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Abstract

Predicting cryptocurrency price volatility is a crucia yet challenging task. Due to
the nonlinear characteristics and time-varying nature of factors influencing
cryptocurrency prices, this study introduces a novel approach for volatility
forecasting. The proposed method integrates two key techniques. The first is the
classic GARCH models, which provide concise statistical insights into price
volatility through GARCH-based forecasts. The second technique involves machine
learning models. The superior performance of combining GARCH models with
machine learning in forecasting volatility across various markets, such as energy,
base metals, and particularly stock markets, has been demonstrated compared to
using either approach independently. To test this hypothesis in cryptocurrency
markets, this study designs and evaluates the performance of various models based
on the GARCH family and LSTM networks in predicting the volatility of a selected
cryptocurrency. Subsequently, multiple hybrid models are constructed, where the
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outputs of four GARCH-family models GARCH, EGARCH, GJR-GARCH, and
TARCH under three different residual distribution assumptions are fed into the
LSTM network. In other words, the GARCH models serve as feature extractors,
while the machine learning models leverage these extracted features as sequential
inputs to predict future volatility. The results indicate that standalone machine
learning models not only outperform GARCH models under any residual
distribution assumption but also demonstrate that the GARCH forecasts, as
significant informational features, markedly enhance the hybrid machine learning
models’ ability to predict future volatility levels.

Keywords: GARCH models, Machine Learning, Long Short-Term Memory,
Bitcoin, Volatility.
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