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Abstract

Industry 4.0 includes an important regeneration of production and management systems within
manufacturing, where the majority of the procedures will be entirely or partially automated. However,
there are insufficient research studies related to machines tool operation optimization considering the
effective criteria for reliability in industry 4.0 to enable plants to measure their own conditions and to
make future strategies for their activities in this field. Thus, this article proposes a decision-making
model using a combination of DEMATEL, ANP and Shannon Entropy, and VIKOR methods with fuzzy
features in cellular production systems, considering the effective criteria for reliability in Industry 4.0.
Use of fuzzy features aims to bring the problem closer to the real world in this study. The efficiency of
proposed model has been validated in a large automotive parts manufacturing plant as a case study.
Based on the results, the most critical machine in the category of automatic lathe machines is Machine3,
and the ordinary lathe machines is Machine31. Sensitivity analysis shows that changing the weights of
criteria affects the individual prioritization of machines but does not have any impact on their overall
prioritization. This prioritization has a high level of alignment in terms of priority and accuracy with
the perspectives of experts and decision-making teams. The selected critical machine is a sensitive
machine in plant and cannot be replaced throughout its equipment lifetime. Finally, practical
recommendations for Machines Tool Operation Optimization have been provided in Industry 4.0.
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Introduction human-machine, or human. Although they

The term reliability was first used in the ~ are usually used for mechanical systems or
1800s to calculate human life insurance,  €ngineering or man-made products and
while later this term was used mostly for  artifacts. In the past decades, reliability has
machine products (mechanical, electrical, ~ Deen discussed in industries such as military,
electronic, and structural) and not for humans ~ communications, oil, and gas production.
themselves. App|y|ng the term re||ab|||ty to With the accelerating globalization of the
humans is usually more complicated due to ~ €conomy, competition among manufacturing
the complexity of biological organisms  industries has increasingly intensified.
compared to machine products, but it cannot ~ Automotive manufacturing has always been
be said that it is not measurable. Reliabilityis ~ an important investment and development
a quantitative measure of the correct industry in various countries (Yue et al.,
functioning of parts, devices, and systems in ~ 2021).
general. These systems can be machine,
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An automotive company provides quality
assurance services to customers based on two
criteria, including time and distance traveled
to ensure the quality of its products for them
and to remind customers of their credibility
(Lee et al., 2021). The factors of time and
distance driven are referred to as two-
dimensional quality assurance areas, and if a
minor error or accident occurs during this
time, the automotive company offers a parts
warranty that incurs quality assurance costs.
For this reason, countless automotive
manufacturers are increasing their scope of
quality assurance in specific markets
(Rajaguru & Matanda, 2013).

Meanwhile, sales are continuously
increasing  rapidly, with  companies
subsequently paying tens of billions of
dollars in after-sales parts warranties
(Schumacher et al.,, 2016). As a result,
identifying the durability of automotive parts
and systems, along with determining the
appropriate level of quality assurance and
quality management, significantly affects the
competitiveness of an automotive company
(Lee et al., 2021).

Hence, if the possibility of failure in terms
of quality assurance can be determined by
identifying poor machining processes, it will
be easy to manage each part and reduce the
cost of quality assurance. To support the
reliability of automotive parts, machines are
prioritized based on the reliability and
manufacturing of intact and defective parts in
various ways that can determine the
reliability of using equipment. Therefore, one
of the most challenging tasks in today's
automotive industry is product quality
control across the automotive supply chain
(Chehade et al., 2022). The automotive
industry is becoming customer-oriented and
needs faster response times to cope with
automotive accidents (Lee et al., 2021).

Paying attention to the reliability of
complex products is a serious challenge for
most manufacturers. Numerous factors affect
reliability and increase complexity [9].
Challenges that may jeopardize the reliability
of automotive parts generally fall into two
categories: First, the lifespan of the parts is
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different from each other because drivers act
differently from each other and high-risk
drivers can always cause unexpected
accidents. Second, automobiles have a huge
volume of parts and a relatively long
warranty period compared to other products,
which is a more difficult problem because
many parts require prediction and the
prediction of parts also takes a long time
(Zhan & Xiao, 2022).

The Fourth Industrial Revolution is a
general concept that refers to a period of
technological advancements in industry and
production systems. This revolution is based
on the integration of devices and systems into
internet networks, artificial intelligence,
cloud computing, and data analytics to
improve  performance and  optimize
production processes (Schumacher et al.,
2016).

In the automotive industry, the Fourth
Industrial Revolution plays a crucial role.
These innovative technologies and concepts
enhance production efficiency and quality,
reduce production time and costs, increase
flexibility and reliability in the production
line, and improve the customer experience.
For example, the use of smart systems and
connecting production devices to the internet
network can lead to the collection and
analysis of big data to improve the
performance of production lines, predict
market needs, enhance quality supervision
and control, and monitor system maintenance
and repairs (Butollo et al., 2019).

Additionally, the implementation of
technologies such as artificial intelligence,
robotics, the Internet of Things, and
augmented reality in the automotive industry
can result in increased automation of
production processes, improved accuracy
and speed of production, reduced errors and
work-related accidents, enhanced security
and productivity, and the creation of
innovation and development opportunities in
this industry. Therefore, the Fourth Industrial
Revolution in the automotive industry, by
harnessing advanced technologies, improves
efficiency, optimizes processes, reduces
costs, and brings about significant
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transformations in this industry (Jafari-Asl et
al., 2022).

To address these challenges, a machine
prioritization approach based on reliability
factors to realize the goals of the fourth
industrial revolution in the field of operation
optimization seems essential. In this case,
changes need to be managed to identify
failures. In other words, the main goal of
prioritizing auto parts manufacturing
machines based on reliability enables us to
obtain the probability of failures among
machines and to decide on the process of
using the future type of auto parts machining.
Data related to the machining process,
including Machine operation time, The total
number of manufacturing parts, Number of
non-defective parts, Planned manufacturing
quantity, Machine availability, Efficiency,
Overall Equipment Effectiveness(OEE), and
Percentage of non-defective parts, index are
required to identify the probability of
failures(Butollo et al., 2019).

In this research, the information recorded
from the archived documents of a large
automotive spare parts plant is used, which is
known as a field claim to determine the parts
manufactured by each machine, the operation
time of machines, etc. The reason for using
this data is that it gives us feedback on the

expected life of the product. Because
providing appropriate manufacturing
products with optimal reliability for

customers of auto parts manufacturing units
to ensure proper operation of the product
during its lifetime is considered by logistics,
supply, and supply chain experts.

Based on the above, the most important
objectives of this research are as follows:

1- Providing a decision-making model that,
in addition to identifying the effect of criteria
on reliability to realize the goals of the fourth
industrial revolution in the field of operation
optimization can determine the prioritization
of machines using it.

2- Applying the fuzzy property to bring the
problem closer to the real world.

3- Determining Cause-and-effect
relationships between criteria affecting the
reliability of machines, as well as
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determining the importance of criteria and
prioritizing machines in groups.

The rest of the paper is organized as below.
The second section provides a literature
review of past studies on the main research
topic. In the third section, the proposed
research method is provided. In the fourth
section, the computational results are
implemented in a real case study. Finally, in
the fifth section, a general conclusion is
provided along with suggestions for future
research.

Literature Review

Jafari-Asl et al, in their paper, proposed a
new framework for accurate reliability
analysis based on the improvement of
directional simulation using meta-heuristic
algorithms. To apply the proposed
framework is first tested on five highly
nonlinear criterion functions and then applied
to solve four engineering problems with high
dimensions. The performance of the six
simulation-based reliability analysis methods
and the first-order reliability method are
compared with the proposed method.
Furthermore, the feasibility of other meta-
heuristic algorithms is investigated. The
results show the  high-performance
capabilities of the improved version of the
directional simulation to solve highly
nonlinear engineering problems.

Manouchehrinia et al, proposed an
evaluation of reliability based on failure to
measure random vibration loads due to
unexpected loads in different road
conditions. Because random loads have been
identified as the main cause of failure in
reliability analysis. Acceleration signals were
measured during road tests conducted on
rural and highway road surfaces. The signals
were taken from an accelerometer mounted
on the suspension system of an urban sedan
automobile. The results of this study showed
that failure prediction is not affected by cases
of dynamic behavior in components in the
time domain.

Huang et al, considered warranties for
electronics with failure processes. In this
study, the failures include minor failure,
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excessive failure, and catastrophic failure.
Also, a dynamic planning approach is
designed to provide reliability to obtain
optimal solutions for periodic planning. Mi et
al, conducted a comprehensive evidence-
based network study to analyse the reliability
of complex systems with continuously
caused failures and complex uncertainties. In
addition, two layers, namely a decomposed
event layer and a paired layer, are embedded
in the system evidence network, resulting in
a hierarchical structure of system reliability.
As a result, the importance and sensitivity of
different components and their effect on
system reliability are identified.

Xiao et al. proposed a new learning
function with a parallel processing strategy
for selecting new training samples for
complex systems using Surrogate models.
Using the proposed parallel learning strategy
for system reliability problems performed
through the Cracking surrogate model, one or
more new instructional samples can be
selected in each iteration to modify the built
surrogate models. Three numerical examples
were examined to show the validity of the
proposed method. The results show that this
method has high applicability and accuracy
for complex reliability problems. Wang et al.
proposed a new reliability analysis method
that is a combination of the improved
Cracking method for the possibility of small
failures. For this purpose, a new strategy for
parallel learning is proposed to enable
parallel computing and further reduce overall
computational time. The proposed method
can be applied to a system with low failure
probability, multiple failure regions, high
nonlinearity, and implicit functions. Finally,
the efficiency and accuracy of the proposed
method were demonstrated using four
numerical examples and compared with the
five competing methods reported.

Lee etal. developed a failure and reliability
prediction model for auto parts using the
initial 6-month field claim. This paper
proposes different deep learning methods and
compares the work with different methods
such as the parametric method, time series
method, and machine learning. By
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conducting experiments, they confirmed that
the proposed deep learning model is superior
to the existing relevant study, therefore, it is
suggested that the deep learning method can
maximize performance compared to other
existing methods. Soares et al. developed a
method to support maintenance management
to identify and analyse equipment reliability
in a manufacturing factory. This method
involves using Laplace test to identify
equipment whose reliability decreases over a
given period. Then, they carried out an
analysis to identify the critical components
and related failure factors.

Abolghasemian et al, presented a new
framework for prioritizing time in the
construction process using an analytical
method based on a mathematical model and
simulation. For this purpose, the rework
parameter and the variables of frequency,
duration, and time of call-back have been
considered. Also, the effects of these
parameters on tangible performance criteria
have been investigated.

Ghazi and Pourghader, using fuzzy logic,
tried to predict the reliability of passenger
automotive tires using machine learning.
Thus, they first identified the key criteria
affecting the tire reliability, and then, using
the opinions of experts, designed and
considered rules for training the network.
Finally, to validate the model in the best and
worst conditions, the validity of the model
was measured to investigate the effect of
input variables on the output of the model.
Hey et al, developed a two-stage supply chain
for automotive logistics services. The
computational results of the research show
that if reliability increases, the optimal order
quantity of logistics capability, purchase
price, and all expected profits will decrease.
Teymouri and Farahani , proposed a model
that in addition to the reliability of the part,
well investigates the environmental factors
affecting the failure rate. Furthermore, since
the consumption of many parts is due to their
relationship with other parts and the
existence of a concept called part failure
interaction, these factors are also included in
the model as another group of factors
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affecting demand. The model proposed in
this paper, using reliability models and the
renewal process, predicts the consumption of
spare parts by considering the reliability,
factors in the operational environment, and
failure interaction.

Tortorella and Fettermann, assessed the
development of Industry 4.0 in Brazilian
manufacturing companies. They utilized a
multivariate analysis to analyze the lean
production (LP) practices of 110 companies
which were collected by means of a
questionnaire  form. They found the
implementation of the LP and Industry 4.0
technologies has led to larger performance
improvements in  Brazilian companies.
Skrzeszewska et al, assessed the
effectiveness of Manufacturing Execution
Systems (MES) for production management
in Industry 4.0. They analyzed the readiness
level of two companies in three levels of
management: operational, tactical and
strategic. Sadeghi-Niaraki, developed a
comprehensive framework to assess the
countries’ readiness level in Industry4.0
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development. The research conducted in
several steps. First, the main required clusters
and their criteria of Industry 4.0 development
assessment such as technological, social,
economic, political and environmental
clusters determined. Second, the importance
of the clusters and their criteria specified
using the Fuzzy DEMATLE and Fuzzy ANP
techniques. Third, the countries ranked using
the VIKOR technique.

According to literature review, machine
learning, parametric, and deep learning
methods have been considered in the studies
to ensure reliability. However, a decision-
based model has not been investigated in
Industry 4.0. Therefore, the proposed model
in this research enables manufacturing
companies to decrease huge costs by
prioritizing the machines in Cellular
Manufacturing Systems in Industry 4.0, with
ensuring reliability, taking into account the
exact number of future failures of each
automotive part. Table 1, shows the literature
review.

Table 1.

Literature review

Author Year Goal Tools Solution

approach

Evaluation countries’ readiness El:EZIf/IyATLE )

Sadeghi-Niaraki 2020 level in Industry 4.0 Decision making q
development Fuzzy ANP an

VIKOR

Support maintenance

Soares et al (2021) management to identify and Experimental Laplace test
analyse equipment reliability

Lee et al (2021) Pre_dlgt!ng the failure .and Statistical Time series
reliability of automotive parts
Calculate reliability analysis

Jafari- Asl, et al (2022) based on the improvement of Simulation Meta-Heuristic
directional simulation

- Calculate an evaluation of .

Manouchehrinia, etal  (2022) reliability based on failure Experimental -
Evaluation warranties

Huang et al (2022) reliability for electronics with Experimental -
failure processes
Conducted a comprehensive

. evidence-based network study

Mietal (2022) to analyse the reliability of Experimental i
complex systems

Xiao et al (2022) Studied reliability using a Surrogate model  Cracking

surrogate model

Machines Tool Operation Optimization Considering

Masoumeh Lajevardi



Journal of System Management (JSM)

11(3), 2025

Page 6 of 18

Author Year Goal Tools Solution
approach
Wang et al (2022) Analysis reliability using a Surrogate model Machlne
surrogate model learning
To prioritize and select the A Fuzzy Hybrid
most critical machine in Method of
This research (2024) cellular manufacturing systems  Decision making DEMATEL-

using effective criteria for
reliability in Industry 4.0

ANP- Shannon
Entropy/VIKOR

Methodology

The proposed framework of this research
includes four basic pillars as follows: 1-
Determining the complete relationship
between criteria, 2- Determining the
importance of criteria, 3- Prioritizing the
critical machines to determine the most
critical machine in manufacturing halls, and
4- Sensitivity Analysis.To carry out this
research, a hybrid decision-making
framework using DEMATEL (Decision-
Making Trial and Evaluation) method is used
to determine the complete relationships
between criteria and ANP-Shannon Entropy
method is used to calculate weight of criteria.

Because, the most significant constraint in
using  decision-making  methods  is
considering the mental importance of criteria,
which may lead to different results by
changing its value compared to what has been
calculated. To overcome this limitation, this
article uses combined weights obtained from
Shannon Entropy and ANP methods. Finally,
using VIKOR (Vlse Kriterijumsk
Optimizacija ~ Kompromisno  Resenje)
method, the prioritization of machines is
determined according to the importance
determined for the criteria and their
criticality. Figure 1 shows the research
implementation framework.

Figure 1. Research method framework

DEMATEL Method

Using DEMATEL method, the effect of
criteria on each other is addressed. The steps
of this method are:

Step 1: Forming the initial relation matrix

Machines Tool Operation Optimization Considering

The values of each column and row represent
the opinion of experts for the criteria. This
matrix shows how each factor affects the
other factors of the study. Any criterion that
does not affect the similar criterion, its value
is considered zero.
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0 - ai,
a=|: - ]

ap; =+ 0
Step 2: Normalizing the initial relation
matrix
The normal matrix for the initial relations
based on Equation 2 can be calculated as
follows:

(2) X= 1/max Z’;:l a;j

(3) N=X.A

Where X is the normalized value of each
factor and A is the initial relation matrix.
Step 3: Total relation matrix

The total relation matrix Y can be calculated
using the normalized matrix N as follows.

Y=N({-N)1
1 0

5) L,=1: = :
o - 1

Step 4: Calculating sum of the rows and
columns in the total relation matrix

In this step, the column matrix R,; iS
calculated using sum of the rows of the total
relation matrix, and the row matrix C;y, IS
calculated using sum of columns of the total
relation matrix as follows:

(6) R = [¥}_1my]

(7) C = [Xitymy]

Step 5: Drawing the degree of influence
cause and effect criteria diagram

In this step, by calculating (R; + C;) and
(R; — C;) the degree of influence cause and
effect criteria diagram is drawn to show the
effect of factors on each other.

ANP Method

The steps of ANP method are follows:

Step 1: Building a model and turning the
problem into a network structure

In this stage, the problem needs to be turned
into a logical system like a network. The
network structure can be obtained by
brainstorming, nominal group, or any other
suitable method. In this research, the
relationship between the criteria is obtained
using DEMATEL method.

Step 2: Forming a pairwise comparison
matrix and determining relative weights
vector
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The decision elements in each cluster should
be compared two by two based on their
importance in the equation to the control
criteria. Clusters are also compared two by
two according to their role and influence in
achieving the goal. Also, due to the
interdependencies between the elements of a
cluster, pairwise comparisons should be
made between them.

Step 3: Forming a super matrix and
converting it to a limit super matrix

To achieve the final weights in the network,
the relative weight vectors are inserted into
the appropriate columns of a matrix. The
result is a super matrix, each part of which
represents the relationship between two
clusters in a system.

Step 4: Selecting the top option

The overall priority of the options is obtained
from the options column in the normalized
limit super matrix.

Shannon Entropy Method
In this step, using Shannon Entropy method,
the importance of each of considered criteria
for critical equipment prioritizing is
determined. To determine the weight, it is
necessary to calculate the entropy uncertainty
criterion by a certain probability distribution
such as p; in Equation 8:
®)  E=—kZ{p;In(p))
Therefore, value of d; or the degree of
deviation is calculated, which shows how
much useful information the relevant j index
provides to the decision maker. The closer
measured values are to each other, it shows
that the other options are not much different
from each other in terms of the index.
Finally, the weight of W; is calculated as
follow:

__9
(10) W} - Xj-1d;
In this research, it is suggested that the weight
of criteria be determined using the combined
ANP-Entropy method. If the calculated
weight of ANP method for considered factors
is assumed to be equal to §; and the
calculated weight of criteria using Shannon
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Entropy method is assumed to be equal toy;, ~ plant. This plant produces aluminum
then the combined weight will be equal to: automotive parts, which is considered the

RJ17 main engine parts manufacturer for
(11) W =o—— : -
i=165Yj automotive manufacturers. In the following,

VIKOR Prioritization Method

The steps of VIKOR method are:

Step 1: Calculating f;" and f;~ of criteria: for
each of criteria j =1,...,n, the best f;; is
specified as f;", and the worst f;; is specified
as f;~. The values of f;" and f;~ for positive
criteria, are determined from Equation 12.
(12) f]* =max f;;; f;” = min f;;
Also, values f;"and f;~ for negative criteria
are determined from Equation 13.

(23) /‘j*zminﬁj;fj_zmaxﬁj

Step 2: Calculating S; and R; according to
Equations 14 and 15:

i =fip)
14 S =y . LY
(14) i j=1W;j =)
o _(fj*—fij)
(15) R; = max[w; —(f,-*—fj’)]

Therefore, S* = minS;; S~ =
maxS;; R* = minR;; R~ = maxR;.

Step 3: Calculating value of VIKOR index
for each option according to Equation 16:

(16) Qi=v><[jf;_5;]+(1—v)x
Ri—R*
r—=

It is assumed that v is a strategic weight and
often consider equal to 0.5.

Results
The results of this research have been
implemented in alarge automotive spare parts

the applied results are shown step by step
until the results are obtained to determine the
critical machines.

The Effect of criteria on each other

By collecting information from the
designed questionnaire based on DEMATEL
method, considering the scale in Table 2, the
decision matrix shown in Table 3 is
completed. Table 3 shows direct relation
matrix, which is based on the arithmetic
mean of the opinions of the experts
participating in the research based on
DEMATEL scale.

Table 2.
DEMATEL method scale
Verbal phrase

Corresponding value

Much more important 500
Important 400
Intermediate 300
Less important 200
Much less important 100
The triangular fuzzy numbers

corresponding to the 5-point Likert spectrum
are shown in Table 3. In this table, the certain
value corresponding to each verbal value,
fuzzy value, and triangular number is written.
Fuzzy numbers are converted to crisp
numbers  using  Minkowski  formula

according to x=m+4%— 1/4. In this
relation, m is the center of the interval, u is

the upper bound, and [ is the lower bound of
the interval.

Table 3.

Fuzzy numbers of 5-degree Likert spectrum
Verbal variable Fuzzy Triangular Crisp value

value fuzzy numbers

Much more =
Important 1 (0,0,0.25) 0.0625
Important 2 (0,0.25,0.25) 0.3125
Intermediate 3 (0.25,0.5,0.25) 0.625
Less important 4 (0.5,0.75,1)  0.875
Much less important 5 (0.75,1,1) 1.0625

Machines Tool Operation Optimization Considering
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Table 4.

Direct relation matrix of DEMATEL method
Slgterf;[( relation C: C Cs Cs Cs Ce Cy Cs
C: 0.000 0.763 0.786 0.768 0.603 0.705 0.714 0.781
C 0.777 0.000 0.781 0.741 0.585 0.723 0.737 0.719
Cs 0.723 0.759 0.000 0.696 0.473 0.763 0.830 0.777
Cs 0.808 0.643 0.540 0.000 0576 0.705 0.799 0.862
Cs 0.625 0.692 0.464 0.496 0.000 0.364 0.531 0.879
Cs 0.790 0,571 0.786 0.670 0.371 0.000 0.763 0.781
C; 0.808 0.826 0.737 0.741 0.509 0.835 0.000 0.821
Cs 0.692 0.710 0.656 0.817 0.817 0.728 0.786 0.000

Sum of rows

Sum of columns

To normalize Table 4, it is necessary to
specify the sum of rows and columns in the
table of the total relation matrix and to divide
each of the numbers in this table by the
maximum value of these sums. Table 5
shows the sum of the rows and columns of
the total relation matrix to determine the
maximum value.

Table 5.
Sum of rows and columns
Sum of rows

Sum of columns

5.022 4.75

4.933 4.928
4.051 3.933
4.731 4.823
5.276 5.160
5.205 5.620

According to table 5, maximum value for
rows is 5.276 and maximum value for
columns is 5.620. Therefore, maximum value
is set to 5.620, which is calculated by
dividing values of total relation matrix by this

5.120 5.223
5.062 4.964 value of normal matrix according to Table 6.
Table 6.
Normal matrix
':'n";t’:i'i' CC C C C G C C C
C: 0.000 0.136 0.140 0.137 0.107 0.125 0.127 0.139
Cx 0.138 0.000 0.139 0.132 0.104 0.129 0.131 0.128
Cs 0.129 0.135 0.000 0.124 0.084 0.136 0.148 0.138
Cs 0.144 0.114 0.096 0.000 0.102 0.125 0.142 0.153
Cs 0.111 0.123 0.083 0.088 0.000 0.065 0.095 0.156
Cs 0.141 0.102 0.140 0.119 0.066 0.000 0.136 0.139
C; 0.144 0.147 0.131 0.132 0.091 0.149 0.000 0.146
Cs 0.123 0.126 0.117 0.145 0.145 0.129 0.140 0.000

According to tables 7 and 8, using normal
matrix and performing necessary operations
the total relation matrix N x (I — N)™1 is
calculated. For this purpose, first, the inverse
matrix obtained by subtracting the identity

matrix from the normalized matrix. Then,
product of normal matrix in the inverse
matrix is obtained as the total relation matrix.
In Table 7, the matrix (I—N)"1 s
calculated.

Table 7.
Matrix (I — N)~?!
(I-N)1 Ci C2 Cs Cq Cs Cs Cs Cs
Ci 1.849 0.928 0.907 0.932 0.701 091 0.956 1.019
C, 0918 1758 0.859 0.879 0.608 0.866 0.908 0.954
Cs 0.953 0917 1776 0912 0.674 0.91 0.962 1.007
Cs 0.948 0.885 0.848 1786 0.679 0.885 0.941 1.002
Cs 0.786 0.765 0.712 0.739 1.492 0.709 0.769 0.862
Cs 0923 0.854 0.862 0.871 0.633 1754 0.914 0.966
Cy 1.001 0.961 0.952 0.954 0.706 0.954 1.87 1.052
Cs 0.965 0.927 0.895 0.944 0.737 0.918 0.972 1.905

Machines Tool Operation Optimization Considering
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NxI-N)"1t G C. Cs

Ci 0.849 0.928 0.911
C2 0.968 0.807 0.908
Cs 0.953 0.917 0.78
Cs 0.948 0.885 0.852
Cs 0.786 0.765 0.714
Ce 0.923 0.854 0.866
Cs 1.001 0.961 0.925
Cs 0.965 0.927 0.898

C4 C5 Ce C7 C8

0932 0.701 091 0965 1.019
0.926 0.704 00911 0957 1.009
0912 0674 091 0.962 1.007
0.786 0.679 0.885 0.94 1.002
0.739 0491 0.709 0.769 0.862
0.871 0.633 0.753 0.914 0.966
0.953 0.706 0.954 0.869 1.052
0.944 0.737 0.918 0.972 0.906

According to table 9, by calculating sum of
each row and column, value of D and R are
obtained, respectively.

Table 9.
Values of R, D, (D+R) and (D-R)

Criteria D R D-R D+R
Ci 7.215 7.393 -0.178 14.608
C, 719 7.044 0.146 14.234
Cs 7.115 6.854 0.261 13.962
Cs 6.977 7.063 -0.086 14.04
Cs 5.835 5.325 0.51 11.16
Cs 6.78 6.95 -0.17 13.73
C; 7.421 7.348 0.073 14.769
Cs 7.267 7.823 -0.556 15.09

0.6
[ J
0.5 @ L
0.4
0.3
()
0.2
@
0.1
0 [ )
Cl C2 Cc3
D-R 0 0.146 0.261
e 0 D +R 14.608 14.234 13.962 14.04

By calculating value of D+R and D-R, it is
possible to show the degree of influence
cause and effect criteria on each other. In this
way, the position of each criterion is
determined by a point with coordinates
(D+R, D-R) in system. Diagram 1 shows the
degree of influence cause and effect criteria
based on value of D+R and D-R.

16

e
e ® 14

A .

10

( ) 2
@ [ ) 0
Cc5 C6 c7 C8
0.51 0 0.073 0
11.16 13.73 14.769 15.09

Diagram 1. The degree of influence cause and effect criteria

Cause-and-effect variables are also
determined using DEMATEL method.
Accordingly, Machine operation time,
Planned manufacturing quantity, Percentage
of non-defective parts, and OEE are causal
factors, while Total number of manufactured
parts, Number of non-defective parts,
Machine availability, and Efficiency are
effect factors in this research.

In general, sum of the elements of each row
(D) for each factor indicates the degree of
influence of that factor on other factors of

Machines Tool Operation Optimization Considering

system. If amount of this variable is more, it
means that the factor has more influence.
Therefore, Efficiency has the most influence
and Machine availability has the least
influence on machinery reliability planning.
On the other hand, sum of the column
elements(R) for each factor indicates the
degree of influence of that factor on other
factors of system. If value of this variable is
higher, it means that the factor is more
effective. Based on the results, OEE has the
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most impact and Machine availability is the
least impact.

Based on the above, the horizontal vector
(D+R) is how much the intended factor affect
in system. In other words, the higher D+R
factor, the more it interacts with other system
factors. Based on the results, OEE has the
most interaction with other criteria and
Machine availability has the least interaction.
In contrast, the vertical vector (D-R)
indicates the effect of each factor. If D-R is
positive, factor is a cause variable, and if it is
negative, it is an effect.

Accordingly, Machine operation time,
Planned manufacturing quantity, Percentage
of non-defective parts, and OEE are the
criteria of cause, and Total number of
manufactured parts, Number of non-
defective parts, Machine availability, and

11(3), 2025
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Efficiency are the criteria of effect in this
research.

Calculation of initial weight using ANP
method

To get the initial weight for eight considered
criteria, first a network is drawn. The main
points of this network as figure 3 are:
Objective: To determine the importance of
criteria

Criteria: The eight main criteria are:
Machine operation time (C1).

Total number of manufactured parts (C2),
Number of non-defective parts (Cs),

Planned manufacturing quantity (C4),
Machine availability (C5),

Percentage of non-defective parts (C6),
Efficiency (C7),

OEE (C8).

Options: 33 machines are considered as
options.

Figure 2. Relationship network of objective, criteria and options

In this stage using ANP method, initial
importance of the considered criteria is
determined using Super Decision software.
For this purpose, the total relation matrix of
DEMATEL method is considered as input to
pairwise comparison matrix of criteria in
ANP method. For the intended pairwise
comparison, the incompatibility rate and the
importance of criteria are collected.

Machines Tool Operation Optimization Considering

It is noteworthy that the software has been
designed to perform network calculations
that focus on ANP method. Therefore, after
establishing connections between nodes, it
automatically considers the desired network
and performs its calculations based on
criteria dependencies. Then, by specifying
the network relationships in Super Decision
software, the pairwise comparison matrix in
ANP is obtained that shows in table 10.
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Table 10.
ANP pairwise comparison matrix
Nx(I-N1 C G, C; C4 Cs Ce Gy Cs

Ci 0.849 0928 0911 0932 0.701 091 0.965 1.019
C2 0.968 0.807 0.908 0.926 0.704 0.911 0.957 1.009
Cs 0.78 0912 0674 091 0962 1.007
Cs 0.786 0.679 0.885 0.94 1.002
Cs 0.491 0.709 0.769 0.862
Cs 0.753 0.914 0.966
Cs 0.869 1.052
Cs 0.906

By determining the matrix of pairwise  Table11.

comparisons, the importance of each criteria ~ Incompatibility rate of criteria

and the incompatibility rate of pairwise ﬁﬁ:ﬁ[)':r Value ﬁﬁ:ﬁ[)':r Value
comparison of criteria are calculated. Table C, 0.109 Ce 0.119
11 shows the importance of all criteria. Given

that the incompatibility rate for calculated C. 0126 G 01l
pairwise comparison is 0.004 and it is less G 01 G 0101
than 0.1, the results of pairwise comparison Ca 0.139 Ce 0.151

are acceptable.

Calculating combined weight

According to table 12, combined weight of
criteria is determined using Shannon Entropy
method and weights of ANP method.

Table 12.
Calculations of Shannon Entropy method
II\\IASri]hk:gf Ci C2 Cs Cs Cs Cs C7 Cs

Machinel 0.0278 0.0350 0.0351 0.0352 0.0032 0.0031 0.0029 0.0309
Machine2 0.0190 0.0321 0.0323 0.0328 0.0022 0.0031 0.0029 0.0209
Machine3 0.0278 0.0633 0.0637 0.0642 0.0032 0.0031 0.0029 0.0307
Machine4 0.0243 0.0058 0.0058 0.0059 0.0028 0.0031 0.0029 0.0268
Machine5 0.0379 0.0449 0.0451 0.0456 0.0029 0.0031 0.0029 0.0279
Machine6 0.0422 0.0383 0.0376 0.0380 0.0032 0.0030 0.0030 0.0310
Machine7 0.0358 0.0366 0.0368 0.0373 0.0027 0.0031 0.0029 0.0263
Machine8 0.0379 0.0261 0.0262 0.0266 0.0029 0.0031 0.0029 0.0277
Machine9 0.0278 0.0592 0.0596 0.0604 0.0032 0.0031 0.0029 0.0306
Machinel0  0.0293 0.0310 0.0312 0.0314 0.0033 0.0031 0.0029 0.0324
Machinell  0.0376 0.0184 0.0183 0.0069 0.0029 0.0018 0.0133 0.0739
Machinel2 ~ 0.0379 0.0218 0.0209 0.0214 0.0029 0.0030 0.0030 0.0275
Machinel3  0.0385 0.0375 0.0377 0.0380 0.0029 0.0031 0.0029 0.0284
Machinel4  0.0464 0.0413 0.0413 0.0421 0.0035 0.0031 0.0029 0.0339
Machinel5  0.0271 0.0279 0.0281 0.0283 0.0031 0.0031 0.0029 0.0299
Machinel6 ~ 0.0248 0.0738 0.0742 0.0749 0.0028 0.0031 0.0029 0.0273
Machinel7  0.0403 0.0321 0.0323 0.0328 0.0031 0.0031 0.0029 0.0295
Machinel8  0.0263 0.0343 0.0345 0.0345 0.0030 0.0031 0.0029 0.0294
Machinel9  0.0225 0.0259 0.0260 0.0262 0.0026 0.0031 0.0029 0.0249
Machine20  0.0190 0.0364 0.0366 0.0369 0.0022 0.0031 0.0029 0.0210
Machinel6 ~ 0.0248 0.0738 0.0742 0.0749 0.0028 0.0031 0.0029 0.0273
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'\[\/Iljrfqhklgf C:. C> Cs Cs Cs Cs Cr Cs
Machinel7  0.0403 0.0321 0.0323 0.0328 0.0031 0.0031 0.0029 0.0295
Machinel8 0.0263 0.0343 0.0345 0.0345 0.0030 0.0031 0.0029 0.0294
Machinel9  0.0225 0.0259 0.0260 0.0262 0.0026 0.0031 0.0029 0.0249
Machine20  0.0190 0.0364 0.0366 0.0369 0.0022 0.0031 0.0029 0.0210
Machine21  0.0420 0.0415 0.0408 0.0414 0.0032 0.0030 0.0030 0.0307
Machine22  0.0286 0.0345 0.0347 0.0352 0.0033 0.0031 0.0029 0.0314
Machine23  0.0278 0.0319 0.0321 0.0325 0.0032 0.0031 0.0029 0.0307
Machine24  0.0278 0.0308 0.0310 0.0311 0.0032 0.0031 0.0029 0.0309
Machine25  0.0293 0.0348 0.0350 0.0356 0.0033 0.0031 0.0029 0.0321
Machine26 ~ 0.0247 0.0087 0.0087 0.0086 0.0028 0.0031 0.0030 0.0278
Machine27  0.0278 0.0064 0.0064 0.0069 0.0032 0.0031 0.0027 0.0287
Machine28  0.0266 0.0096 0.0097 0.0097 0.0030 0.0031 0.0029 0.0297
Machine29  0.0231 0.0113 0.0114 0.0114 0.0026 0.0031 0.0029 0.0257
Machine30  0.0299 0.0034 0.0033 0.0033 0.0034 0.0031 0.0030 0.0336
Machine31  0.0285 0.0273 0.0260 0.0263 0.3117 0.2928 0.3111 0.0301
Machine32  0.0266 0.0226 0.0223 0.0226 0.2935 0.3080 0.2955 0.0284
Machine33  0.0269 0.0157 0.0152 0.0158 0.3051 0.3072 0.2954 0.0294

E; 0.1052 0.1016 0.1015 0.1012 0.0487 0.0490 0.0496 0.1051
d; 0.8948 0.8984 0.8985 0.8988 0.9513 0.9510 0.9504 0.8949
wj 0.1219 0.1224 0.1224 0.1225 0.1296 0.1296 0.1295 0.1220
A 0.1090 0.1260 0.1350 0.1390 0.1190 0.1170 0.1010 0.1510
w; * A 0.0133 0.0154 0.0165 0.0170 0.0154 0.0152 0.0131 0.0184
W, 0.1069 0.1240 0.1329 0.1369 0.1241 0.1219 0.1052 0.1481
VIKOR ranking large automotive spare parts plant in the

Table 13 shows the decision matrix in  period from April 2020 to April 2022. In this
VIKOR method. This table has been  table, Machine operation time is a negative
compiled based on the classified information  criteria and other criteria are positive.
contained in the archived documents of a

Table 13.
Decision matrix in VIKOR method
mm}gf C1 C Cs Cs Cs Cs Cr Cs

Machinel 18960 10308 10289 10200 73.15 99.80 101.10 73.79
Machine2 12960 9461 9461 9500 50.00 100.00 99.60 49.79
Machine3 18920 18658 18651 18600 72.99 100.00 100.30 73.19
Machine4 16560 1704 1704 1700 63.89 100.00 100.20 64.04
Machine5 25860 13225 13197 13200 66.51 99.80 100.20 66.5
Machine6 28746 11294 11007 11000 73.94 97.50 102.70 73.98
Machine7 24425 10781 10773 10800 62.82 99.90 99.82 62.66
Machine8 25800 7682 7669 7700 66.36 99.80 99.80 66.09
Machine9 18960 17464 17464 17500 73.15 100.00 99.80 73

Machinel0 19960 9129 9129 9100 77.01 100.00 100.30 77.25
Machinell 25620 5424 5357 2000 65.90 58.70 456.50 176.5
Machinel2 25860 6414 6124 6200 66.51 95.50 103.50 65.7
Machinel3 26215 11055 11041 11000 67.43 99.90 100.50 67.68
Machinel4 31650 12175 12111 12200 81.40 99.50 99.80 80.81
Machinel5 18480 8217 8217 8200 71.30 100.00 100.20 71.44
Machinel6 16880 21759 21736 21700 65.12 99.90 100.30 65.23
Machinel?7 27500 9470 9470 9500 70.73 100.00 99.70 70.51
Machinel8 17960 10117 10117 10000 69.29 100.00 101.20 70.1
Machinel9 15360 7630 7630 7600 59.26 100.00 100.40 59.49
Machine20 12960 10729 10729 10700 50.00 100.00 100.30 50.14
Machine21 28620 12247 11949 12000 73.61 97.60 102.10 73.3
Machine22 19480 10167 10162 10200 75.15 100.00 99.70 74.87
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'\N"ﬂggf C C, Cs Ca Cs Ce Cs Cs
Machine23 18960 9413 9413 9400 73.15 100.00 100.10 73.25
Machine24 18960 9087 9081 9000 73.15 99.90 101.00 73.81
Machine25 19960 10260 10260 10300 77.01 100.00 99.60 76.71
Machine26 16840 2554 2553 2500 64.97 100.00 102.20 66.35
Machine27 18960 1875 1875 2000 73.15 100.00 93.80 68.58
Machine28 18160 2832 2829 2800 70.06 99.90 101.10 70.79
Machine29 15760 3329 3329 3300 6080 10000 10090  61.34
Machine30 20400 989 969 950 7870 9800 10410  80.28

Machine31  19422.00 8054.33 7613.00 7616.67  71.80 93.73 107.00 7177
Machine32  18109.17 6652.00 6541.17 6533.33  67.62 98.57 101.63 67.71
Machine33  18344.17 4630.33 4461.33 458333  70.27 98.32 101.60 70.12

According to table 14, Si and R; criteria are calculated using VIKOR method.

Table 14.
Values of S; and R;

Machine Machine

Number Si R; Number Si R;
Machinel  0.7603 0.1237 Machinel8 0.7740 0.1243
Machine2  0.8381 0.1481 Machinel9 0.8480 0.1367
Machine3  0.6024 0.1237 Machine20 0.8140 0.1477
Machine4  0.9480 0.1320 Machine21 0.6716 0.1236
Machine5  0.6737 0.1285 Machine22 0.7577 0.1236
Machine6  0.6884 0.1236 Machine23 0.7772 0.1237
Machine7  0.7324 0.1330 Machine24 0.7832 0.1237
Machine8  0.7793 0.1290 Machine25 0.7509 0.1236
Machine9  0.6244 0.1237 Machine26 0.9279  0.1287
Machinel0 0.7722 0.1236 Machine27 0.9248 0.1300
Machinell 0.7142 0.1300 Machine28 0.9097 0.1247
Machinel2 0.8068 0.1295 Machine29 0.9251 0.1346
Machinel3 0.7115 0.1272 Machine30 0.9207 0.1369
Machinel4 0.6434 0.1235 Machine31 0.4635 0.1224
Machinel5 0.8048 0.1237 Machine32 0.5047 0.1271
Machinel6 0.5648 0.1300 Machine33 0.5345 0.1243
Machinel7 0.7302 0.1239

According to Table 15 and consider value Machine 0, Machine 0
of $*=0.463, S~ =0.948, R* =0.122, Number ' Number '

- _ . . Machine9  0.1906 Machine26  0.6025
and R™ = 0.1, VIKOR index Q; iscalculated.  \p.cnine1o 03418 Machine27  0.6238

Machinell 0.4064 Machine28 0.5054

Table 15. Machinel2  0.4923 Machine29 0.7136

VIKOR index Qi _ Machinel3  0.3490 Machine30 0.7544
Machine 0, Machine Q; Machinel4  0.2074 Machine31  0.0000
Number ' Number ‘ Machinel5 0.3774 Machine32 0.1349
Machinel ~ 0.3308 ~Machinel8 0.3584 Machinelé  0.2533 Machine33 0.1108
Machine2 0.8865 Machinel9 0.6762 Machinel7  0.3039

Machine3 0.1680 Machine20 0.8538
Machine4 0.6863 Machine21l 0.2391

Machine5 0.3368 Machine22 0.3275 According to table 16 and VIKOR index,
Machine6 ~ 0.2563 Machine23  0.3482 general and separate prioritization is
Machine7 0.4847 Machine24 0.3545 determined for each of machines.

Machine8 0.4551 Machine25 0.3199
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Table 16.
Prioritization of machines
Machine 0, General  Separate Machine 0, General ~ Separate
Number L priority  Priority Number L priority  Priority
Machinel  0.3308 13 10 Machinel8  0.3584 19 16
Machine2  0.8865 33 30 Machinel9  0.6762 28 25
Machine3  0.1680 4 1 Machine20  0.8538 32 29
Machine4  0.6863 29 26 Machine21  0.2391 7 4
Machine5  0.3368 14 11 Machine22  0.3275 12 9
Machine6  0.2563 9 6 Machine23  0.3482 17 14
Machine7  0.4847 23 20 Machine24  0.3545 18 15
Machine8  0.4551 22 19 Machine25  0.3199 11 8
Machine9  0.1906 5 2 Machine26  0.6025 26 23
Machinel0 0.3418 15 12 Machine27  0.6238 27 24
Machinell 0.4064 21 18 Machine28  0.5054 25 22
Machinel2 0.4923 24 21 Machine29  0.7136 30 27
Machinel3 0.3490 16 13 Machine30  0.7544 31 28
Machinel4 0.2074 6 3 Machine31  0.0000 1 1
Machinel5 0.3774 20 17 Machine32  0.1349 3 3
Machinel6 0.2533 8 5 Machine33  0.1108 2 2
Machinel7 0.3039 10 7
According to prioritization, the most  this purpose, the obtained combined weight

critical machine in the category of automatic
lathe machines is Machine3, and the ordinary
lathe machines is Machine31. Based on the
results obtained, this prioritization has a high
level of conformity with the views of experts
and the decision-making team because, in
practice, the selected critical machine is one
of the sensitive and expensive machines in
the plant, and replacing it is impossible to
sustain the production process. This
underscores the importance of selecting
optimal maintenance and repair strategies for
the equipment of this plant.

Sensitivity Analysis
By changing value of weight parameter of
criteria the alternatives are re-prioritized. For

is replaced by calculated weights of ANP and
Shannon Entropy method. Therefore, by
using each of the weights for criteria, a
separate prioritization has been determined
using VIKOR method. Finally, the overall
ranking is calculated using the average ranks.
It should be noted that the alternative that has
the lowest average in the ranks is given
higher priority. Based on this, Machine31,
Machine33, and Machine32 are placed in the
first, second, and third priorities respectively.
According to table 17 and diagram 2, the
change in the weight of criteria affects the
individual prioritization of machines and
does not affect the overall prioritization.

Table 17.
Changing the criteria weights and re-prioritization of machines
Machine ¢ Shannon Shann%ink Rank Final
Number Hybrid ANP Entropy Hybrid  ANP Entropy average Ranking
Machinel 0.330838 0.358668  0.82506 13 13 17 14.33333 14
Machine2  0.886533 0.882092  0.902838 33 33 26 30.66667 33
Machine3  0.167972 0.200148 0.682204 4 3 5 4 4
Machine4  0.686265 0.738937  0.996903 29 29 33 30.33333 30
Machine5  0.33677  0.399044  0.737927 14 17 9 13.33333 12
Machine6  0.256325  0.27768  0.748194 9 8 10 9 9
Machine7  0.484705 0.532482  0.792393 23 23 14 20 21
Machine8  0.455076 0.519949  0.833708 22 22 18 20.66667 22
Machined  0.190602 0.227232 0.702177 5 6 6 5.666667 6
Machinel0 0.341812 0.312218 0.835296 15 11 19 15 15
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Machine e Rank )
. Shannon . Shannon Rank Final
Number Hybrid ANP Entropy Hybrid  ANP Entropy average Ranking

Machinell 0.406396 0.455636  0.78975 21 21 13 18.33333 19
Machinel?2 0.492311 0.556606 0.857623 24 24 23 23.66667 24
Machinel3 0.348982 0.418048 0.771873 17 18 11 15.33333 16
Machinel4 0.207403  0.17247  0.705653 6 2 7 5 5

Machinel5 0.377362 0.449498 0.865835 20 20 24 21.33333 23
Machinel6 0.253334 0.305677  0.64952 8 10 4 7.333333 7

Machinel7 0.303916 0.386249 0.787875 10 15 12 12.33333 11
Machinel8 0.358379 0.440973 0.838116 19 19 20 19.33333 20
Machinel9 0.676158 0.714979 0.907322 28 28 27 27.66667 26
Machine20 0.853781 0.849885 0.881102 32 32 25 29.66667 29
Machine21 0.239107 0.272113 0.733184 7 7 8 7.333333 7

Machine22 0.327474 0.336069 0.822566 12 12 16 13.33333 12
Machine23 0.348246 0.386676  0.840514 16 16 21 17.66667 17
Machine24  0.354489 0.382909 0.845851 18 14 22 18 18
Machine25 0.319858 0.295071 0.816126 11 9 15 11.66667 10
Machine26 0.602522 0.674987 0.978187 26 26 32 28 27
Machine27 0.623771 0.682375 0.975043 27 27 30 28 27
Machine28 0.505416 0.583759  0.960936 25 25 28 26 25
Machine29 0.713644 0.76386  0.976613 30 30 31 30.33333 30
Machine30 0.754432 0.786056  0.968877 31 31 29 30.33333 30
Machine31 0 0.097321 0 1 1 1 1 1

Machine32 0.134885 0.215618 0.107977 3 5 3 3.666667 3

Machine33 0.110838 0.203723  0.09424 2 4 2 2.666667 2

The results of sensitivity analysis implementation is shown in diagram 2.

Machinel
Machine2
Machine3
Machine4
Machine5
Machine6
Machine7
Machine8
Machine9
Machine10
Machinell
Machinel2
Machinel3
Machinel4
Machinel5
Machinel6

s Hybrid ANP

Machinel7

Shannon Entropy

Machinel8
Machine19
Machine20
Machine21
Machine22
Machine23
Machine24
Machine25
Machine26
Machine27
Machine28
Machine29
Machine30
Machine31
Machine32
Machine33

Rank averages = e Final Ranking

Diagram 2. The results of sensitivity analysis

Conclusion

The Industry 4.0 refers to a new concept of
industrial and technological advancements in
the modern world. Ensuring system safety
and reliability is increasingly becoming a
fundamental  issue in  the  digital
transformation paradigm, also known as
Industry 4.0, with the introduction of new
technologies and the growth of system

Machines Tool Operation Optimization Considering

complexity. In fact, the concern about
reliability and safety is developing in various
industries, which plays an important role in
meeting demand and increasing productivity
and availability at the lowest possible cost
and with the least unexpected breakdowns. In
order to identify and mitigate process
bottlenecks, proactive  approaches to
reliability and safety analysis are critical in
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high-risk sectors. As part of the efforts to
development of operational strategies in the
fourth industrial revolution is prioritization
of machinery based on comprehensive
analysis of maintenance risks and operational
repairs. Based on this, in this paper, a
combination of DEMATEL, ANP and
Shannon entropy and VIKOR methods with
fuzzy features in cellular production systems
is presented, considering effective criteria for
reliability in Industry 4.0. Based on the
results, the implementation of this method
can contain valuable knowledge for
continuous improvement of maintenance,
productivity, increasing the level of
equipment availability and increasing
efficiency by monitoring  equipment
performance for maintenance managers. The
presented method provides additional
information for decision-making, enabling
the most critical machine selection in
Cellular  Manufacturing  Systems.  As
suggestions for future research to optimize
machine performance in Industry 4.0,
determining critical machine failures,
prioritizing  critical machine failures,
identifying the most critical failures, and
investigating the causes of these failures can
be considered. Also, solutions can be
explored to reduce or eliminate identified
critical machine failures.
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