابش خورشیدی و ابرناکی)، آلاینده های معیار هوا (CO، NO2، SO2، O3، PM10 و PM2.5) و آلاینده کربن سیاه و همچنین ارزیابی و مقایسه کارایی پنج الگوریتم یادگیری ماشین (رگرسیون خطی چندگانه (MLR)، مدل جمعی تعمیم یافته (GAM)، درخت طبقه بندی و رگرسیون (CART)، جنگل تصادفی (RF) و تقویت گرادیان (GBM)) در مدلسازی آلاینده ها و عوامل آب و هوایی مؤثر در تغییرات سطح غلظت آلاینده کربن سیاه در تبریز و تهران (2021 -2004) با استفاده از نرم افزار R 4.3.2 پرداخته است. نتایج مطالعه ی حاضر بیانگر تفاوت آشکار تأثیر پارامترهای هواشناسی و آلاینده های جوی معیار بر سطح غلظت آلاینده کربن سیاه در تبریز و تهران به دلیل موقعیت جغرافیایی، شرایط آب و هوایی و ساختار منطقه ای متفاوت این شهرها است. ذرات کربن سیاه روند صعودی معناداری را با سرعت نسبتاً برابر در طول دوره آماری مورد مطالعه در شهرهای تبریز و تهران تجربه کرده اند. بر اساس یافته های حاصل از تحلیل همبستگی اسپیرمن، ذرات کربن سیاه دارای همبستگی مثبت با آلاینده های PM2.5، NO2، CO و SO2 و همبستگی منفی با O3 است. آلاینده کربن سیاه دارای بیشترین همبستگی با پارامترهای سرعت باد (منفی) و رطوبت نسبی (مثبت) در تبریز و پارامترهای دما (منفی) و فشار هوا (مثبت) در تهران است. بر اساس ارزیابی عملکرد مدل های پیشگو و با توجه به اصل صرفه جویی، در تبریز مدل GAM و در تهران مدل مبنای MLR از عملکرد بهتری در پیش بینی مقادیر کربن سیاه نسبت به سایر مدل ها برخوردار بودند.