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Abstract

This study aims to demonstrate the performance of algorithmic trading
strategies compared to traditional trading methods in artificial financial
markets. This research uses a hybrid model based on agent-based modeling and
machine learning methods to simulate agents' behavior in an artificial financial
market. This model includes two categories, traditional agents and intelligent
agents. Traditional agents are divided into three groups: liquidity providers,
liquidity consumers, and noise traders. Intelligent agents are trained using deep
learning techniques and recurrent neural networks. Based on the developed
algorithms, the agent-based model simulates both categories of traditional and
trained agents in an artificial financial market. Sensitivity analysis tests were
used to test the validity and reliability of the model, and the values of the fat-
tailed distribution of returns, volatility clustering, autocorrelation of returns,
long memory in order flow, concave price impact, and extreme price events are
calculated in the model and compared with the standardized values. Historical
data was used to predict stock prices, and model simulations were used to
generate trading signals and update the limited order book. The results of
executing the model show the ability of intelligent agents to trade in artificial
financial markets compared to traditional agents.

Keywords: Algorithmic Trading, Machine Learning Methods, Agent-based
Modeling, Recurrent Neural Networks

JEL Classification: G17, C63, C45

Introduction

This study attempts to develop a new model based on designing a framework
for optimizing sales and market regulator decisions to create new insights for
modern and dynamic financial markets.

The primary role of financial markets is to create the context for
transactions between people who want to buy or sell the same commodity and
provide a platform for the exchange of liquidity. Considering all relevant
information and asset pricing, these markets act as a pricing tool. Liquidity and
price formation are emerging features of the low-level interactions of buyers
and sellers who make up the market.

Many efforts have been made to create a consistent and independent
trading system. The inspiration for such trading systems comes from fields
ranging from fundamental analysis and economic modeling to dynamic
computing, machine learning, and even news mining.
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The algorithmic trading strategies used today can be broadly classified into

the following nine categories:

Trend-following approaches: The most common algorithmic trading
approaches follow moving average trends, channel failure, price level
movements, and related technical indicators.

Arbitrage Opportunities: Buying stocks at a lower price in one market and
selling them at a higher price in another market simultaneously presents
the price difference as a risk-free or arbitrage profit.

Rebalancing in Index Stock Mutual Funds: These funds have defined re-
equilibrium periods to balance their resources with their respective
benchmarks. This creates profitable opportunities for algorithmic traders to
invest in expected trades before the fund rebalances.

Mathematical model-based approaches: Proven mathematical models, such
as the Delta-neutral trading approach, allow trading with a combination of
options and basic security. (Delta-neutral is an asset portfolio approach
consisting of different situations compensating for positive and negative
deltas so that the total delta of the desired assets reaches zero.)

Scope of trades (average return): The average return approach is based on
the concept that high and low prices are the temporary phenomenon assets
that periodically return to their average value (average value). ldentifying
and defining the price range and implementing an algorithm based on it
allows transactions to be done automatically if the price of the asset breaks
and deviates from its defined range.

Volume-weighted Average Price: This approach breaks down a large order
into smaller parts, and markets dynamically define parts that are smaller
than the order using specific stock historical volumes. The goal is to bring
the order closer to the weighted average price volume.

Time Weighted Average Price: This approach breaks a large order into
smaller pieces and offers smaller, dynamically determined orders in the
market using the time intervals between the start and end times. The goal is
to bring the order closer to the average price between the start and end
time, thereby minimizing market impact.

Percentage of volume: This algorithm sends partial orders according to the
defined participation ratio and the volume of transactions in the markets
until the commercial order is filled. The "step-by-step approach™ sends
orders at a percentage of the user-defined market volume and increases or
decreases this participation as the stock price reaches the user-defined
level.
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e Implementation Shortfall: This approach aims to minimize the cost of
executing an order through the real-time exchange in the market, thus
saving the cost of the order and providing the opportunity to execute with a
delay. This stock approach increases the target participation rate if the
stock price moves favorably and decreases if the stock price moves
unfavorably (Johnson, 2010).

Currently, the family of financial simulations is witnessing the addition of
a new member, agent-based simulations, in the market. Since the early 1990s,
there has been a growing interest in using agent-based methods to gain insight
into market microstructure and test sales approaches in financial communities
(both industrial and academic). Research on agent-driven financial markets
naturally provides a tremendous opportunity for interdisciplinary competition,
as it often involves financial engineers, economists, computer scientists,
mathematicians, statisticians, physicists, and others in joint projects (Guo,
2005).

The simulation process for an agent-based model involves a four-step
method: first, the agent-based model is constructed, and artificial time-series
data is generated; then, a deep multilayer artificial neural network is designed
and trained with artificial data. In the third step, the trained neural network
must be experimentally validated with real data; in the fourth step, a trained
and accredited deep neural network is applied to analyze economic policy (van
der Hoog, 2017).

The market orders book keeps all the sales orders that the customer enters.
All features of incoming orders, including prices, number of shares or
contracts, types of orders, and identification of participants, are recorded.
Purchase orders (purchase offers) are arranged in descending order (from
highest to lowest price). Higher-priced bids have a higher priority in terms of
matching. Equal price bids are made using the FIFO algorithm (first input, first
output). Sales orders (sales requests) are arranged in ascending order (from the
lowest to the highest price). The order book will be updated in response to each
order sent by customers. The limited order book is very similar in structure to
the market order book. The only difference is that this book is made by market
customers and based on market data that brokers send in response to orders
sent by customers to market customers (Donadio & Ghosh, 2019).

A review of previous research shows that historical data has often been
used as input to the agent-based model to simulate financial market strategies
in the methods used in these studies. The use of historical data to simulate
financial market strategies has the disadvantage that the simulation of agents'
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behavior is based on this data, and agents do not have the opportunity to
identify the actual market behavior and predict events that may affect market
prices at any time. Also, simulation with historical data in two-way markets, it
is impossible to provide realistic offers to offer stock selling prices and offer
selling prices based on the long-term trend of market price changes and filling
the list of sales orders in the dynamic order book, so design a hybrid model that
can make a price prediction as to the input of the agent-based model, and the
agent-based model can simulate market behavior based on this input can be
helpful. The development of such hybrid models can also predict future price
changes and changes in other variables affecting the market situation, such as
trading volume, as the leading agents in the simulation, and simulate the effects
of these variables on market decisions.

Literature Review

Currently, the general and academic literature on algorithmic transactions is
extensive and covers a wide range of computer transactions controlled by
algorithms and other specific cases. In these transactions, computers
communicate directly with the trading system and record orders without human
intervention. Computers receive market information and possibly other
important information very quickly, then build algorithms based on it and
modify transactions in a fraction of a second. To achieve different goals,
various types of algorithms are used, for example, some of them seek to
identify arbitrage opportunities (which include finding minor differences in the
exchange rate between currencies), others seek to maximize the execution of
large orders with Minimal cost, and some are looking for a long-term trading
approach to make a profit.

Machine learning models and statistical methods can be further
characterized as parametric or nonparametric. Parametric models consider a
limited set of parameters and try to respond to the model as a function of input
variables and parameters. These models have limited flexibility due to limited
parameter space and cannot use complex patterns in extensive data. As a
general rule, examples of parametric models include ordinary least squares
linear regression models, polynomial regression, mixture models, neural
networks, and hidden Markov models. Nonparametric models consider the
parameter space as an infinite dimension, equivalent to introducing a hidden
function. Examples of nonparametric models include core methods such as
Support  Vector Machines and Gaussian Processes. Parametric  or
nonparametric neural networks depend entirely on how they are installed. For
example, a neural network's parameter space can be considered an infinite
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dimension, and therefore, neural networks can be described as nonparametric
(Dixon, 2020).

A considerable number of study opportunities use machine learning
algorithms to create trading rules. These algorithms are so-called technical
analyses that take advantage of interesting opportunities for short-term
statistical attention by technical indicators such as momentum and trending.
However, the absence of a solid mathematical foundation for technical analysis
has meant minimal presence in the academic literature. Furthermore, during the
1960s, trading rules based on technical indicators were studied and found
unprofitable (Fama & Blume, 1966; Alexander, 1961). This work led notable
academics to dismiss technical analysis and support the efficient market
hypothesis (Fama, 1970). However, the major problem with the early technical
analysis studies was the ad hoc specifications of the trading rules that
suggested data dredging (Booth, 2016).

It is easier to understand similar phenomena in agent-based models than in
representations of mathematical models. This is because agent-based models,
unlike mathematical equations made of mathematical symbols, are made of
individual objects and simple rules for shifting their behavior. In natural
discourse, experiences are usually described as the interactions of individuals,
contrary to the rate of change in differential equations. Individual factors can
be understood by designing mental experiences around them. Therefore, the
language and concepts used in agent-based modeling are very close to our
natural language and natural thinking. However, these changes in science have
not led mainly to significant changes in the world of education in practice.
There are many reasons for the slow pace of change in technology transfer to
the education system. One of these obstacles is the lack of a broad
understanding of the benefits of such a transfer (Wilensky & Rand, 2015).

The recurrent neural network is composed of several layers of nodes, in
which the first layer is the input layer, and the number of nodes in the first
layer corresponds to the number of input properties. The last layer in the
recursive neural network is the output layer, where the number of nodes
corresponds to the number of output signals. One or more hidden layers
separate the input and output layers. The nodes are completely connected in
coordinated layers. Each node takes information from the previous layer and
transfers it to the bottom layer. The recursive neural network performs the
analysis of its input variables. The node is moved to the next layer if the sum
reaches the threshold. Otherwise, it remains inactive. Therefore, each network
is trained when receiving some inputs. As a result, a learning process takes
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place. Learning in the Perceptron network is done by changing the connection
weight after processing each piece of data. It is based on the number of errors
compared to the predicted result (Aloud, 2020).

Kim and Markowitz proposed one of the first agent-based models of
financial markets in the stock market. Kim and Markowitz sought the
relationship between factors related to portfolio insurance approaches and
stock market volatility through agent-based modeling; Kim and Markowitz
developed the theoretical foundations for the reasons for the collapse of the US
stock market in 1987; Other models were developed in later years by
researchers such as Levy et al. (1994), Huang and Solomon (2001) in
collaboration with some physicists, all of whom developed agent-based
modeling in financial markets (Samanidou et al., 2007).

Research Methodology

1. Hybrid model structure

In this research, two categories of agents are used to perform model
simulations. The first category is traditional agents who make decisions based
on traditional models with conventional market approaches. These approaches
are classified into three groups: liquidity consumers, providers, and noise
traders. The second category of agents is the intelligent agents, which are
trained by a recurrent neural network.

To create the model, the first group of agents is randomly generated with a
probability of &,, for noise traders, another group of agents with a probability
of &, for liquidity consumers, and the third group with a probability of &,, for
liquidity providers. In each period, an agent is randomly selected. In the next
step, the order's type, price, and volume are defined according to the rules of
the groups. The order is then recorded in the order book, which matches the
time-price pattern. If a limited order initiates no transaction, that order will
remain in the order book until the book is completed.

The second category is intelligent agents who are first implemented in the
NetLogo software environment with the probability 6, =1— 6, + 6. + 6,
for implementation. Then, using NetLogo software extensions, Python
software, and required packages (TensorFlow and Keras), the final stock price
forecast for the following market step is done using deep learning methods.
The predicted final price is entered into the agent-based model as a variable
and according to the rules of this agent and comparing this predicted price with
the prices recorded in the book of limited orders, the trading signal (buy a
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stock, sell a stock, hold stock) is issued by the model and the limited order
book will be updated. The conceptual model of the final hybrid model is shown
in Figure 1.
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Figure 1. Schematic of the hybrid model
2. Traditional agents

In the first step, traditional agents generate the trading signal and update the
limited order book using the Monte Carlo simulation method.

To do this, the model described by Oesch (2014) defines the types of
agents in the market. This model uses a limited two-way market order book
used in most modern exchange markets. The model does not allow an agent to
do anything in a period, as the model is implicitly located at the time of events.
Transactions occur sequentially, meaning only one agent can operate at each
step. Agents can place limited orders or market orders and cancel previously
registered orders. The market has three groups of agents: liquidity consumers,
liquidity providers, and noise traders.
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2.1. Liquidity consumers

This group is a large group of traders who make decisions based on beliefs or
stock portfolios that have been rebalanced to their needs. This group includes
investment institutions such as pension funds, banks, insurance companies, and
other investors in fundamental financial markets. This group creates large
orders that want to operate with the least impact on the market and costs. The
group buys or sells large stock orders in one day to minimize the impact of
price and transaction costs. The probability that this group of agents buys or
sells is determined by equal probability.

The algorithm describing the logic of this group of traders is presented in
Table 1 (Booth, 2016).

Table 1. Liquidity consumer algorithm

Pseudocode for Liquidity Consumers

1: If the start of the day, then

2: ifrand() < 0.5 then

3: Buying

4:  else

5: Selling

6: endif

7:  Initial order volume, hg = U(Rpin » RPmax)
8:end if

9: if rand() < 8, then
10: if h, < @, then

11 Submit market order with volume v, = h,
12:  else

13: Submit market order with volume v, = &,
14:  endif

15: end if

16: h; = h; - v,

The initial volume h, of a large order is drawn from a uniform distribution
between h,,;,, and h,,,,. TO execute the large order, a liquidity consumer agent
looks at the current volume available at the opposite best price, @,. If the
remaining volume of his large order, h;, is less than @,, the agent sets this
period's volume to v, = h,. Otherwise, he takes all available volume at the best
price, v, = @,. For simplicity, liquidity consumers only utilize market orders.

2.2. Liquidity providers

This group of market participants tries to profit from the difference between the
buy and sell price through the supply of liquidity on both sides of the bid price
and the asking price from the order book, and maintains an almost neutral
position during the trading day. Market makers play this role in traditional
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markets, but in modern electronics markets, hypothetically, any agent can
follow such an approach. Table 2 describes the trading logic of this group of
traders (Booth, 2016):

Table 2. Liquidity provider algorithm

Pseudocode for Liquidity Providers

1:rifrand() <48, then

Cancel any existing orders

if predicts next order is buy then
Submit sell at best price with volume = UWin » Vinax)
Submit buy at best price with volume = v~

else
Submit buy at best price with volume = UW,in » Vinax)
Submit sell at best price with volume = v~

end if

10: end if

11: Update buy/sell prediction with w-period rolling mean

COoNIARWN

Each liquidity provider always has a limit order on both sides of the order
book (buy and sell). If either of the limit orders is executed, it will be replaced
by a new one the next time the liquidity provider gets to trade. When a liquidity
provider turns to trade, he will update his prediction for the next period's order
sign and change his order volumes. If the predictor, for example, forecasts a
buy order, the liquidity provider will adjust his current ask and bid volume by
setting the sell limit order volume v* (the order which is expected to be
executed next) to a uniformly distributed random variable between v,,;, and
Vmax @nd the unexpected buy limit order's volume to v~.

This asymmetric exposure strategy can be explained by the liquidity
provider's task to keep the market efficient or by the argument that the liquidity
provider has a budget restriction. If a budget restriction is present, he will
always want to allocate his resources to the position where he most likely can
trade soon to earn the bid-ask spread. However, this is only speculation and an
open question for further investigation. A simple rolling-mean estimate with ®
periods is chosen to predict the sign of the following order. While this linear
predictor might not be optimal, it has been used to stick with it for simplicity.

2.3. Noise traders

The noise traders represent all other strategies on the market and can be viewed
as speculative traders, and can be fitted to have empirical order probabilities.
The noise trader algorithm is described in Table 3 (Booth, 2016).
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Table 3. Noise trader algorithm

Pseudocode for Noise Traders

1:ifrand() < 6,, then
2 if rand() < 0.5 then
3 Selling
4; else
5: Buying
6: end if
7 Generate U(0, 1) to determine action, 4,, , 4;, and 4,
8: switch action do
9: case Submit Market Order
10: Submit market order with volume calculated by Equation v, = exp(u + ou,,)
11: case Submit Limit Order
12: Generate U(0, 1) for action, Ac,s , dinsp » Aspr & Aoffspr
13: switch Limit Order do
14: case Crossing limit order
15: Submit a limit order at the opposing best price using Equation v, = exp
(n+ou,)
16: case Inside spread limit order
17: Generate a random value, pipe,rq = U(BestBid , BestAsk)
18: Submit limit order at price pipsp,-q Using Equation v, = exp(u + ou,)
19: case Spread limit order
20: Submit a limit order at the best price using Equation v, = exp(u +
ou,)
21: case Off-spread limit order
22: Generate a random value, 7p, ¢fs,ra USing Equation
-1
XMin,ppp, * (1 — uy)b-1
23: Submit order at a price rp,gsprq OUtside of the spread using Equation
v, = exp(u + ouy)
24: case Cancel Limit Order
25: Cancel the oldest order previously submitted
26: end if

The noise agents randomly decide on whether to buy or sell in each period
with equal probability. Once decided, they randomly choose to place a market
order, a limit order, or to cancel an existing order. If a limit order is chosen,
they face four further options. With probability A.,, they cross the spread and
place the limit order at the opposing best, making the order an effective market
order. The order will remain in the order book if it is not completely filled.
With probability A;,,,, they decide to place the order between the bid and ask
spread, and with probability A,,, they place the limit order at the best price
available. Finally, with probability A,ffsp,, the noise traders decide to place
their limit order in the book. The relative off-spread limit order price is
distributed with a power-law as:
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-1

xminoffspr * (1 - uo)ﬂ (1)

Where u,, is a uniformly distributed random variable between 0 and 1.
Most orders fall into this last class of limit orders. The volume for each order is
drawn from a log-normal distribution:

ve = exp(u + ouy) (2)

Where u,, again is a uniformly distributed random variable between 0 and
1, and p and o are parameters, which can be fit empirically.

The sum of these probabilities must equal one (Acs + Ainsp + Aspr +
Aosrspr = 1). T prevent spurious price processes, noise traders' market orders
are limited in volume, so they cannot consume more than half of the total
available volume of the opposing side. Another restriction is that noise traders
will ensure that no side of the order book is empty and place limit orders
appropriately.

3. Intelligent agents

For intelligent agents, stock price prediction uses machine learning methods
and a recurrent neural network using historical time series data.

3.1. Machine learning methods

Machine learning addresses a fundamental prediction problem: Construct a
nonlinear predictor, ¥ (X), of output, Y, given a high-dimensional input matrix
X=X, ., Xx®) of p variables. Machine learning can be viewed as
studying and constructing an input-output map of the form Y = F (X), where
X = XD, ..., X®). The output variable, Y, can be continuous, discrete, or
combined. For example, in a classification problem, F: X - Y where Y €
{1, ..., k} and k is the number of categories. When Y is a continuous vector and
f is a semi-affine function, then the linear model is recovered as:

Y=AX + b (3)
3.2. Recurrent neural network

The recurrent neural network processes a series of time steps, step by step, and
maintains an internal state from one time step to another. These networks are
suitable for predicting and classifying sequences and are widely used to predict
one-variable financial time series. These networks are learning sequences that
have been successful in applications such as natural language processing,
language generation, image processing, and many other tasks.
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A simple RNN is formed by a repeated application of a function F, to the
input sequence x; = (Xy, ..., X7). For each time step t = 1,..., T, the function
generates a hidden state h, from the current input X, and the previous output
he_q:
hy = F(Xy, hey) = o(Wip X, + Uphey + by) 4

For some nonlinear activation function o(x). This simple RNN unfolds a
single hidden-layer neural network over all time steps. When the output is
continuous, the model output from the final hidden state, Y = F, (h,), is given
by the Semi-affine function:

Moreover, when the output is categorical, it is given by:
Y = F,(hy) = softmax(F,(h)) (6)

Where Y has a 'one-hot’ encoding - a K-vector of zeros with 1 at a single
position W = (Wy, Uy, W,) and b = (by, b,) are weight matrices and offsets,
respectively. W, € R¥*Fdenotes the weights of non-recurrent connections
between the input X, and the H hidden units. The weights of the recurrence
connections between the hidden units are denoted by the recurrent weight
matrix U, € R?™*H Without such a matrix, the architecture is simply an
unfolded single-layer feed-forward network without memory, and each
observation X, is treated as an independent observation.

W, denotes the weights tied to the output of the hidden units at the last
time step, h;, and the output layer. If the output variable is a continuous vector,
W, € RM then W, e RM*¥If the output is categorical, with K states, then W}, e
RK*H (Dixon, 2017).

The structure of the recursive neural network is shown in Figure 2.
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3.2.1. Training, Validation, and Testing

To construct and evaluate a learning machine, we start by the controlled
splitting of the data into training, validation, and test sets. The training
data consists of input-output pairs D = {Yt,Xt}Itvzl_(T_l) We then
sequence the data to give Ds, = { Y}, XV

The goal is to find the machine sequence learner Y = F(x), where we
have a loss function L(Y, T’) for a predictor, Y, of the output signal, Y. In
many cases, there is an underlying probability model, p(Y|Y), then the loss
function is the negative log probability L(Y, ?) = —log p(Y|Y). For
example, under a Gaussian model, L(Y, T’) = ||Y — ¥||? is an L? norm, for
binary classification, L(Y, T’) = —Y log Y is the negative cross-entropy. In
its simplest form, we then solve an optimization problem:

MRS f (W, b) + A (W, b) ()
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fW,b) = -3, L(Y,, P (x0)) ®)
with a regularization penalty, (W, b).

Here A is a global regularization parameter that we tune using the
model's out-of-sample predictive mean-squared error (MSE) on the
verification data. The regularization penalty, (W, b), introduces a Bias-
variance tradeoff. VL is given in the closed form by a chain rule and,
through back-propagation on the unfolded network, the weight matrices
W are fitted with stochastic gradient descent.

3.2.2. Predictor Selection and Dropout

Dropout is a model or variable selection technique. Input space X needs
dimension reduction techniques designed to avoid over-fitting during the
training process. Dropout removes input variables in X; randomly with a
given probability 6. The probability, 6, can be viewed as a further
hyperparameter (like A) tuned via cross-validation. Heuristically, if there
are P=100 variables in X;, then a choice of 6=0.1 will result in a search for
models with 10 variables. The dropout architecture with the stochastic
search for the predictors can be used.

D; ~ Ber(6) (9)
X, =Dx*xX,t=1,..,T (10)
he = Fy(WyX; + Uphe_q + by) (11)

Effectively, this replaces the input X, by D x X,, where * denotes the
element-wise product and D is a 'dropout operator' - a vector of independent
Bernoulli, Ber(8), distributed random variables. The overall objective function
is closely related to ridge regression with a g-prior (Heaton et al., 2017). Note
that dropout is not applied to the recurrent connections, only the non-recurrent
connections.

Graves (2013) provided evidence of the success of RNNs by applying
dropout only to the non-recurrent connections in an LSTM (M. Dixon, 2017).

3.3. LSTM neural network

The Long Short-Term Memory (LSTM) unit was introduced by Hochreiter and
Schmidt Huber in 1997.

LSTM is a recurrent neural network architecture designed to store and
access information better than the traditional version. A traditional recursive
neural network (if large enough) should theoretically be able to generate
sequences of any complexity. However, it cannot store information related to
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past inputs for a long time (Hochreiter et al., 2001).

This feature weakens the network’s ability to model long-term structures,
and this "forget" causes these types of networks to be unstable during sequence
generation. The problem (common to all conditional production models, of
course) is that if the network predictions depend only on a few recent inputs
and these inputs are generated by the network itself, there is very little chance
of correcting past errors by the network.

Having a longer-term memory stabilizes because even if the network fails
to understand its recent history, it can still complete its prediction by looking
back. The instability problem is especially acute when dealing with decimal
data, as forecasts can distance themselves from the manifold on which the
training data is placed. One solution proposed for conditional models is to
inject noise into the predictions made by the network before feeding them to
the next time step ( Taylor & Hinton, 2009).

In the LSTM neural network, we encounter new concepts that did not exist
in the traditional recursive neural network. In this network, there are three
gateways through which the network controls its data flow. These three gates
are: forget gate, update gate (also known as the input gate), and output gate.

The gate of forgetting is used to forget unnecessary information from the
past. This gate controls the flow of information from the previous step. It
determines whether the memory information is used from the previous step or
not, and if something should be entered from the previous step.

The update gateway checks whether the information obtained from the
current moment (t moment) is worth storing in long-term memory. This
gateway determines whether new information should be used at the current
time step and, if so, what rate should be used.

The output gate specifies how much information from the previous step is
transferred to the next step, along with the current time step information. This
gateway is used to prevent all information in C, from being transferred to the
output h, and to transfer some of the required information to the output. The
output of the gates is always between 0 and 1 and is always multiplied element
by element with another input; each gate has two inputs, which are x; and
h:_,. These two inputs are multiplied in two layers, gathered together, and
passed through the sigmoid function. The information is always placed
between intervals -1 and +1 using a hyperbolic tangent function. In addition to
these three gates, there is a memory cell, which is abbreviated as C. These are
new concepts in this network, and in addition to these four new concepts, the
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network also has a cache input (h) and an input (X) and produces two outputs
(one output is C; and the other output is h;, which itself is divided into two
parts, one part is transferred to the next time step, and the other part is used in
case of need to produce output in the current time step.) (Graves, 2013).

Figure 3 shows the structure of an LSTM cell:

Figure 3. LSTM cell structure

Unlike a traditional recurrent neural network that merely computes a
balanced sum of input signals and then passes through an activation function,
each LSTM uses a C; memory at time t. The output of h;, or activation of the

LSTM unit, is:

Where [, is the output gateway that controls the amount of content
delivered through memory. The output gate is calculated using the expression:

I,=ocW,.lhe, X ]+ b,) (13)

In which ¢ is the Sigmoid activation function. W, is also a diagonal matrix.
C, the memory cell also with relative forgetting of current memory and adding

new memory content as C, will be updated by:
Co=1Ir.Cq + I—‘;LC\.t (14)
Where the new memory content is calculated through the following
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equation:

C, = tanh(W, . [he_y , X, 1+ b.) (15)
The amount of current memory to be forgotten is controlled by the Ir

forget gate, and the amount of new memory content to be added to the memory

cell is controlled by the update gate. This is done by calculating equation (14)
and the following equation:

I = oWy [hey, X, ] + bp) (16)

The general structure of the LSTM recurrent neural network is shown in
Figure 4.

Figure 4. LSTM recurrent neural network structure
3.4. Intelligent agent algorithm

For intelligent agents, in addition to the price predictor variable for the next
time, another variable is defined as the utility score of the investment.

The utility score of the investment variable represents an important
meaning: agents like expected returns. At the same time, they do not like
fluctuations at different levels (depending on the risk aversion of that factor).
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The history of rates of return on various asset classes and elaborate
empirical studies leave no doubt that risky assets command a risk premium in
the marketplace. This implies that most investors are risk-averse. A prospect
that has a zero-risk premium is called a fair game. Risk-averse investors
consider only risk-free or speculative prospects with positive risk premiums.
The greater the risk, the larger the penalty, and most investors accept this view
from simple introspection. To formalize this notion, we will assume that each
investor can assign a welfare, or utility, score to competing investment
portfolios based on the expected return and risk. The utility score value may be
viewed as a means of ranking portfolios. Portfolios receive higher utility scores
for higher expected returns and lower scores for higher volatility. One
reasonable function that financial theorists commonly employ is determined as
follows:

U=E(r)—(%*A* a?) (17)

Where U is the utility value, E(r) is the expected return, a2 is the variance
of returns, and A is an index of the investor's aversion to taking on risk on a

scale from 1 (lowest risk aversion) to 5 (highest risk aversion). The factor of %

is a scaling convention that will simplify calculations in later chapters. It has no
economic significance, and we could eliminate it simply by defining a “new” A
with half the value of the A used here (Bodie et al., 2018).

The trained agent's decisions are made based on the difference between the
predicted and current prices, as well as the higher or lower decision value
variable, which is taken from a utility score value. Suppose the difference
between the predicted price and the current price is greater than zero (the
predicted price for the next period is greater than the current price), and the
value of the decision variable is greater than the utility score value. In that case,
the decision to buy is made. Suppose the difference between the predicted price
and the current price is less than zero (the predicted price for the next period is
less than the current price), and the value of the decision variable is greater
than the utility score value. In that case, the decision to sell is made. Suppose
the difference between the predicted and current prices is equal to zero, or the
value of the decision variable is less than the utility score value. In that case,
the decision is made to keep the share or go through the buying and selling
process. The intelligent agent group algorithm is given in Table 4.
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Table 4. Intelligent agents’ algorithm

Pseudocode for Trained Traders

1: get Expected_return , Risk_aversion , Volatility_of security returns,
from the user interface

2: set Utility_score = Expected_return — (0.5 * Risk_aversion
* (Volatility_of security_returns) ~ 2)

3: get InitialPrice from the user interface

4: get PredictPrice from the PredictPrice function

5: set diff = PredictPrice — InitialPrice

6: if diff > 0 then

7 set Decision_value =100 * (diff / InitialPrice)

8 if Decision_value > Utility_score then

9: Buy
10: endif
11: end if

12: if diff < 0 then
13:  set Decision_value =100 * ((- diff) / InitialPrice)
14: if Decision_value > Utility _score then

15: Sell
16: endif
17: end if

4. Validation of the agent-based model

Sensitivity analysis tests are used to test the validity and reliability of the
model. Then the values of the Fat-Tailed distribution of returns, Volatility
clustering, autocorrelation of returns, long memory in order flow, Concave
Price Impact, and Extreme price events in the model are calculated and
compared with the standardized values.

4.1. Sensitivity analysis

In variance-based global sensitivity analysis, the inputs to an agent-based
model are treated as random variables with probability density functions
representing their associated uncertainty. The impact of the set of input
variables on a model's output measures may be independent or cooperative. So
the output f(x) may be expressed as a finite hierarchical cooperative function
expansion using an analysis of variance (ANOVA). Thus, the mapping
between input variables x,,..., x,, and output variables f(x)=f(x,,..., x;,;) may
be expressed in the following functional form:

fO)=fo+2ifi (x) + Zi<j fu (xi: xj) + Tt f1,2,...,n(x1'x2' ey Xp) (18)

Where f, is the zeroth-order mean effect, f;(x;) is a first-order term that
describes the effect of variable x; on the output f(x), and f; ; (x;, x;) is a second-

order term that describes the cooperative impact of variables x; and x; on the
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output. The final term, f; , ,(x1, ..., x,), describes the input variables' residual

n‘" order cooperative effect. Consequently, the total variance is calculated as
follows:

D = [(f(x) — f,)%p (x)d(x) (19)

Where p(X) is the probability distribution over input variables. Partial
variances are then defined as:

D i = ffii._’is(xil,...,xl-s)p(x)dx (20)
Now, the total partial variance Df°t for each parameter x;, i = 1,n, is
computed as

Where <i> refers to the summation of D that contains i. Once the above is
computed, the total sensitivity indices can be calculated as:

tot
D;

SitOt — - 10 < SitOt <1 (22)
It follows that the total partial variance for each parameter x; is:
Df°t = D — Var(E(flx_;)) = E(Var(flx_;)) (23)

This is a direct estimation of global sensitivity indices using values of f(x)
only and a Monte Carlo algorithm (Sobol, 2001).

4.2. Fat-Tailed Distribution of Returns

Across all time scales, distributions of price returns have been found to have
positive kurtosis, that is to say, they are "fat-tailed”. Understanding positively
kurtotic distributions is paramount for trading and risk management, as large
price movements are more likely than in commonly assumed normal
distributions. Fat-tails have been observed in the returns distribution of many
markets. In this model, only substantial cancellations, orders that fall inside the
spread, and large orders that cross the spread can alter the mid-price. This
generates many periods with returns of 0, significantly reducing the variance
estimate and generating a leptokurtic distribution in the short run (McGroarty
et al., 2019).

4.3. Volatility Clustering

Volatility clustering refers to the long memory of absolute or square mid-price
returns, meaning that significant price changes tend to follow other significant
price changes. Let X = X, X;, ..., X denotes a real-valued, wide-sense
stationary time series. Then, we can characterize long memory using the
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diffusion properties of the integrated series Y:

Y() =X, X(t) (24)
Furthermore, let:

For some i € {0,1, ...., [}st. Given this, in the limit [ — oo if X is a short-
memory process, then V(I) scales as O(l), whereas if X is a long-memory
process, then V(1) scales as 0 (1?%), for some H € (0.5,1).

The Hurst exponent, H, is defined in terms of the asymptotic behavior of
the rescaled range as a function of the period of a time series as follows:

E [% = Cnf as n - o (26)

Where [E[x] is the expected value, R(n) is the range of the first n
cumulative deviations from the mean, S(n) is the series (sum) of the first n
standard deviations, n is the period of the observation (number of data points in
a time series), and C is a constant. The Hurst exponent describes the self-
similarity of a market. Self-similarity describes how similar past market
snippets are to current ones. A Hurst exponent of 0.5 means that the market
follows a random walk over the long term. In this case, in the long run, any
trading strategy would be a zero-sum game (excluding commissions). If the
Hurst exponent exceeds 0.5, the market shows a trending behavior. Past moves
are similar to current moves. Markets with a high Hurst exponent are perfect
for trend following strategies. If the market went up in the past, there would be
a better than 50% chance it would increase. If the Hurst Exponent is below 0.5,
the market shows a reverting behavior. If it went down in history, it could
reverse its direction in the future. These markets are markets for mean-
reverting strategies and short-term reversal pattern analysis.

In the empirical research studies, the Hurst exponent's values vary from
H = 0.58t0 H ~ 0.815 (Lillo & Farmer, 2004).

4.4. Autocorrelation of Returns

In several markets, returns series lack significant autocorrelation, except for
slightly negative autocorrelation on very short time scales. The lack of strong
autocorrelation is since if returns were correlated, traders would use simple
strategies to exploit the autocorrelation and generate profit. Such actions
would, in turn, reduce the autocorrelation so that it would no longer remain.
Evidence suggests that the mild negative correlation found on short time scales
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has disappeared more quickly in recent years, perhaps an artifact of the new
financial ecosystem (McGroarty et al., 2019).

4.5. Long Memory in Order Flow

The probability of observing a given type of order in the future positively
correlates with its empirical frequency in the past. The mean first lag
autocorrelation term of the order-sign series is calculated for the model and
compared with the mean Hurst's exponent of the order-sign time series
(McGroarty et al., 2019).

4.6. Concave Price Impact

Understanding price impact presents one of the most dominant questions of
market microstructure analysis, i.e., how trading activity leads to price
changes. The early market microstructure literature describes this concept with
a focus on specialist markets. In such markets, prices are quoted by a
centralized market maker who receives orders from brokers and updates her
quoted prices according to the incoming order flow she witnesses. From the
broker's viewpoint, the price impact of his orders is a cost paid to the market
maker for her continued obligation to accept his orders, i.e., a cost for
immediacy. From the viewpoint of the market-maker, some information about
the future prices of assets is inferred from the order flow of the brokers. This
information is then captured in the market maker's quotes, reflected by the
permanent price impact. The difference between the price that an order obtains
and the best prevailing quote is termed the immediate price impact and is an
increasing function of order size. The temporary price impact is then defined as
the difference between an order's immediate and permanent impact. The
empirical research shows that the impact price follows a concave volume
function. Those are the impacts of price increases, which occur more quickly
with changes at small and less quickly at larger volumes. The price impact
follows a power-law distribution of the following form:

B
Bp =" (27)

Where Ap is the change in the mid-price caused by a trader's action, v is
the trade volume, n takes the value -1 in the event of a sell and +1 in the event
of a buy, and A allows for adjustment for market capitalization. Lillo et al.
(2003) found the exponent S to be approximately 0.5 for small and 0.2 for
large volumes. After normalizing for daily volumes, 4 was found to vary
significantly across stocks with a clear dependence on market capitalization M,
approximated by M ~ A3, within the region of 0.4.
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4.7. Extreme Price Events

Since the introduction of automated and algorithmic trading, recurring periods
of high volatility and extreme stock price behavior have plagued the markets.
Extreme Price Events are defined as an occurrence of a stock price ticking
down [up] at least ten times before ticking up [down] and with a price change
exceeding 0.8% of the initial price (Johnson et al., 2013).

The model
1. Development of an agent-based model

Netlogo software has been used to develop the agent-based model. The Monte
Carlo simulation method has been used to simulate the behavior of three
groups of liquidity consumers, liquidity providers, noise traders in the
traditional agent category, and intelligent agents. The model generates trading
signals (buying, selling, holding) and updates the limit order book. Since it is
impossible to simulate two worlds simultaneously in the software environment
of NetLogo, it is necessary to use the features of another software to train the
intelligent agent. Python software was used to do this. The Python extension in
the NetLogo software environment connects the two software environments.
This extension allows you to call Python software and use code written in
Python in the NetLogo software environment. There are several ways to install
and use the programming environment and the required Python packages. One
of the best ways to do this is to install Anaconda software. Then we need to
install the required version of Python, TensorFlow, Cross packages, and other
required packages in the Anaconda software environment. TensorFlow is an
open-source library for developing and teaching machine learning models
developed by Google. TensorFlow can be thought of as an infrastructure layer
for distinctive programming. The TensorFlow version is selected according to
the available hardware features. Cross is a high-level software interface that
solves machine learning problems, focusing on deep learning. This tool
provides the basic elements for developing high-repetition machine learning
solutions. Two main packages, TensorFlow and Cross, installed in the Python
environment, have been used to perform price prediction in the Python
software environment.

2. Predicting Price for Intelligent Agents

In this research, two linear and LSTM models have been used to predict stock
prices. In the user interface of NetLogo software, the option to select either of
these two models is embedded for users. If one selects any options, the
functions required to predict the price are called and executed from the Python
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software environment. Using TensorFlow and Cross tools, intelligent agents
are trained using historical time series data, and price prediction is done. This
price prediction is used by intelligent agents in the NetLogo software
environment as a variable to decide on the trading signal.

2.1. Price Predicting Using the Linear Model

The simplest way to predict a model is to place a linear conversion between the
input and output of the model, in which case the output of a time step depends
only on that step. Using this method, the model makes independent predictions
in Consecutive time steps, and there is no interaction between predictions at
each period. The linear model diagram is shown in Figure 5.

t=0 t=1 t=2 t=3 t=4 t=... Inputs
A A A A A4 A4
Model
t=1 t=2 t=3 t=4 t=5 t =... Predictions
t=1 t=2 t=3 t=4 t=5 B S o Lables

Figure 5. Linear model
2.2. Price Predicting Using the LSTM Model

In this model, the information from 22 days ago was used as the input layer.
The reason for choosing 22 is that, other than weekends and public holidays,
the financial markets have approximately 22 working days per month.
However, this choice is not a limitation in the model, and by changing the
relevant variable, this parameter can be changed in the model. Using this
network, stock price prediction for the next day of the market is done using the
information of the previous 22 working days. The model diagram is shown in
Figure 6.
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t=0 t=1 t=2 t=... t=21 t=22 Inputs
A A A Yy A 4 A
> 1 Model
Y
Warmup t =23 Predictions
Y
t =23 Lables

Figure 6. Recurrent neural network (LSTM) model

Results

1. Initialize free parameters of the model

An extensive grid search of the input space was performed to find the set of
parameters that produce results most similar to those reported in the literature,
and to further explore the influence of input parameters. This led to the
"optimal™ set of parameters in Tables 5 and 6.

The set of general parameters listed in Table 5 has only minor influences
on the model results. On the other hand, the trading probabilities of the
different agent groups have a strong influence on the price series and its return
statistics, but less influence on the market impact function and the statistical
efficiency of the market. The most important parameters for the form of the
market impact regarding order sizes in terms of the temporal behavior of the
function are the liquidity consumer and liquidity provider parameters.
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Table 5. Standard setting for free parameters

Market parameters Setting
Initial Price 100
Initial Spread 0.05
Tick Size 0.01
Agent group Action probability
[ 0.10
S, 0.15
[N 0.55
[ 0.20
Liquidity Consumer Parameters Setting
hrnin 1
hax 100000
Liquidity Provider parameters Setting
Vmin 1
Vinax 200000
v~ 1
® 50

Standard settings for noise traders' group parameters are listed in Table 6.
These parameters are needed to set up the noise traders.

Table 6. Noise trader settings

Order direction Probability
buy or sell 0.5
Event Type Probability
submit a market order Ap =0.03
submit a limit order A, =0.54
cancel a limit order A, =0.43
Limit Order Type Probability
crossing the limit order A, =0.0032
inside-spread limit order Ainspr = 0.0978
spread limit order Aspr = 0.1726
off-spread limit order Aoprspr = 0.7264
Order Size Type Parameters of Log-normal Distribution
market order size Upo =7 0Opo=0.1
limit order size u,=8 0a,=0.7
Limit Price Type Parameters of Power-law Distribution
off-spread relative price XMiNyrpspr = 0.05  Borropr = 2.72

If the model's free parameters are chosen too far from the default values,
much larger jumps and long periods where the price does not change can result.
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2. Model calibration

Calibration determines parameters so that model and market prices match
closely for a given set of liquidly traded instruments (Hirsa & Neftci, 2013).
Calibration involves adjusting the model parameters so that the model's outputs
are consistent with observed market prices or returns (Crooks et al., 2018).

These techniques can be used to fine-tune the ABM model to reflect real-
world scenarios better and improve the model's predictive capabilities:

e Sensitivity analysis: Evaluating how changes in model parameters affect
the model output. Sensitivity analysis helps identify which parameters have
the most significant impact and should be prioritized during calibration
(Crooks et al., 2018) .

e Parameter sweeping: Systematically varying one or more parameters across
their possible range and running multiple simulations. This helps identify
the combination of parameters that best fit the observed data (Crooks et al.,
2018).

e Optimization algorithms: Using algorithms such as Genetic Algorithms,
Simulated Annealing, or Particle Swarm Optimization to automatically
search for the best parameter values that minimize the difference between
the model output and the real-world data (Calvez & Hutzler, 2005).

e Bayesian calibration: Incorporating prior knowledge about parameters and
updating them based on observed data using Bayesian methods. This
approach provides a probabilistic framework for parameter estimation and
quantifies uncertainty (Frazier, 2018).

e Data Assimilation: Integrating real-time data into the model to dynamically
adjust parameters. Techniques such as the Ensemble Kalman Filter can be
used for this (Evensen, 2003).

e Machine Learning: Using machine learning techniques to build surrogate
models that approximate the behavior of the ABM. These surrogate models
can quickly explore the parameter space and identify optimal values
(Calvez & Hutzler, 2005).

This paper uses sensitivity analysis and parameter sweep methods to
calibrate the model.

The results of the sensitivity analysis test (Figure 7) show that the initial
values selected for the model (Tables 5 and 6) can effectively reduce the
uncertainties in the parameter space. The output parameters are shown in Table
8.

The model's input parameters were set to the values in Table 7 for
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parameter sweeping. Then, 10,000 samples were taken from the parameter
space with the input parameters uniformly distributed in the ranges. After
100,000 runs, the posterior model was obtained.

3. Implementation of the sensitivity analysis test

In this model, 20 input parameters and four output parameters are considered.
The parameters related to the groups of traders and the range of initialization

are given in Table 7.

Table 7. Input parameter ranges for global sensitivity analysis

Parameter Symbol Setting
Probability of Liquidity Providers acting 8y [0.05, 0.95]
Probability of Liquidity Consumers acting 6, [0.05, 0.95]
Probability of Noise Traders acting 6, [0.05, 0.95]
Probability of Trained Traders acting o [0.05, 0.95]
Liquidity Providers parameters
Max order volume Vinax [103,10°]
Rolling mean period ® [10,103]
Liquidity Consumers parameters
Max order volume Ronax [103,10°]
Noise Traders parameters
Market order probability A [0, 1]
Limit order probability A [0, 1]
Cancel order probability A [0, 1]
Market order size Umo [2,10]
Market order size Omo [0, 1]
Limit order size Ui [2,10]
Limit order size 010 [0, 1]
Off-spread relative price XN ¢ sy [0, 1]
Off-spread relative price Bogsspr [0, 1]
Crossing limit order Acrs [0, 1]
Inside-spread limit order Ainspr [0, 1]
Spread limit order Aspr [0, 1]
Off-spread limit order Aoffspr [0,1]

The output parameters of the sensitivity analysis test are given in Table 8.

Table 8. Output parameters of global sensitivity analysis

Parameter Symbol
Hurst exponent of volatility H
Median Autocorrelations of mid-price returns R(m)
Mean first lag autocorrelation term of the order-sign series R(0)
Concave Price Impact YA

As the model is stochastic (agents' actions are defined over probability
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distributions), there is inherent uncertainty in the range of outputs, even for
fixed input parameters. Ten thousand samples from within the parameter space
were generated in the following, with the input parameters distributed
uniformly in the ranges. Alternatively, for each sample of the parameters'
space, the model is run for 100000 trading periods to approximately simulate a
trading day on a "high-frequency" timescale.

The global variance sensitivity, as defined in Eq. 23, is presented in Figure

Figure 7. Heatmap of the global variance sensitivity
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The global variance sensitivities identify the upper limit of the distribution
from which liquidity consumers' order volume is drawn (h,.s) and the
probabilities of each agent group acting (particularly those of the high-
frequency traders) as the most important input parameters for all outputs. The
most significant influence of these parameters was on the mean first lag
autocorrelation term of the order-sign series R(0), followed by the exponent of
the price impact function . g is calculated from Equation (27).

4. Fat-Tailed Distribution of Returns

In this model, only substantial cancellations, orders that fall inside the spread,
and large orders that cross the spread can alter the mid-price. This generates
many periods with returns of O, significantly reducing the variance estimate
and generating a leptokurtic distribution in the short run.

Figure 8 shows a side-by-side comparison of how the kurtosis of the mid-
price return series varies with the lag length for this model.

Figure 8. Kurtosis by timescale

Kurtosis is found to be relatively high for short time scales but falls to
match levels of the normal distribution at longer time scales, which matches
the pattern of decay seen in the empirical data.

5. Volatility Clustering

The Hurst exponent of volatility has been computed using the DFA method
described by Peng et al. (1994) to test for volatility clustering. The figure
below details the percentage of simulations run with significant volatility
clustering defined as 0.6 < H < 1. Once again, in the shortest time lags,
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volatility clustering is present at short time scales in all the simulations but
rapidly disappears for longer lags. Figure 9 shows the clustering of change
volatility by timescale for this model.

Figure 9. Volatility clustering by timescale
6. Autocorrelation of returns

Table 9 reports descriptive statistics for the first-lag autocorrelation of the
return series for our agent-based model:

Table 9. Return autocorrelation statistics

Stats Min. Q1 Mean Q3 Max.
AC mid-price returns -0.0212 -0.0070 0.0074 0.0216 0.0361
AC trade price returns -0.3219 -0.1071 0.1059 0.3199 0.5345

There is a weak but significant autocorrelation in the mid-price and trade
price returns. This has been empirically observed in other studies and is
commonly thought to be due to the refilling effect of the order book after a
trade that changes the best price. The result is similar for the trade price
autocorrelation, but as a trade price will always occur at the best bid/ask price,
a slight oscillation is to be expected and is observed.

7. Long Memory in Order Flow

The descriptive statistics of the order sign series in the model are shown in the
table below:
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Table 10. Order sign statistics

Stats Min. Q1 Mean Q3 Max.
AC order signs 0.0218 0.0705 0.1191 0.1679 0.2159
H order signs 0.5997 0.6355 0.6713 0.7070 0.7425

In Table 10, H Order signs show a mean Hurst exponent of the order signs
time series, which indicates a long-memory process and corresponds with the
empirical study results.

8. Concave Price Impact

Figure 10 illustrates the price impact on the model as a function of order size
on a log-log scale.

Figure 10. Price Impact

The shape of this curve is very similar to that of the other empirical
studies. The price impact is calculated by Equation (25), and for the model is
found to be the best fit by the relation Ap « v3!, while the empirically
measured impact was the best fit by Ap o« v°3>. When the market maker's
order volume is reduced, the volume at the opposing best price reduces
compared to the rest of the book. This allows smaller trades to eat further into
the liquidity, stretching the right-most side of the curve.

Figure 11 demonstrates the effects of varying consumers’ volume
parameter h,,,, and providers' volume parameter v,,,, on the price impact
curve.
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Figure 11. The price impact function with different liquidity consumer and
liquidity provider parameterizations

This parameter has little influence on the shape of the price impact
function. However, it does affect the size of the impact. Although h,,,, is
relatively insensitive to minor changes, when the volume traded by the
liquidity consumers is reduced dramatically, the relative amount of available
liquidity in the market increases to the point where the price impact is reduced.
Similar results are seen as the market makers' order size (v, ) increases.

9. Extreme price events
Table 11 shows Flash Crash statistics for the simulated day in the model:
Table 11. Flash crash statistics

Stats Min. Median Mean Max.

Events per day in ABM 0 1 0.9734 4

In the model, on average, there are 0.9734 events per day, which are very
close to the average number observed in empirical data. Such events occur
when an agent makes a huge order that eats through the best price (and
sometimes further price levels).

Figure 12 shows relative numbers of crash/spike events as a function of
their duration.
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Figure 12. Relative numbers of crash/spike events as a function of their duration

The event duration is the time difference (in simulation time) between the
first and last tick in the sequence of jumps in a particular direction. These
extreme price events are more likely to occur quickly than over a longer
timescale.

Discussion and Conclusion

In this research, machine learning and agent-based modeling methods have
been used to discover the driving factors of market price dynamics. The
proposed model is designed better to understand the behavior of automated
algorithmic trading strategies. The agents are entirely logical and follow simple
rules. This is the main feature of any behavioral model, and agent-based
models have this feature. Financial markets are an important challenge for
agent-based modeling, and one of the most important areas that can show their
problem-solving ability. This is because the field has many questions that older
approaches cannot solve, and a lot of financial data is available to test the
model. The designed model can replicate several well-known statistical
features of financial markets, including Volatility Clustering, the
autocorrelation of returns, long memory in order flow, concave price impact,
and extreme price events. Long memory in the order flow and selection of
liquidity behavior of agents plays an important role in the results. This supports
the prevailing empirical research results on the microstructure of financial
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markets. Although the well-known trading strategies in this study are modeled
on previous studies, the addition of intelligent agent activity trained using the
recurrent neural network adds a new capability to previous models.

It should be noted that extreme price events occur not only due to
destructive behaviors that seek to disrupt the market and make a profit after it.
However, it can also be due to the interactions of trading strategies.
Policymakers must know that focusing efforts to prevent malicious behavior
and enforce a regulation in this direction may not be helpful. Instead, market
regulators need to focus on understanding how market participants' interactions
can lead to unexpected systemic behaviors.

Market impact is an important topic for theoretical and practical research.
This cannot only help us understand how information is integrated into market
prices, but also help reduce transaction costs. This is especially important for
large financial institutions such as pension funds, which have diversified
portfolios.

The balance of trading strategies is important in determining price impact
performance. In particular, over-activity due to aggressive liquidity-consuming
strategies leads to a market where the price effect increases.

The results show that increasing the total number of participants with high
frequency does not significantly affect price impact performance. However, the
balance of trading strategies is important in determining price impact
performance. In particular, over-activity due to aggressive strategies in the
liquidity consumer group leads to a market in which the price effect increases.

Policymakers in the financial markets should be aware that focusing efforts
to prevent the adverse effects of algorithmic trading and updating regulations
in this regard can be helpful. Market regulators must focus on understanding
how market participants’ interactions can lead to unexpected systemic
behaviors.

Studies on algorithmic trading in developed markets, such as those by
Jacob Leal et al. (2016), have highlighted the dominance of institutional
investors and the efficiency gains from high-frequency trading. However,
emerging markets present different challenges and opportunities. Research by
Chaboud et al. (2014) and Hendershott et al. (2011) has shown that emerging
markets are often characterized by higher volatility, liquidity asymmetry, and a
significant proportion of retail investors. These factors can affect the
effectiveness of algorithmic trading strategies.

Comparing the performance of the hybrid model with existing research in
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both developed and emerging markets provides a comprehensive understanding
of its applicability. For example, Avellaneda and Stoikov (2008) developed a
high-frequency trading model for developed markets, while Gould et al. (2013)
studied the statistical properties of limit order books in emerging markets. The
paper can highlight its advantages and potential improvements by comparing
the hybrid model to these studies.

Similar research shows that integrating agent-based modeling with
machine learning leads to more accurate and realistic simulations of complex
systems, particularly in financial markets. Kanzari & Ben Said (2023) pointed
out that adaptive agents, which can learn and adjust their strategies based on
market conditions, are critical for mimicking real-world market dynamics. For
example, models populated with adaptive agents were able to reproduce the
statistical properties of the S&P 500, especially during periods of crisis .

Including practical implications of the hybrid model in real trading
scenarios can enhance the paper's relevance. In addition, addressing limitations
and suggesting directions for future research, as recommended by Cont (2001)
and Bouchaud (2002), can provide a balanced perspective.
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