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Abstract 

Managing liquidity and inventory simultaneously remains a critical challenge in production planning, 

particularly for firms dealing with delayed receivables and financial constraints. This study proposes a 

novel mathematical model that integrates accounts receivable financing (ARF) into multi-period 

production planning. The model explicitly incorporates financial parameters such as cash inflows, 

advance payments, receivable discount rates, and bank credit limits, alongside operational factors like 

procurement and holding costs. The objective function is designed to maximize liquidity at the end of 

the planning horizon while ensuring demand satisfaction and inventory balance. A key innovation lies 

in the model’s unified treatment of financial and operational constraints—an aspect often overlooked 

in existing literature. The model is solved using advanced optimization methods, including nonlinear 

programming and a genetic algorithm, to handle complexity and ensure convergence to near-optimal 

solutions. Sensitivity analysis demonstrates the model’s robustness under demand fluctuations and 
financial volatility. Results indicate that the proposed approach can significantly reduce financial risks, 

improve cash flow stability, and support strategic decision-making. This framework offers valuable 

insights for managers seeking to align operational efficiency with financial resilience. Future research 

directions are also outlined to expand the model's applicability in dynamic production environments. 

Keywords: Media, digital media, media policy, soft systems methodology, cognitive mapping. 

 

Introduction 

Liquidity management plays a critical role 

in production planning, particularly in 

environments where delayed receivables lead 

to operational disruptions. Accounts 

Receivable Financing (ARF) has emerged as 

a viable tool to address such challenges by 

converting receivables into immediate cash. 

This financial mechanism allows companies 

to accelerate cash inflows, mitigate payment 
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default risks, and improve flexibility in 

procurement and production scheduling. 

Despite its potential, effectively 

integrating ARF into production planning 

remains complex. Firms must balance the 

financial benefits of ARF—such as enhanced 

liquidity and risk reduction—against 

associated costs like discount rates and 

administrative expenses. Additionally, 

operational factors including inventory 

management, order scheduling, and 
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fluctuating demand introduce further 

constraints, necessitating a unified 

optimization framework. 

Existing literature has addressed ARF 

from various angles, including credit risk 

mitigation, supply chain coordination, and 

blockchain-based transparency. However, 

most studies treat financial and operational 

decisions separately, lacking an integrated 

perspective that reflects the realities of 

dynamic production environments. This gap 

limits the practical applicability of prior 

models. 

To address this limitation, the present 

study develops a novel mathematical model 

that incorporates ARF directly into multi-

period production planning. The proposed 

model simultaneously considers key 

financial variables—such as advance 

payments, bank credit limits, and receivable 

discounting—and operational elements like 

procurement costs and inventory levels. The 

objective is to maximize end-period liquidity 

while satisfying financial and operational 

constraints. The model is solved using a 

genetic algorithm, enabling effective 

optimization in nonlinear and constrained 

settings. The results offer practical insights 

for managers aiming to enhance liquidity and 

minimize financial risks in uncertain 

markets. 

While previous studies have explored 

accounts receivable financing from diverse 

perspectives—such as game-theoretic 

coordination, risk-sharing mechanisms, and 

technological platforms—they rarely provide 

an integrated model that combines ARF with 

detailed production planning decisions. Most 

existing models separate financial flows from 

operational constraints, making them less 

applicable in dynamic and uncertain 

environments. 

This study contributes to the literature by 

proposing a unified mathematical framework 

that embeds ARF directly into multi-period 

production planning. Unlike prior works, the 

model explicitly incorporates liquidity 

constraints, credit limitations, advance 

payment structures, and receivable 

discounting, alongside inventory and 

procurement decisions. The application of a 

genetic algorithm to solve the nonlinear 

optimization problem further enhances its 

novelty and practicality. The model not only 

bridges a major gap in the literature but also 

offers a robust tool for managers facing 

financial uncertainty in operational planning. 

 

Literature Review 

Recent studies on accounts receivable 

financing (ARF) have explored its impact on 

financial coordination, credit risk reduction, 

and production planning efficiency. (Yan et 

al., 2024) and (Zhang et al., 2023) used 

evolutionary game theory to analyze the 

strategic interactions among supply chain 

members, emphasizing the role of 

coordination and central bank digital 

currencies in enhancing financing efficiency. 

Similarly, (Xia, 2022; Zhao and Lu, 2023) 

examined ARF under uncertainty, proposing 

guarantee mechanisms and pledge financing 

models to mitigate liquidity risks. 

Operational integration of ARF has also 

gained attention. (Zhu et al., 2022; Cheng et 

al., 2023) developed joint financial-

operational models to align cash flow and 

production schedules, demonstrating 

improved coordination and reduced costs. (Li 

et al., 2024; Cano et al., 2022) analyzed ARF 

in the context of SMEs and real-world case 

studies, confirming its positive impact on 

liquidity and investment capacity. 
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Emerging technologies have introduced new 

perspectives. (Yang, 2024; Wang 2023, 

2024; Ma et al., 2023) emphasized the role of 

blockchain and smart contracts in increasing 

transparency, reducing administrative costs, 

and streamlining receivables financing. 

These studies highlight the potential of 

digital infrastructure in modernizing 

financial operations. 

In addition, policy-oriented models by (Zhao 

and Lu, 2021; Feng, 2023) illustrated how 

government incentives and regulatory 

frameworks influence ARF adoption and 

coordination. (Zeng and Geng, 2022) 

addressed sustainability by integrating green 

finance into ARF strategies for 

environmentally conscious production. 

Although these works offer valuable insights, 

most focus on specific financial mechanisms 

or strategic interactions, often excluding the 

operational side of production planning. This 

study distinguishes itself by proposing a 

comprehensive mathematical model that 

integrates ARF directly into multi-period 

production operations, explicitly addressing 

both financial and inventory-related 

constraints under real-world uncertainties. 

 

Modeling 

The proposed mathematical model for 

accounts receivable financing (ARF) is 

developed as an advanced tool for managing 

production planning in dynamic and complex 

environments. This model integrates 

financial and operational aspects of 

production to support strategic decision-

making related to purchasing, selling, 

inventory management, and financing. The 

primary objective is to maximize available 

liquidity at the end of the planning horizon, 

ensuring financial stability by accurately 

managing resources and minimizing 

associated costs. 

Parameters and Decision Variables 

The model encompasses a set of 

parameters and decision variables that reflect 

the interactions among various production 

planning components, including suppliers, 

buyers, and financial institutions. Key 

parameters include purchasing, holding, and 

fixed costs, the percentage of cash and 

advance payments received from buyers, 

bank interest rates, and forecasted demand 

for products. Decision variables include the 

quantities of products purchased and sold 

during each period, end-of-period inventory 

levels, available liquidity, and the amount of 

financing received from banks. Additionally, 

binary variables are introduced to determine 

whether products are purchased during 

different periods. 

 

Parameters: 

MaxCred: Maximum credit limit provided by 

the bank in period t 

DiscRate: Discount rate for receivables in 

period t, determined by the bank. 

CashPerc: Percentage of cash received from 

buyer l for product k in period t 

AdvPerc Percentage of advance payment 

received from buyer l for product k in period 

t−, with guaranteed delivery in period t. 
w�: Initial liquidity at the start of the financial 
period. 

MinOrder: Minimum acceptable order 

quantity for buyer l in period t 

γ: Percentage of receivables from buyer l for 
product k in period t that can be converted 

into liquidity in period 𝑡 + ℎ 

SellingPrice: Selling price per unit of product 

k to buyer l in period t 

HoldingCost: Holding cost per unit of 

product k in period t 
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ProcureCost: Procurement cost per unit of 

product k. 

FixedCost: Fixed costs incurred at the end of 

period t. 

InitCash: Initial liquidity at the start of the 

financial period. 

AdvPerc: Percentage of advance payment 

received from buyer l for product k in period 

t−h, with guaranteed delivery in period t. 
 

Decision Variables: 

X: Quantity of product k purchased in period 

t 

S: Quantity of product k sold to buyer l in 

period t 

I: Inventory level of product k at the end of 

period t 

w: Liquidity available at the end of period t 

R: Total receivables at the end of period t 

Fin: Financing received from the bank 

through receivables factoring in period t 

CashIn: Cash inflows during period t, 

excluding bank financing. 

δ(Xᵢ): Binary variable indicating whether 

product iii is purchased in period t (1 if yes, 0 

if no). 

 𝐼𝑓𝑘𝑡: Warehousing cost at the end of period t 

 𝐼𝑁𝐶𝑡:Transportation and distribution cost at 

the end of period t 

𝑇𝑅𝐶𝑡 : Amount of receivables from buyer I 

for product k in period t-h, with liquidity 

available in period t 

𝐴𝑅𝑘𝐼𝑡,𝑡+ℎ: Amount of cash received from 

buyer I for product k in period t 

 Amount of advance payment received from 

buyer I for product k in period t, with a 

guarantee of delivery in period t+h 

 

Objective Function: 

Maximize w 

Objective: Maximize liquidity available at 

the end of the planning horizon T. This 

ensures financial stability and optimal use of 

resources throughout the planning period. 

Constraints 

The model is structured with a set of 

constraints that capture operational and 

financial limitations: 

1. Inventory Balance Constraint: 

Ensures that the end-of-period 

inventory equals the initial inventory 

plus purchased quantities minus sold 

quantities. 

 

2. Demand Fulfillment Constraint: 

Ensures that sold quantities do not 

exceed the forecasted demand. 

 

3. Liquidity Constraint: 

Ensures sufficient liquidity during 

each period to cover purchasing, 

holding, and fixed costs. 

 

4. Income and Expense Calculation: 

Defines the total receivables based 

on cash and advance payments from 

sales, incorporating discount rates. 

 

5. Bank Credit Constraint: 

Limits financing to the maximum 

available credit from the bank. 

 

6. Liquidity for Financing 

Constraint: 

Determines financing based on the 

difference between required liquidity 

and available liquidity during a given 

period. 

 

7. Liquidity Conversion: 

Calculates end-of-period liquidity, 
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including cash flows and receivables 

converted into cash, minus fixed 

costs. 

 

8. Non-Negative Inventory: 

Ensures that inventory levels remain 

non-negative. 

 

9. Minimum Order Quantity 

Constraint: 

Enforces a minimum order quantity 

for sales to buyers. 

 

10. Binary Decision for Purchases: 

A binary variable determines 

whether a product is purchased 

during a specific period. 

 

      11. Warehousing Cost Calculation 

 

(The warehousing cost is calculated as 

the inventory level multiplied by the 

holding cost per unit.) 

12. Transportation and Distribution 

Cost:     

 

(Transportation and distribution costs 

depend on the quantity sold and the cost 

per unit.) 

13. Receivables Liquidity Conversion: 

 

(Receivables from buyer 𝐼 for product 

𝑘 in period 𝑡 − ℎ are converted to 

liquidity in period 𝑡 using the conversion 

factor 𝛾.) 

14. Cash Received from Advance 

Payments: 

 

(Advance payments for guaranteed 

delivery are calculated as a percentage of 

sales in the relevant period.) 

 

Objective Function 

The objective function seeks to maximize 

liquidity at the end of the planning horizon: 

 

Where 𝐿𝑇 is the liquidity at the final period 

T. 

The model incorporates a range of 

parameters, including purchasing costs, 

holding costs, fixed costs, cash flow rates, 

demand forecasts, and bank credit limits. 

Sensitivity analysis is performed to assess the 

impact of changes in key parameters, such as 

interest rates, demand fluctuations, and 

holding costs, on liquidity and financial 

stability. By addressing operational 

challenges like optimal order quantities and 

financial commitments, the model ensures 

liquidity preservation across all periods. 

The proposed model provides solutions for 

real-world operational challenges, such as 

determining optimal order quantities and 

managing financial obligations to maintain 

liquidity throughout all periods. It reduces 

financial risks by accurately managing 

liquidity and limiting dependence on external 

financing. The model helps organizations 

utilize internal resources more effectively, 

reducing reliance on external financing and 

enhancing flexibility in responding to market 

changes. 

Ultimately, the proposed model not only 

guarantees improved financial performance 

but also fosters better coordination among 

production planning components. By 

considering operational and financial 

requirements, it serves as a strategic tool for 
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financial and managerial decision-making. 

The model is especially useful for industries 

that experience delays in accounts receivable, 

as it improves trust among production 

planning members, reduces costs, and 

enhances liquidity while ensuring operational 

stability. By offering practical solutions, this 

model plays a significant role in optimizing 

production planning management. 

The proposed mathematical model for 

accounts receivable financing is designed as 

an advanced tool for production planning 

management, aiming to optimize liquidity 

and reduce financial risks in complex and 

dynamic environments. This model considers 

all operational and financial aspects of the 

production planning, assisting in smarter 

decision-making regarding purchasing, 

selling, inventory management, and 

financing. The objective function is defined 

to maximize the available liquidity at the end 

of the planning period, ensuring the 

organization’s financial stability by 
accurately managing financial resources and 

minimizing costs associated with 

procurement and inventory holding. 

The modeling process is summarized as 

follows   
The model was formulated by translating 

real-world financial and operational 

processes into a set of mathematical 

equations. We began by defining decision 

variables representing key activities such as 

purchasing, selling, financing, and inventory 

holding. Parameters such as cash inflow 

ratios, procurement and holding costs, credit 

limits, and discount rates were included to 

reflect practical conditions. Constraints were 

then formulated to ensure inventory balance, 

demand satisfaction, liquidity sufficiency, 

and adherence to credit limits. The objective 

function—maximizing end-period 

liquidity—was constructed to capture the 

primary managerial goal. Binary variables 

were added to model purchasing decisions. 

Overall, the model took the form of a 

nonlinear, constrained optimization problem 

with both continuous and discrete variables. 
The model includes a set of parameters and 

decision variables that reflect the interactions 

among various components of the production 

planning, including suppliers, buyers, and 

financial institutions. Key parameters include 

procurement costs, holding costs, fixed costs, 

the percentage of cash and advance payments 

received from buyers, bank interest rates, and 

forecasted product demand. Decision 

variables include the quantities of products 

purchased and sold in each period, end-of-

period inventory levels, available liquidity, 

and the amount of financing received from 

banks. Additionally, binary variables are 

introduced to determine whether products are 

purchased during different periods. 

The model is structured with a set of 

constraints that capture operational and 

financial limitations. Inventory balance 

constraints ensure that inventory levels in 

each period align with quantities purchased, 

sold, and carried forward from the previous 

period. Demand-related constraints ensure 

that sales volumes do not exceed the 

forecasted demand from buyers. Liquidity 

constraints guarantee that the available 

liquidity in each period is sufficient to cover 

procurement, holding, and fixed costs. Bank 

credit limitations restrict the available 

financing to prevent excessive reliance on 

external funding. 

A key feature of this model is its 

consideration of all financial flows within the 

production planning, including revenues 

from sales, incoming cash flows, and funds 

obtained through bank financing. The model 



Journal of System Management (JSM) 11(4), 2025 Page 113 of 119 

 

The Mathematical Model for Optimizing             Ahmad Neyeri  

also analyzes the interactions between 

financial flows and physical operations, such 

as purchasing and selling products, and 

evaluates their impact on final liquidity 

levels. It enables organizations to use 

sensitivity analysis to assess the effects of 

changes in key parameters, such as interest 

rates, demand levels, and holding costs, and 

to make better decisions accordingly. 

The model also aims to provide solutions 

to operational challenges within the 

production planning, such as determining 

optimal order quantities and managing 

financial commitments to maintain liquidity 

throughout all periods. Other advantages of 

the model include its ability to reduce 

financial risks through precise liquidity 

management and limiting external financing. 

The model helps organizations effectively 

utilize internal resources, reducing 

dependency on external funding and 

increasing flexibility in responding to market 

changes. 

 

Benefits of the Model 

1. Financial Optimization: Maximizes 

liquidity and minimizes costs associated with 

inventory holding and procurement. 

2. Risk Mitigation: Reduces dependence 

on external financing by effectively 

managing cash flows. 

3. Operational Efficiency: Aligns 

financial and operational priorities, ensuring 

stable production planning. 

4. Strategic Decision-Making: Provides 

a robust framework for managers to evaluate 

and implement optimal production and 

financing strategies. 

 

Solution Approach and Genetic Algorithm 

Parameters 

The genetic algorithm (GA) used to solve 

the model was configured with parameters 

selected based on empirical 

tuning...Ultimately, the proposed model not 

only ensures improved financial performance 

but also facilitates better coordination among 

production planning components. By 

considering both operational and financial 

requirements, it serves as a strategic tool for 

financial and managerial decision-making. It 

is particularly applicable in industries that 

face delays in receivables collection. Using 

this model can increase trust among 

production planning members, reduce costs, 

and improve liquidity while ensuring the 

organization’s operational stability. By 
offering practical solutions, this model plays 

a significant role in optimizing production 

planning management. 

 

Table 1. 

Basic models of inventory and working capital management 

Category Parameter Value Unit 

Problem Dimensions    

 Number of Periods (T) 6 Periods 
 Number of Products (K) 3 Products 
 Number of Buyers (I) 2 Buyers 
 Prepayment Period (h) 1 Period 

Financial Parameters    

 Maximum Credit (MaxCred) 10,000 Currency Units 
 Discount Rate (DiscRate) 0.02 Percent 
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Category Parameter Value Unit 

 Initial Liquidity (InitCash) 5,000 Currency Units 

Payment Conditions    

 Cash Payment Percentage (CashPerc) 0.7 Percent 
 Advance Payment Percentage (AdvPerc) 0.3 Percent 

Prices and Costs    

 Base Selling Price 100 Currency Units 
 Price Increase per Product 10 Currency Units 
 Random Price Fluctuation N(0,5) Currency Units 
 Holding Cost (h_cost) 5 Currency Units/Period 
 Procurement Cost for Product 1 50 Currency Units 
 Procurement Cost for Product 2 60 Currency Units 
 Procurement Cost for Product 3 70 Currency Units 
 Fixed Cost (F) 1,000 Currency Units/Period 

Demand Parameters    

 Base Demand 100 Units 
 Sinusoidal Fluctuation 20×sin(t) Units 
 Random Demand Fluctuation N(0,10) Units 
 Minimum Order (MinOrder) 10 Units 

Genetic Algorithm Parameters    

 Population Size 100 Members 
 Maximum Generations 200 Generations 
 Crossover Rate 0.8 Percent 

Penalty Coefficients    

 Negative Inventory Penalty 1e7 Currency Units 
 Demand Violation Penalty 1e6 Currency Units 
 Credit Violation Penalty 1e7 Currency Units 
 Minimum Order Violation Penalty 1e5 Currency Units 
 Inventory Change Penalty 1e4 Currency Units 

 

The initial hypothetical values in Table1 

are considered for a medium-sized inventory 

and working capital management problem. In 

this model, a company with 3 products, 2 

buyers, and a planning horizon of 6 periods is 

analyzed. The financial parameters include a 

credit limit of 10,000 units and an initial 

liquidity of 5,000 units, which seem 

reasonable given the problem's scale. 

Payment terms are set at 70% cash and 30% 

advance payment, reflecting a cautious 

financial policy. 

Holding costs are relatively low (5 units), 

and procurement costs increase progressively 

(50, 60, and 70 units) for different products. 

Demand consists of a fixed component (100 

units), a sinusoidal component to represent 

seasonal variations, and a normal random 

component to simulate unpredictable 

fluctuations. 

The genetic algorithm parameters, with a 

population size of 100 and 200 generations, 

are configured to balance computational time 

and solution quality. 
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Figure1.  

Genetic algorithm convergence diagram 

 

 

The convergence chart of the genetic 

algorithm in Figure1 illustrates the 

improvement trend of the objective function 

over 200 generations. The chart displays the 

number of generations on the horizontal axis 

and the objective function value on the 

vertical axis, with two primary curves: one 

representing the best fitness value and the 

other the mean fitness of the population. The 

vertical axis scale ranges from −13 × 1010 

to −4 × 1010, indicating a minimization 

problem. 

The convergence process of the algorithm 

can be divided into three main phases: 

Phase 1 (Generations 1 to 20): 

A rapid and significant improvement in 

the objective function value is observed, 

reflecting the algorithm’s capability to 
quickly identify promising regions in the 

search space. During this phase, the gap 

between the best solution and the 

population mean is large, indicating high 

diversity within the population. 

Phase 2 (Generations 20 to 80): 

The rate of improvement decreases, but 

a gradual downward trend continues. At 

this stage, the gap between the best 

solution and the population mean 

narrows, indicating a gradual 

convergence of the population towards 

better solutions. 

Phase 3 (Generations 80 to 200): 

The algorithm reaches an almost stable 

state, with only minor improvements in 

the objective function value. The final 

best value achieved −1.29755 × 1011, 

and the mean fitness value is 

−1.29703 × 1011. 

The rapid convergence in the initial phase 

demonstrates that the genetic algorithm 

parameters (e.g., population size, mutation 

rate, and crossover rate) have been 

appropriately tuned. The close alignment 

between the best and mean values at the end 

of the execution reflects proper convergence 

but may also indicate a reduction in genetic 

diversity, raising the risk of the algorithm 

getting trapped in local optima. 

While the convergence curve suggests that 

the algorithm has reached a stable solution, 
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additional strategies could be employed to 

ensure solution quality. These include 

increasing the mutation rate in the final 

generations or rerunning the algorithm with 

different initial values. Another noteworthy 

aspect is the presence of minor fluctuations in 

the mean population curve, indicating that 

the mutation operator continues to introduce 

diversity within the population. This is a 

desirable feature, as it enables exploration of 

the solution space even during the final 

generations. 

The numerical results presented in the 

table reflect the performance of the genetic 

algorithm during the final generations (183 to 

200). These results include the generation 

number, individual ID, best fitness value, 

average fitness value, and the number of 

stalls (improvement stagnation). 

In Table 2 the final generations, the 

objective function value improves from 

−1.298 × 1011 to−1.295 × 1011, 

indicating slight but continuous progress. 

The average fitness of the population is 

almost equal to the best value, demonstrating 

that the population has converged effectively. 

After 200 generations, the algorithm 

terminates due to reaching the maximum 

allowed number of generations. 

 

Table 2.  

The final optimization results 

Metric Value 

Objective Function Value (Final Liquidity) −1.29755 × 1011 

Average Purchases per Period 532.517 

Average Sales per Period 5210.855 

Average Inventory Level −16,999.553-16,999.553−16,999.553 

Average Liquidity 1,254,197.387 

These results indicate that the algorithm has successfully achieved an acceptable solution. 

 

Figure 2.  

Output Charts 
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The output charts in Figure2 consist of three 

graphs that illustrate the trends of key 

variables over six periods: 

1. First Chart (Total Optimal 

Purchases in Each Period): 

A fluctuating trend is observed with a sharp 

increase in the final period. The purchase 

quantity starts at approximately 200 units in 

the first period, rises to around 500 units in 

the second and third periods, decreases 

slightly, and finally surges to over 1,000 

units in the sixth period. This purchasing 

pattern indicates a stockpiling strategy 

towards the end of the planning horizon, 

potentially due to anticipated demand 

increases or price changes. 

2. Second Chart (Optimal Liquidity 

in Each Period): 

A steadily increasing, almost linear trend is 

observed, starting from zero and reaching 

approximately 2.5×1062.5 \times 

10^62.5×106 by the sixth period. This trend 

demonstrates that the liquidity management 

strategy has been successful, consistently 

improving liquidity throughout the periods. 

3. Third Chart (Total Optimal 

Inventory in Each Period): 

A downward trend is evident, starting at 

around −0.5×106-0.5 \times 10^6−0.5×106 
and declining to approximately −3×106-3 

\times 10^6−3×106 by the sixth period. 
This suggests a consistent depletion of 

inventory levels, likely due to sales 

outpacing replenishment, which aligns with 

the strategy to optimize holding costs and 

manage cash flow effectively. 

 

Managerial Implications 

The proposed model offers valuable 

insights for decision-makers managing 

production planning under financial 

constraints. In real-world environments 

where delayed customer payments, limited 

credit access, and volatile demand conditions 

are common, this model enables managers to 

design more resilient and liquidity-focused 

strategies. 

One of the key managerial advantages is 

the model’s ability to simulate various 
financial and operational scenarios. 

Managers can evaluate how changes in 

parameters—such as customer payment 

patterns, interest rates, or inventory holding 

costs—affect cash availability and 

production efficiency across multiple 

periods. This helps in proactively adjusting 

purchasing schedules, financing plans, and 

sales policies, thereby reducing financial risk 

and avoiding liquidity shortages. 

The integration of accounts receivable 

financing (ARF) directly into the production 

planning model is especially significant. It 

allows managers to assess the impact of 

offering credit to buyers and determine the 

optimal use of receivables discounting. 

Instead of relying on intuition or ad-hoc 

decisions, they can use a structured tool to 

align operational decisions (e.g., order 

quantities, procurement timing) with 

financial constraints (e.g., credit limits, cash 

flow availability). 

Moreover, the use of genetic algorithms 

enables fast and robust optimization even in 

complex and nonlinear situations, making the 

model applicable to a wide range of 

manufacturing environments. Sensitivity 

analysis enhances this further by allowing 

managers to anticipate outcomes under 

uncertainty and to test the impact of extreme 

scenarios. 

Overall, the model serves as a strategic 

decision support system, enabling production 

and financial managers to coordinate efforts, 
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minimize risk, and improve both liquidity 

and operational efficiency. 

 

Conclusion 

This study introduces a novel mathematical 

model that integrates accounts receivable 

financing into production planning, 

addressing critical challenges in liquidity 

management and financial risk mitigation. 

By incorporating parameters such as cash 

inflows, advance payments, procurement 

costs, and bank credit limits, the model 

provides a robust framework for optimizing 

financial and operational performance. 

The results demonstrate that the proposed 

model effectively enhances liquidity, reduces 

financial dependency, and supports decision-

making under dynamic market conditions. 

Sensitivity analyses further validate its 

adaptability to variations in demand, interest 

rates, and operational costs, making it 

applicable across industries with diverse 

financial constraints. 

Key findings underscore the strategic 

importance of ARF in modern production 

planning: 

1. Liquidity Optimization: The model 

ensures stable cash flow across planning 

periods, reducing reliance on external 

financing and mitigating financial risks. 

2. Cost Reduction: By integrating ARF 

with inventory management, the model 

minimizes holding and procurement costs, 

improving overall profitability. 

3. Scalability and Flexibility: The 

framework adapts to fluctuating market 

conditions, offering managers actionable 

tools for both short-term and long-term 

planning. 

Despite its strengths, the study acknowledges 

limitations, such as the exclusion of 

advanced market dynamics and the lack of 

real-time data integration. Future research 

could explore these areas, particularly the 

incorporation of blockchain technology and 

artificial intelligence to enhance model 

efficiency and transparency. Additionally, 

expanding the model to address 

sustainability goals and multi-tier supply 

chains could provide further value. 

In conclusion, this research contributes to the 

growing body of knowledge on ARF by 

offering a comprehensive, practical, and 

scalable solution for production planning 

challenges. It equips managers with a 

strategic tool for aligning financial stability 

with operational efficiency, paving the way 

for sustainable growth and competitive 

advantage in today’s dynamic industrial 
landscape. 
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