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Abstract  

This study aims to demonstrate the performance of algorithmic trading 

strategies compared to traditional trading methods in artificial financial 

markets. This research uses a hybrid model based on agent-based modeling and 

machine learning methods to simulate agents' behavior in an artificial financial 

market. This model includes two categories, traditional agents and intelligent 

agents. Traditional agents are divided into three groups: liquidity providers, 

liquidity consumers, and noise traders. Intelligent agents are trained using deep 

learning techniques and recurrent neural networks. Based on the developed 

algorithms, the agent-based model simulates both categories of traditional and 

trained agents in an artificial financial market. Sensitivity analysis tests were 

used to test the validity and reliability of the model, and the values of the fat-

tailed distribution of returns, volatility clustering, autocorrelation of returns, 

long memory in order flow, concave price impact, and extreme price events are 

calculated in the model and compared with the standardized values. Historical 

data was used to predict stock prices, and model simulations were used to 

generate trading signals and update the limited order book. The results of 

executing the model show the ability of intelligent agents to trade in artificial 

financial markets compared to traditional agents. 

Keywords: Algorithmic Trading, Machine Learning Methods, Agent-based 
Modeling, Recurrent Neural Networks 

JEL Classification: G17, C63, C45 

Introduction                                                                          

This study attempts to develop a new model based on designing a framework 

for optimizing sales and market regulator decisions to create new insights for 

modern and dynamic financial markets. 

The primary role of financial markets is to create the context for 

transactions between people who want to buy or sell the same commodity and 

provide a platform for the exchange of liquidity. Considering all relevant 

information and asset pricing, these markets act as a pricing tool. Liquidity and 

price formation are emerging features of the low-level interactions of buyers 

and sellers who make up the market.  
Many efforts have been made to create a consistent and independent 

trading system. The inspiration for such trading systems comes from fields 

ranging from fundamental analysis and economic modeling to dynamic 

computing, machine learning, and even news mining. 
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The algorithmic trading strategies used today can be broadly classified into 

the following nine categories: 

 Trend-following approaches: The most common algorithmic trading 

approaches follow moving average trends, channel failure, price level 

movements, and related technical indicators. 

 Arbitrage Opportunities: Buying stocks at a lower price in one market and 

selling them at a higher price in another market simultaneously presents 

the price difference as a risk-free or arbitrage profit. 

 Rebalancing in Index Stock Mutual Funds: These funds have defined re-

equilibrium periods to balance their resources with their respective 

benchmarks. This creates profitable opportunities for algorithmic traders to 

invest in expected trades before the fund rebalances. 

 Mathematical model-based approaches: Proven mathematical models, such 

as the Delta-neutral trading approach, allow trading with a combination of 

options and basic security. (Delta-neutral is an asset portfolio approach 

consisting of different situations compensating for positive and negative 

deltas so that the total delta of the desired assets reaches zero.) 

 Scope of trades (average return): The average return approach is based on 

the concept that high and low prices are the temporary phenomenon assets 

that periodically return to their average value (average value). Identifying 

and defining the price range and implementing an algorithm based on it 

allows transactions to be done automatically if the price of the asset breaks 

and deviates from its defined range. 

 Volume-weighted Average Price: This approach breaks down a large order 

into smaller parts, and markets dynamically define parts that are smaller 

than the order using specific stock historical volumes. The goal is to bring 

the order closer to the weighted average price volume. 

 Time Weighted Average Price: This approach breaks a large order into 

smaller pieces and offers smaller, dynamically determined orders in the 

market using the time intervals between the start and end times. The goal is 

to bring the order closer to the average price between the start and end 

time, thereby minimizing market impact. 

 Percentage of volume: This algorithm sends partial orders according to the 

defined participation ratio and the volume of transactions in the markets 

until the commercial order is filled. The "step-by-step approach" sends 

orders at a percentage of the user-defined market volume and increases or 

decreases this participation as the stock price reaches the user-defined 

level. 
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 Implementation Shortfall: This approach aims to minimize the cost of 

executing an order through the real-time exchange in the market, thus 

saving the cost of the order and providing the opportunity to execute with a 

delay. This stock approach increases the target participation rate if the 

stock price moves favorably and decreases if the stock price moves 

unfavorably (Johnson, 2010). 

Currently, the family of financial simulations is witnessing the addition of 

a new member, agent-based simulations, in the market. Since the early 1990s, 

there has been a growing interest in using agent-based methods to gain insight 

into market microstructure and test sales approaches in financial communities 

(both industrial and academic). Research on agent-driven financial markets 

naturally provides a tremendous opportunity for interdisciplinary competition, 

as it often involves financial engineers, economists, computer scientists, 

mathematicians, statisticians, physicists, and others in joint projects (Guo, 

2005). 

The simulation process for an agent-based model involves a four-step 

method: first, the agent-based model is constructed, and artificial time-series 

data is generated; then, a deep multilayer artificial neural network is designed 

and trained with artificial data. In the third step, the trained neural network 

must be experimentally validated with real data; in the fourth step, a trained 

and accredited deep neural network is applied to analyze economic policy (van 

der Hoog, 2017). 

The market orders book keeps all the sales orders that the customer enters. 

All features of incoming orders, including prices, number of shares or 

contracts, types of orders, and identification of participants, are recorded. 

Purchase orders (purchase offers) are arranged in descending order (from 

highest to lowest price). Higher-priced bids have a higher priority in terms of 

matching. Equal price bids are made using the FIFO algorithm (first input, first 

output). Sales orders (sales requests) are arranged in ascending order (from the 

lowest to the highest price). The order book will be updated in response to each 

order sent by customers. The limited order book is very similar in structure to 

the market order book. The only difference is that this book is made by market 

customers and based on market data that brokers send in response to orders 

sent by customers to market customers (Donadio & Ghosh, 2019). 

A review of previous research shows that historical data has often been 

used as input to the agent-based model to simulate financial market strategies 

in the methods used in these studies. The use of historical data to simulate 

financial market strategies has the disadvantage that the simulation of agents' 
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behavior is based on this data, and agents do not have the opportunity to 

identify the actual market behavior and predict events that may affect market 

prices at any time. Also, simulation with historical data in two-way markets, it 

is impossible to provide realistic offers to offer stock selling prices and offer 

selling prices based on the long-term trend of market price changes and filling 

the list of sales orders in the dynamic order book, so design a hybrid model that 

can make a price prediction as to the input of the agent-based model, and the 

agent-based model can simulate market behavior based on this input can be 

helpful. The development of such hybrid models can also predict future price 

changes and changes in other variables affecting the market situation, such as 

trading volume, as the leading agents in the simulation, and simulate the effects 

of these variables on market decisions. 

Literature Review 

Currently, the general and academic literature on algorithmic transactions is 

extensive and covers a wide range of computer transactions controlled by 

algorithms and other specific cases. In these transactions, computers 

communicate directly with the trading system and record orders without human 

intervention. Computers receive market information and possibly other 

important information very quickly, then build algorithms based on it and 

modify transactions in a fraction of a second. To achieve different goals, 

various types of algorithms are used, for example, some of them seek to 

identify arbitrage opportunities (which include finding minor differences in the 

exchange rate between currencies), others seek to maximize the execution of 

large orders with Minimal cost, and some are looking for a long-term trading 

approach to make a profit. 

Machine learning models and statistical methods can be further 

characterized as parametric or nonparametric. Parametric models consider a 

limited set of parameters and try to respond to the model as a function of input 

variables and parameters. These models have limited flexibility due to limited 

parameter space and cannot use complex patterns in extensive data. As a 

general rule, examples of parametric models include ordinary least squares 

linear regression models, polynomial regression, mixture models, neural 

networks, and hidden Markov models. Nonparametric models consider the 

parameter space as an infinite dimension, equivalent to introducing a hidden 

function. Examples of nonparametric models include core methods such as 

Support Vector Machines and Gaussian Processes. Parametric or 

nonparametric neural networks depend entirely on how they are installed. For 

example, a neural network's parameter space can be considered an infinite 
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dimension, and therefore, neural networks can be described as nonparametric 

(Dixon, 2020). 

A considerable number of study opportunities use machine learning 

algorithms to create trading rules. These algorithms are so-called technical 

analyses that take advantage of interesting opportunities for short-term 

statistical attention by technical indicators such as momentum and trending. 

However, the absence of a solid mathematical foundation for technical analysis 

has meant minimal presence in the academic literature. Furthermore, during the 

1960s, trading rules based on technical indicators were studied and found 

unprofitable (Fama & Blume, 1966; Alexander, 1961). This work led notable 

academics to dismiss technical analysis and support the efficient market 

hypothesis (Fama, 1970). However, the major problem with the early technical 

analysis studies was the ad hoc specifications of the trading rules that 

suggested data dredging (Booth, 2016). 

It is easier to understand similar phenomena in agent-based models than in 

representations of mathematical models. This is because agent-based models, 

unlike mathematical equations made of mathematical symbols, are made of 

individual objects and simple rules for shifting their behavior. In natural 

discourse, experiences are usually described as the interactions of individuals, 

contrary to the rate of change in differential equations. Individual factors can 

be understood by designing mental experiences around them. Therefore, the 

language and concepts used in agent-based modeling are very close to our 

natural language and natural thinking. However, these changes in science have 

not led mainly to significant changes in the world of education in practice. 

There are many reasons for the slow pace of change in technology transfer to 

the education system. One of these obstacles is the lack of a broad 

understanding of the benefits of such a transfer (Wilensky & Rand, 2015). 

The recurrent neural network is composed of several layers of nodes, in 

which the first layer is the input layer, and the number of nodes in the first 

layer corresponds to the number of input properties. The last layer in the 

recursive neural network is the output layer, where the number of nodes 

corresponds to the number of output signals. One or more hidden layers 

separate the input and output layers. The nodes are completely connected in 

coordinated layers. Each node takes information from the previous layer and 

transfers it to the bottom layer. The recursive neural network performs the 

analysis of its input variables. The node is moved to the next layer if the sum 

reaches the threshold. Otherwise, it remains inactive. Therefore, each network 

is trained when receiving some inputs. As a result, a learning process takes 
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place. Learning in the Perceptron network is done by changing the connection 

weight after processing each piece of data. It is based on the number of errors 

compared to the predicted result (Aloud, 2020). 

Kim and Markowitz proposed one of the first agent-based models of 

financial markets in the stock market. Kim and Markowitz sought the 

relationship between factors related to portfolio insurance approaches and 

stock market volatility through agent-based modeling; Kim and Markowitz 

developed the theoretical foundations for the reasons for the collapse of the US 

stock market in 1987; Other models were developed in later years by 

researchers such as Levy et al. (1994), Huang and Solomon (2001) in 

collaboration with some physicists, all of whom developed agent-based 

modeling in financial markets (Samanidou et al., 2007). 

Research Methodology 

1. Hybrid model structure 

In this research, two categories of agents are used to perform model 

simulations. The first category is traditional agents who make decisions based 

on traditional models with conventional market approaches. These approaches 

are classified into three groups: liquidity consumers, providers, and noise 

traders. The second category of agents is the intelligent agents, which are 

trained by a recurrent neural network. 

To create the model, the first group of agents is randomly generated with a 

probability of 𝛿𝑛 for noise traders, another group of agents with a probability 

of 𝛿𝑐 for liquidity consumers, and the third group with a probability of 𝛿𝑝 for 

liquidity providers. In each period, an agent is randomly selected. In the next 

step, the order's type, price, and volume are defined according to the rules of 

the groups. The order is then recorded in the order book, which matches the 

time-price pattern. If a limited order initiates no transaction, that order will 

remain in the order book until the book is completed. 

The second category is intelligent agents who are first implemented in the 

NetLogo software environment with the probability 𝛿𝑡 = 1 −  𝛿𝑛 +  𝛿𝑐 + 𝛿𝑝 

for implementation. Then, using NetLogo software extensions, Python 

software, and required packages (TensorFlow and Keras), the final stock price 

forecast for the following market step is done using deep learning methods. 

The predicted final price is entered into the agent-based model as a variable 

and according to the rules of this agent and comparing this predicted price with 

the prices recorded in the book of limited orders, the trading signal (buy a 
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stock, sell a stock, hold stock) is issued by the model and the limited order 

book will be updated. The conceptual model of the final hybrid model is shown 

in Figure 1. 

Traditional agents

Times 
series 

(Historical 
data)

Historical data 
(Close-price 

variable)

Orders 
book

Liquidity provider 
agent decision 

making

Times series 
(Historical 

data)

Liquidity consumer 
agent decision 

making

Trading signal 
(buy, sell or 

hold)

Updating

The decision-
makers 

(traders or 
regulators)

Verification and 
validation of the 

agent-based model

Historical data (close-price 

variable)

Noise agent decision 
making

An agent-based model (Netlogo 
software environment)

Intelligent agent 
decision making

Compare price 
with orders 

book

Compare price 
with orders 

book

LSTM model
Price 

prediction

Python 
envoronment

Linear model Price 

prediction

Figure 1. Schematic of the hybrid model 

2. Traditional agents 

In the first step, traditional agents generate the trading signal and update the 

limited order book using the Monte Carlo simulation method. 

To do this, the model described by Oesch (2014) defines the types of 

agents in the market. This model uses a limited two-way market order book 

used in most modern exchange markets. The model does not allow an agent to 

do anything in a period, as the model is implicitly located at the time of events. 

Transactions occur sequentially, meaning only one agent can operate at each 

step. Agents can place limited orders or market orders and cancel previously 

registered orders. The market has three groups of agents: liquidity consumers, 

liquidity providers, and noise traders. 
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2.1. Liquidity consumers 

This group is a large group of traders who make decisions based on beliefs or 

stock portfolios that have been rebalanced to their needs. This group includes 

investment institutions such as pension funds, banks, insurance companies, and 

other investors in fundamental financial markets. This group creates large 

orders that want to operate with the least impact on the market and costs. The 

group buys or sells large stock orders in one day to minimize the impact of 

price and transaction costs. The probability that this group of agents buys or 

sells is determined by equal probability. 

The algorithm describing the logic of this group of traders is presented in 

Table 1 (Booth, 2016). 

Table 1. Liquidity consumer algorithm 

Pseudocode for Liquidity Consumers  

1: If the start of the day, then 

2:    if rand() < 0.5 then 
3:            Buying 
4:      else 
5:            Selling 
6:      end if 
7:      Initial order volume, 𝒉𝟎 = U(𝒉𝒎𝒊𝒏 , 𝒉𝒎𝒂𝒙) 
8: end if 
9: if rand() < 𝛅𝐜 then 
10:       if 𝒉𝒕  ≤  𝜱𝒕 then 
11:            Submit market order with volume 𝒗𝒕 = 𝒉𝒕 
12:       else 
13:           Submit market order with volume 𝒗𝒕 = 𝜱𝒕 
14:      end if 
15: end if 

16: 𝒉𝒕 = 𝒉𝒕 - 𝒗𝒕  

The initial volume ℎ𝑜 of a large order is drawn from a uniform distribution 

between ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥. To execute the large order, a liquidity consumer agent 

looks at the current volume available at the opposite best price, 𝛷𝑡. If the 

remaining volume of his large order, ℎ𝑡, is less than 𝛷𝑡, the agent sets this 

period's volume to 𝑣𝑡 = ℎ𝑡. Otherwise, he takes all available volume at the best 

price, 𝑣𝑡 = 𝛷𝑡. For simplicity, liquidity consumers only utilize market orders. 

2.2. Liquidity providers 

This group of market participants tries to profit from the difference between the 

buy and sell price through the supply of liquidity on both sides of the bid price 

and the asking price from the order book, and maintains an almost neutral 

position during the trading day. Market makers play this role in traditional 
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markets, but in modern electronics markets, hypothetically, any agent can 

follow such an approach. Table 2 describes the trading logic of this group of 

traders (Booth, 2016): 

Table 2. Liquidity provider algorithm 

Pseudocode for Liquidity Providers  
1: if rand() < 𝜹𝒑  then 

2:       Cancel any existing orders 
3:       if predicts next order is buy then 
4:            Submit sell at best price with volume = U(𝒗𝒎𝒊𝒏 , 𝒗𝒎𝒂𝒙) 
5:            Submit buy at best price with volume = 𝒗− 
6:       else 
7:            Submit buy at best price with volume = U(𝒗𝒎𝒊𝒏 , 𝒗𝒎𝒂𝒙) 
8:            Submit sell at best price with volume = 𝒗− 
9:       end if 
10: end if 
11: Update buy/sell prediction with w-period rolling mean  

 

Each liquidity provider always has a limit order on both sides of the order 

book (buy and sell). If either of the limit orders is executed, it will be replaced 

by a new one the next time the liquidity provider gets to trade. When a liquidity 

provider turns to trade, he will update his prediction for the next period's order 

sign and change his order volumes. If the predictor, for example, forecasts a 

buy order, the liquidity provider will adjust his current ask and bid volume by 

setting the sell limit order volume 𝑣+ (the order which is expected to be 

executed next) to a uniformly distributed random variable between 𝑣𝑚𝑖𝑛 and 

𝑣𝑚𝑎𝑥, and the unexpected buy limit order's volume to 𝑣−. 

This asymmetric exposure strategy can be explained by the liquidity 

provider's task to keep the market efficient or by the argument that the liquidity 

provider has a budget restriction. If a budget restriction is present, he will 

always want to allocate his resources to the position where he most likely can 

trade soon to earn the bid-ask spread. However, this is only speculation and an 

open question for further investigation. A simple rolling-mean estimate with ω 
periods is chosen to predict the sign of the following order. While this linear 

predictor might not be optimal, it has been used to stick with it for simplicity. 

2.3. Noise traders 

The noise traders represent all other strategies on the market and can be viewed 

as speculative traders, and can be fitted to have empirical order probabilities. 

The noise trader algorithm is described in Table 3 (Booth, 2016). 
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Table 3. Noise trader algorithm 

The noise agents randomly decide on whether to buy or sell in each period 

with equal probability. Once decided, they randomly choose to place a market 

order, a limit order, or to cancel an existing order. If a limit order is chosen, 

they face four further options. With probability 𝜆𝑐𝑟𝑠, they cross the spread and 

place the limit order at the opposing best, making the order an effective market 

order. The order will remain in the order book if it is not completely filled. 

With probability 𝜆𝑖𝑛𝑠𝑝, they decide to place the order between the bid and ask 

spread, and with probability 𝜆𝑠𝑝𝑟, they place the limit order at the best price 

available. Finally, with probability 𝜆𝑜𝑓𝑓𝑠𝑝𝑟 , the noise traders decide to place 

their limit order in the book. The relative off-spread limit order price is 

distributed with a power-law as: 

Pseudocode for Noise Traders 

1: if rand() < 𝜹𝒏 then 

2:        if rand() < 0.5 then 

3:            Selling 

4:        else 

5:            Buying 

6:        end if 

7:        Generate U(0 , 1) to determine action, 𝝀𝒎 , 𝝀𝒍, and 𝝀𝒄 

8:        switch action do 

9:              case Submit Market Order 

10:                  Submit market order with volume calculated by Equation 𝒗𝒕 = 𝒆𝒙𝒑 (𝝁 + 𝝈𝒖𝒗) 

11:            case Submit Limit Order 

12:                  Generate U(0 , 1) for action, 𝝀𝒄𝒓𝒔 , 𝝀𝒊𝒏𝒔𝒑 , 𝝀𝒔𝒑𝒓 & 𝝀𝒐𝒇𝒇𝒔𝒑𝒓 

13:                  switch Limit Order do 

14:                         case Crossing limit order 

15:                             Submit a limit order at the opposing best price using Equation 𝒗𝒕 = 𝒆𝒙𝒑  
  (𝝁 + 𝝈𝒖𝒗) 

16:                         case Inside spread limit order 

17:                             Generate a random value, 𝒑𝒊𝒏𝒔𝒑𝒓𝒅 = U(BestBid , BestAsk) 

18:                             Submit limit order at price 𝒑𝒊𝒏𝒔𝒑𝒓𝒅 using Equation 𝒗𝒕 = 𝒆𝒙𝒑 (𝝁 + 𝝈𝒖𝒗) 

19:                         case Spread limit order 

20:                             Submit a limit order at the best price using Equation 𝒗𝒕 = 𝒆𝒙𝒑 (𝝁 + 

𝝈𝒖𝒗) 

21:                         case Off-spread limit order 

22:                             Generate a random value, 𝒓𝒑𝒐𝒇𝒇𝒔𝒑𝒓𝒅 using Equation 

 𝒙𝒎𝒊𝒏𝒐𝒇𝒇𝒔𝒑𝒓 ∗ (𝟏 − 𝒖𝒐)
−𝟏

𝜷−𝟏 

23:                             Submit order at a price 𝒓𝒑𝒐𝒇𝒇𝒔𝒑𝒓𝒅 outside of the spread using Equation 

 𝒗𝒕 = 𝒆𝒙𝒑 (𝝁 + 𝝈𝒖𝒗) 

24:            case Cancel Limit Order 

25:                  Cancel the oldest order previously submitted 

26: end if 
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𝑥𝑚𝑖𝑛offspr ∗ (1 − 𝑢𝑜)
−1

𝛽−1                                                                      (1) 

Where 𝑢𝑜 is a uniformly distributed random variable between 0 and 1. 

Most orders fall into this last class of limit orders. The volume for each order is 

drawn from a log-normal distribution: 

𝑣𝑡 = 𝑒𝑥𝑝 (𝜇 + 𝜎𝑢𝑣)                                                                                         (2) 

Where 𝑢𝑣 again is a uniformly distributed random variable between 0 and 

1, and μ and σ are parameters, which can be fit empirically. 

The sum of these probabilities must equal one (𝜆𝑐𝑟𝑠 + 𝜆𝑖𝑛𝑠𝑝 + 𝜆𝑠𝑝𝑟 +

𝜆𝑜𝑓𝑓𝑠𝑝𝑟 = 1). To prevent spurious price processes, noise traders' market orders 

are limited in volume, so they cannot consume more than half of the total 

available volume of the opposing side. Another restriction is that noise traders 

will ensure that no side of the order book is empty and place limit orders 

appropriately. 

3. Intelligent agents 

For intelligent agents, stock price prediction uses machine learning methods 

and a recurrent neural network using historical time series data. 

3.1. Machine learning methods 

Machine learning addresses a fundamental prediction problem: Construct a 

nonlinear predictor, 𝑌̂(𝑋), of output, Y, given a high-dimensional input matrix 

𝑋 =  (𝑋(1), … ,  𝑋(𝑝)) of p variables. Machine learning can be viewed as 

studying and constructing an input-output map of the form Y = F (X), where 

𝑋 = (𝑋(1), … ,  𝑋(𝑝)). The output variable, Y, can be continuous, discrete, or 

combined. For example, in a classification problem, 𝐹: 𝑋 → 𝑌 where 𝑌 ∊
{1, … , 𝑘} and k is the number of categories. When Y is a continuous vector and 

f is a semi-affine function, then the linear model is recovered as: 

𝑌 =  𝐴𝑋 +  𝑏                                                                                                    (3) 

3.2. Recurrent neural network 

The recurrent neural network processes a series of time steps, step by step, and 

maintains an internal state from one time step to another. These networks are 

suitable for predicting and classifying sequences and are widely used to predict 

one-variable financial time series. These networks are learning sequences that 

have been successful in applications such as natural language processing, 

language generation, image processing, and many other tasks. 
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A simple RNN is formed by a repeated application of a function 𝐹ℎ to the 

input sequence 𝑥𝑡 =  (𝑋1, … ,  𝑋𝑇). For each time step t = 1,…, T, the function 
generates a hidden state ℎ𝑡 from the current input 𝑋𝑡 and the previous output 

ℎ𝑡−1: 

ℎ𝑡 = 𝐹ℎ(𝑋𝑡, ℎ𝑡1) = 𝝈(𝑊ℎ𝑋𝑡 + 𝑈ℎℎ𝑡1 + 𝑏ℎ)                                                    (4) 

For some nonlinear activation function 𝜎(x). This simple RNN unfolds a 

single hidden-layer neural network over all time steps. When the output is 

continuous, the model output from the final hidden state, Y = 𝐹𝑦(ℎ𝑡), is given 

by the Semi-affine function: 

Y = 𝐹𝑦(ℎ𝑡) = 𝑊𝑦(ℎ𝑡) + 𝑏𝑦                                                                               (5) 

Moreover, when the output is categorical, it is given by: 

Y = 𝐹𝑦(ℎ𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑦(ℎ𝑡))                                                                              (6) 

Where Y has a 'one-hot' encoding - a K-vector of zeros with 1 at a single 
position 𝑊 = (𝑊ℎ , 𝑈ℎ , 𝑊𝑦) and 𝑏 = (𝑏ℎ ,  𝑏𝑦) are weight matrices and offsets, 

respectively. 𝑊ℎ ∊ ℝ𝐻𝑃denotes the weights of non-recurrent connections 
between the input 𝑋𝑡 and the H hidden units. The weights of the recurrence 
connections between the hidden units are denoted by the recurrent weight 
matrix 𝑈ℎ ∊ ℝ𝐻𝐻  Without such a matrix, the architecture is simply an 
unfolded single-layer feed-forward network without memory, and each 
observation 𝑋𝑡 is treated as an independent observation. 

𝑊𝑦  denotes the weights tied to the output of the hidden units at the last 

time step, ℎ𝑡, and the output layer. If the output variable is a continuous vector, 
𝑊𝑦 ∊ ℝ𝑀 then 𝑊𝑦 ∊ ℝ𝑀𝐻If the output is categorical, with K states, then 𝑊𝑦 ∊
ℝ𝐾𝐻(Dixon, 2017). 

The structure of the recursive neural network is shown in Figure 2.
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Figure 2. Recurrent neural network structure 

3.2.1. Training, Validation, and Testing 

To construct and evaluate a learning machine, we start by the controlled 
splitting of the data into training, validation, and test sets. The training 
data consists of input-output pairs 𝐷 = { 𝑌𝑡 , 𝑋𝑡}𝑡=1−(𝑇−1)

𝑁  .We then 

sequence the data to give D𝑠𝑒𝑞 = { 𝑌𝑡, 𝑋𝑡}𝑡=1
𝑁 .   

The goal is to find the machine sequence learner Y = 𝐹(𝑥), where we 
have a loss function ℒ(𝑌,  𝑌̂) for a predictor, 𝑌̂, of the output signal, Y. In 
many cases, there is an underlying probability model, 𝑝(𝑌|𝑌̂), then the loss 

function is the negative log probability ℒ(𝑌,  𝑌̂) = − log  𝑝(𝑌|𝑌̂). For 

example, under a Gaussian model, ℒ(𝑌,  𝑌̂) = ||𝑌 − 𝑌̂||2 is an 𝐿2 norm, for 

binary classification, ℒ(𝑌,  𝑌̂) = −𝑌 log 𝑌̂ is the negative cross-entropy. In 

its simplest form, we then solve an optimization problem: 

 𝑓(𝑊,𝑏
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊, 𝑏) + 𝜆ф(𝑊, 𝑏)                                                                          (7) 
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𝑓(𝑊, 𝑏) =
1

𝑁
∑ ℒ(𝑌𝑡, 𝑌̂(𝑥𝑡))𝑁

𝑡=1                                                                         (8)     

with a regularization penalty, ф(𝑊, 𝑏). 

Here 𝛌 is a global regularization parameter that we tune using the 
model's out-of-sample predictive mean-squared error (MSE) on the 
verification data. The regularization penalty, ф(𝑊, 𝑏), introduces a Bias-
variance tradeoff. ∇ℒ is given in the closed form by a chain rule and, 
through back-propagation on the unfolded network, the weight matrices 
𝑊̂ are fitted with stochastic gradient descent. 

3.2.2. Predictor Selection and Dropout 

Dropout is a model or variable selection technique. Input space X needs 
dimension reduction techniques designed to avoid over-fitting during the 
training process. Dropout removes input variables in 𝑋𝑡  randomly with a 
given probability θ. The probability, θ, can be viewed as a further 
hyperparameter (like 𝛌) tuned via cross-validation. Heuristically, if there 
are P=100 variables in 𝑋𝑡 , then a choice of θ=0.1 will result in a search for 
models with 10 variables. The dropout architecture with the stochastic 
search for the predictors can be used. 

𝐷𝑖 ∼ 𝐵𝑒𝑟(𝜃)                                                                                                     (9) 

𝑋𝑡̃ = 𝐷 ⋆ 𝑋𝑡 , 𝑡 = 1, … , 𝑇                                                                                 (10) 

ℎ𝑡 = 𝐹ℎ(𝑊ℎ𝑋𝑡̃ + 𝑈ℎℎ𝑡−1 + 𝑏ℎ)                                                                      (11) 

Effectively, this replaces the input 𝑋𝑡 by 𝐷 ⋆ 𝑋𝑡, where ⋆ denotes the 

element-wise product and D is a 'dropout operator' - a vector of independent 

Bernoulli, 𝐵𝑒𝑟(𝜃), distributed random variables. The overall objective function 

is closely related to ridge regression with a g-prior (Heaton et al., 2017). Note 

that dropout is not applied to the recurrent connections, only the non-recurrent 

connections. 
Graves (2013) provided evidence of the success of RNNs by applying 

dropout only to the non-recurrent connections in an LSTM (M. Dixon, 2017). 

3.3. LSTM neural network 

The Long Short-Term Memory (LSTM) unit was introduced by Hochreiter and 

Schmidt Huber in 1997.  

LSTM is a recurrent neural network architecture designed to store and 

access information better than the traditional version. A traditional recursive 

neural network (if large enough) should theoretically be able to generate 

sequences of any complexity. However, it cannot store information related to 
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past inputs for a long time (Hochreiter et al., 2001). 

This feature weakens the network's ability to model long-term structures, 

and this "forget" causes these types of networks to be unstable during sequence 

generation. The problem (common to all conditional production models, of 

course) is that if the network predictions depend only on a few recent inputs 

and these inputs are generated by the network itself, there is very little chance 

of correcting past errors by the network. 

Having a longer-term memory stabilizes because even if the network fails 

to understand its recent history, it can still complete its prediction by looking 

back. The instability problem is especially acute when dealing with decimal 

data, as forecasts can distance themselves from the manifold on which the 

training data is placed. One solution proposed for conditional models is to 

inject noise into the predictions made by the network before feeding them to 

the next time step ( Taylor & Hinton, 2009). 

In the LSTM neural network, we encounter new concepts that did not exist 

in the traditional recursive neural network. In this network, there are three 

gateways through which the network controls its data flow. These three gates 

are: forget gate, update gate (also known as the input gate), and output gate. 

The gate of forgetting is used to forget unnecessary information from the 

past. This gate controls the flow of information from the previous step. It 

determines whether the memory information is used from the previous step or 

not, and if something should be entered from the previous step. 

The update gateway checks whether the information obtained from the 

current moment (t moment) is worth storing in long-term memory. This 

gateway determines whether new information should be used at the current 

time step and, if so, what rate should be used. 

The output gate specifies how much information from the previous step is 

transferred to the next step, along with the current time step information. This 

gateway is used to prevent all information in 𝐶𝑡 from being transferred to the 

output ℎ𝑡 and to transfer some of the required information to the output. The 

output of the gates is always between 0 and 1 and is always multiplied element 

by element with another input; each gate has two inputs, which are 𝑥𝑡 and 

ℎ𝑡−1. These two inputs are multiplied in two layers, gathered together, and 

passed through the sigmoid function. The information is always placed 

between intervals -1 and +1 using a hyperbolic tangent function. In addition to 

these three gates, there is a memory cell, which is abbreviated as C. These are 

new concepts in this network, and in addition to these four new concepts, the 
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network also has a cache input (h) and an input (X) and produces two outputs 

(one output is 𝐶𝑡 and the other output is ℎ𝑡, which itself is divided into two 

parts, one part is transferred to the next time step, and the other part is used in 

case of need to produce output in the current time step.) (Graves, 2013). 

Figure 3 shows the structure of an LSTM cell: 

 

Figure 3. LSTM cell structure 

Unlike a traditional recurrent neural network that merely computes a 

balanced sum of input signals and then passes through an activation function, 

each LSTM uses a 𝐶𝑡 memory at time t. The output of ℎ𝑡, or activation of the 

LSTM unit, is: 

ℎ𝑡 =  𝛤𝑜 . tanh(𝐶𝑡)                                                                                           (12) 

Where 𝛤𝑜 is the output gateway that controls the amount of content 

delivered through memory. The output gate is calculated using the expression: 

𝛤𝑜 = 𝜎(𝑊𝑜  . [ℎ𝑡−1 , 𝑋𝑡 ] +  𝑏𝑜)                                                                        (13) 

In which 𝝈 is the Sigmoid activation function. 𝑊𝑜 is also a diagonal matrix. 

𝐶𝑡 the memory cell also with relative forgetting of current memory and adding 

new memory content as 𝐶𝑡̂ will be updated by:  

𝐶𝑡 =  𝛤𝑓  . 𝐶𝑡−1 +  𝛤𝑢 .  𝐶𝑡̂                                                                                 (14) 

Where the new memory content is calculated through the following 
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equation: 

𝐶𝑡̂ = tanh(𝑊𝐶  . [ℎ𝑡−1 , 𝑋𝑡 ] +  𝑏𝑐)                                                                  (15) 

The amount of current memory to be forgotten is controlled by the 𝛤𝑓  

forget gate, and the amount of new memory content to be added to the memory 

cell is controlled by the update gate. This is done by calculating equation (14) 

and the following equation: 

𝛤𝑓 = 𝜎(𝑊𝑓  . [ℎ𝑡−1 , 𝑋𝑡  ] +  𝑏𝑓)                                                                        (16)  

The general structure of the LSTM recurrent neural network is shown in 

Figure 4. 

 

Figure 4. LSTM recurrent neural network structure 

3.4. Intelligent agent algorithm 

For intelligent agents, in addition to the price predictor variable for the next 

time, another variable is defined as the utility score of the investment. 
The utility score of the investment variable represents an important 

meaning: agents like expected returns. At the same time, they do not like 

fluctuations at different levels (depending on the risk aversion of that factor). 
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The history of rates of return on various asset classes and elaborate 

empirical studies leave no doubt that risky assets command a risk premium in 

the marketplace. This implies that most investors are risk-averse. A prospect 

that has a zero-risk premium is called a fair game. Risk-averse investors 

consider only risk-free or speculative prospects with positive risk premiums. 

The greater the risk, the larger the penalty, and most investors accept this view 

from simple introspection. To formalize this notion, we will assume that each 

investor can assign a welfare, or utility, score to competing investment 

portfolios based on the expected return and risk. The utility score value may be 

viewed as a means of ranking portfolios. Portfolios receive higher utility scores 

for higher expected returns and lower scores for higher volatility. One 

reasonable function that financial theorists commonly employ is determined as 

follows: 

𝑈 = 𝐸(𝑟) − (
1

2
∗ 𝐴 ∗ 𝜎2)                                                                               (17) 

Where U is the utility value, E(r) is the expected return, 𝜎2 is the variance 

of returns, and A is an index of the investor's aversion to taking on risk on a 

scale from 1 (lowest risk aversion) to 5 (highest risk aversion). The factor of  
1

2
 

is a scaling convention that will simplify calculations in later chapters. It has no 

economic significance, and we could eliminate it simply by defining a “new” A 
with half the value of the A used here (Bodie et al., 2018). 

The trained agent's decisions are made based on the difference between the 

predicted and current prices, as well as the higher or lower decision value 

variable, which is taken from a utility score value. Suppose the difference 

between the predicted price and the current price is greater than zero (the 

predicted price for the next period is greater than the current price), and the 

value of the decision variable is greater than the utility score value. In that case, 

the decision to buy is made. Suppose the difference between the predicted price 

and the current price is less than zero (the predicted price for the next period is 

less than the current price), and the value of the decision variable is greater 

than the utility score value. In that case, the decision to sell is made. Suppose 

the difference between the predicted and current prices is equal to zero, or the 

value of the decision variable is less than the utility score value. In that case, 

the decision is made to keep the share or go through the buying and selling 

process. The intelligent agent group algorithm is given in Table 4. 
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Table 4. Intelligent agents' algorithm 

Pseudocode for Trained Traders 

1: get Expected_return , Risk_aversion , Volatility_of_security_returns, 

           from the user interface 

2: set Utility_score = Expected_return – (0.5 * Risk_aversion  

           * (Volatility_of_security_returns) ^ 2) 
3: get InitialPrice from the user interface 

4: get PredictPrice from the PredictPrice function 

5: set diff = PredictPrice – InitialPrice 

6: if diff > 0 then 

7:       set Decision_value  = 100 * (diff / InitialPrice)  

8:       if Decision_value > Utility_score then 

9:            Buy 

10:     end if 

11: end if 

12: if diff < 0 then 

13:     set Decision_value  = 100 * ((- diff ) / InitialPrice)  

14:     if Decision_value > Utility_score then 

15:            Sell 

16:     end if  

17: end if 

4. Validation of the agent-based model 

Sensitivity analysis tests are used to test the validity and reliability of the 

model. Then the values of the Fat-Tailed distribution of returns, Volatility 

clustering, autocorrelation of returns, long memory in order flow, Concave 

Price Impact, and Extreme price events in the model are calculated and 

compared with the standardized values. 

4.1. Sensitivity analysis 

In variance-based global sensitivity analysis, the inputs to an agent-based 

model are treated as random variables with probability density functions 

representing their associated uncertainty. The impact of the set of input 

variables on a model's output measures may be independent or cooperative. So 

the output f(x) may be expressed as a finite hierarchical cooperative function 

expansion using an analysis of variance (ANOVA). Thus, the mapping 

between input variables 𝑥1,…, 𝑥𝑛 and output variables f(x)=f(𝑥1,…, 𝑥𝑛) may 

be expressed in the following functional form: 

𝑓(𝑥) = 𝑓𝑜 + ∑ 𝑓𝑖𝑖 (𝑥𝑖) + ∑ 𝑓𝑖,𝑗𝑖<𝑗 (𝑥𝑖, 𝑥𝑗) + ⋯ + 𝑓1,2,…,𝑛(𝑥1, 𝑥2, … , 𝑥𝑛)        (18) 

Where 𝑓𝑜 is the zeroth-order mean effect, 𝑓𝑖 (𝑥𝑖) is a first-order term that 

describes the effect of variable 𝑥𝑖 on the output f(x), and 𝑓𝑖,𝑗(𝑥𝑖, 𝑥𝑗) is a second-

order term that describes the cooperative impact of variables 𝑥𝑖 and 𝑥𝑗 on the 
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output. The final term, 𝑓1,2,…,𝑛(𝑥1, … , 𝑥𝑛), describes the input variables' residual 

𝑛𝑡ℎ order cooperative effect. Consequently, the total variance is calculated as 

follows: 

𝐷 = ∫(𝑓(𝑥) − 𝑓𝑜)2𝜌 (𝑥)𝑑(𝑥)                                                                        (19) 

Where 𝜌(X) is the probability distribution over input variables. Partial 

variances are then defined as: 

𝐷𝑖1,…,𝑖𝑠
= ∫ 𝑓𝑖1,…,𝑖𝑠

2 (𝑥𝑖1
, … , 𝑥𝑖𝑠

)𝜌(𝑥)𝑑𝑥                                                            (20) 

Now, the total partial variance 𝐷𝑖
𝑡𝑜𝑡 for each parameter 𝑥𝑖, i = 1, 𝑛,̿̿ ̿̿ ̿ is 

computed as 

𝐷𝑖
𝑡𝑜𝑡 = ∑ 𝐷𝑖1,…,𝑖𝑠

; 1 ≤ 𝑠 ≤ 𝑛<𝑖>                                                                       (21) 

Where <i> refers to the summation of D that contains i. Once the above is 

computed, the total sensitivity indices can be calculated as: 

𝑆𝑖
𝑡𝑜𝑡 =

𝐷𝑖
𝑡𝑜𝑡

𝐷
 ; 0 ≤ 𝑆𝑖

𝑡𝑜𝑡 ≤ 1                                                                              (22) 

It follows that the total partial variance for each parameter 𝑥𝑖 is: 

𝐷𝑖
𝑡𝑜𝑡 = D − Var(𝔼(f|𝑥−𝑖)) ≡ 𝔼(Var(f|𝑥−𝑖))                                                 (23) 

This is a direct estimation of global sensitivity indices using values of f(x) 

only and a Monte Carlo algorithm (Sobol, 2001). 

4.2. Fat-Tailed Distribution of Returns 

Across all time scales, distributions of price returns have been found to have 

positive kurtosis, that is to say, they are "fat-tailed". Understanding positively 

kurtotic distributions is paramount for trading and risk management, as large 

price movements are more likely than in commonly assumed normal 

distributions. Fat-tails have been observed in the returns distribution of many 

markets. In this model, only substantial cancellations, orders that fall inside the 

spread, and large orders that cross the spread can alter the mid-price. This 

generates many periods with returns of 0, significantly reducing the variance 

estimate and generating a leptokurtic distribution in the short run (McGroarty 

et al., 2019). 

4.3. Volatility Clustering 

Volatility clustering refers to the long memory of absolute or square mid-price 

returns, meaning that significant price changes tend to follow other significant 

price changes. Let 𝑋 =  𝑋𝑡1,  𝑋𝑡2, … ,  𝑋𝑡𝑘  denotes a real-valued, wide-sense 

stationary time series. Then, we can characterize long memory using the 
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diffusion properties of the integrated series Y: 

𝑌(𝑙) = ∑ 𝑋(𝑡𝑖)𝑙
𝑖=1                                                                                            (24) 

Furthermore, let: 

𝑌(𝑙) = 𝑉𝑎𝑟(𝑌(𝑡𝑖 + 1), 𝑌(𝑡𝑖 + 2), … , 𝑌(𝑡𝑖 + 𝑙)                                              (25) 

For some 𝑖 ∈ {0,1, … . , 𝑙}st. Given this, in the limit 𝑙 → ∞ if X is a short-

memory process, then V(l) scales as O(l), whereas if X is a long-memory 

process, then V(l) scales as 𝑂(𝑙2𝐻), for some 𝐻 ∈ (0.5,1).  

The Hurst exponent, H, is defined in terms of the asymptotic behavior of 

the rescaled range as a function of the period of a time series as follows: 

𝔼 [
𝑅(𝑛)

𝑆(𝑛)
] = C𝑛𝐻             as    𝑛 → ∞                                                             (26) 

Where 𝔼[𝑥] is the expected value, R(n) is the range of the first n 

cumulative deviations from the mean, S(n) is the series (sum) of the first n 

standard deviations, n is the period of the observation (number of data points in 

a time series), and C is a constant. The Hurst exponent describes the self-

similarity of a market. Self-similarity describes how similar past market 

snippets are to current ones. A Hurst exponent of 0.5 means that the market 

follows a random walk over the long term. In this case, in the long run, any 

trading strategy would be a zero-sum game (excluding commissions). If the 

Hurst exponent exceeds 0.5, the market shows a trending behavior. Past moves 

are similar to current moves. Markets with a high Hurst exponent are perfect 

for trend following strategies. If the market went up in the past, there would be 

a better than 50% chance it would increase. If the Hurst Exponent is below 0.5, 

the market shows a reverting behavior. If it went down in history, it could 

reverse its direction in the future. These markets are markets for mean-

reverting strategies and short-term reversal pattern analysis. 

In the empirical research studies, the Hurst exponent's values vary from 

𝐻 ≈ 0.58 to 𝐻 ≈ 0.815 (Lillo & Farmer, 2004). 

4.4. Autocorrelation of Returns 

In several markets, returns series lack significant autocorrelation, except for 

slightly negative autocorrelation on very short time scales. The lack of strong 

autocorrelation is since if returns were correlated, traders would use simple 

strategies to exploit the autocorrelation and generate profit. Such actions 

would, in turn, reduce the autocorrelation so that it would no longer remain. 

Evidence suggests that the mild negative correlation found on short time scales 
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has disappeared more quickly in recent years, perhaps an artifact of the new 

financial ecosystem (McGroarty et al., 2019). 

4.5. Long Memory in Order Flow 

The probability of observing a given type of order in the future positively 

correlates with its empirical frequency in the past. The mean first lag 

autocorrelation term of the order-sign series is calculated for the model and 

compared with the mean Hurst's exponent of the order-sign time series 

(McGroarty et al., 2019). 

4.6. Concave Price Impact 

Understanding price impact presents one of the most dominant questions of 

market microstructure analysis, i.e., how trading activity leads to price 

changes. The early market microstructure literature describes this concept with 

a focus on specialist markets. In such markets, prices are quoted by a 

centralized market maker who receives orders from brokers and updates her 

quoted prices according to the incoming order flow she witnesses. From the 

broker's viewpoint, the price impact of his orders is a cost paid to the market 

maker for her continued obligation to accept his orders, i.e., a cost for 

immediacy. From the viewpoint of the market-maker, some information about 

the future prices of assets is inferred from the order flow of the brokers. This 

information is then captured in the market maker's quotes, reflected by the 

permanent price impact. The difference between the price that an order obtains 

and the best prevailing quote is termed the immediate price impact and is an 

increasing function of order size. The temporary price impact is then defined as 

the difference between an order's immediate and permanent impact. The 

empirical research shows that the impact price follows a concave volume 

function. Those are the impacts of price increases, which occur more quickly 

with changes at small and less quickly at larger volumes. The price impact 

follows a power-law distribution of the following form: 

∆𝑝 =
𝜂𝑣𝛽

𝜆
                                                                                                         (27) 

Where ∆𝑝 is the change in the mid-price caused by a trader's action, v is 

the trade volume, 𝜂 takes the value -1 in the event of a sell and +1 in the event 

of a buy, and 𝜆 allows for adjustment for market capitalization. Lillo et al. 

(2003) found the exponent 𝛽 to be approximately 0.5 for small and 0.2 for 

large volumes. After normalizing for daily volumes, 𝜆 was found to vary 

significantly across stocks with a clear dependence on market capitalization M, 

approximated by 𝑀 ∼ 𝜆𝛿 , within the region of 0.4. 
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4.7. Extreme Price Events 

Since the introduction of automated and algorithmic trading, recurring periods 

of high volatility and extreme stock price behavior have plagued the markets. 

Extreme Price Events are defined as an occurrence of a stock price ticking 

down [up] at least ten times before ticking up [down] and with a price change 

exceeding 0.8% of the initial price (Johnson et al., 2013). 

The model 

1. Development of an agent-based model 

Netlogo software has been used to develop the agent-based model. The Monte 

Carlo simulation method has been used to simulate the behavior of three 

groups of liquidity consumers, liquidity providers, noise traders in the 

traditional agent category, and intelligent agents. The model generates trading 

signals (buying, selling, holding) and updates the limit order book. Since it is 

impossible to simulate two worlds simultaneously in the software environment 

of NetLogo, it is necessary to use the features of another software to train the 

intelligent agent. Python software was used to do this. The Python extension in 

the NetLogo software environment connects the two software environments. 

This extension allows you to call Python software and use code written in 

Python in the NetLogo software environment. There are several ways to install 

and use the programming environment and the required Python packages. One 

of the best ways to do this is to install Anaconda software. Then we need to 

install the required version of Python, TensorFlow, Cross packages, and other 

required packages in the Anaconda software environment. TensorFlow is an 

open-source library for developing and teaching machine learning models 

developed by Google. TensorFlow can be thought of as an infrastructure layer 

for distinctive programming. The TensorFlow version is selected according to 

the available hardware features. Cross is a high-level software interface that 

solves machine learning problems, focusing on deep learning. This tool 

provides the basic elements for developing high-repetition machine learning 

solutions. Two main packages, TensorFlow and Cross, installed in the Python 

environment, have been used to perform price prediction in the Python 

software environment. 

2. Predicting Price for Intelligent Agents 

In this research, two linear and LSTM models have been used to predict stock 

prices. In the user interface of NetLogo software, the option to select either of 

these two models is embedded for users. If one selects any options, the 

functions required to predict the price are called and executed from the Python 
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software environment. Using TensorFlow and Cross tools, intelligent agents 

are trained using historical time series data, and price prediction is done. This 

price prediction is used by intelligent agents in the NetLogo software 

environment as a variable to decide on the trading signal. 

2.1. Price Predicting Using the Linear Model 

The simplest way to predict a model is to place a linear conversion between the 

input and output of the model, in which case the output of a time step depends 

only on that step. Using this method, the model makes independent predictions 

in Consecutive time steps, and there is no interaction between predictions at 

each period. The linear model diagram is shown in Figure 5. 

t = 2 t = 4t = 3 t = 5 t  = ...t = 1

t = 4t = 1 t = 3t = 2 t = ...t = 0

t = 2 t = 4t = 3 t = 5 t  = ...t = 1

Inputs

Model

Predictions

Lables

 

Figure 5. Linear model 

2.2. Price Predicting Using the LSTM Model 

In this model, the information from 22 days ago was used as the input layer. 

The reason for choosing 22 is that, other than weekends and public holidays, 

the financial markets have approximately 22 working days per month. 

However, this choice is not a limitation in the model, and by changing the 

relevant variable, this parameter can be changed in the model. Using this 

network, stock price prediction for the next day of the market is done using the 

information of the previous 22 working days. The model diagram is shown in 

Figure 6. 
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t  = 23

Inputs
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Warmup t  = 23

 

Figure 6. Recurrent neural network (LSTM) model 

Results 

1. Initialize free parameters of the model 

An extensive grid search of the input space was performed to find the set of 

parameters that produce results most similar to those reported in the literature, 

and to further explore the influence of input parameters. This led to the 

"optimal" set of parameters in Tables 5 and 6. 

The set of general parameters listed in Table 5 has only minor influences 

on the model results. On the other hand, the trading probabilities of the 

different agent groups have a strong influence on the price series and its return 

statistics, but less influence on the market impact function and the statistical 

efficiency of the market. The most important parameters for the form of the 

market impact regarding order sizes in terms of the temporal behavior of the 

function are the liquidity consumer and liquidity provider parameters. 
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Table 5. Standard setting for free parameters 

Setting Market parameters 

100 Initial Price 

0.05 Initial Spread 

0.01 Tick Size 

Action probability Agent group 

0.10 δc 

0.15 δp 

0.55 δn 
0.20 δt 

Setting Liquidity Consumer Parameters 

1 hmin 
100000 hmax 
Setting Liquidity Provider parameters 

1 vmin 
200000 vmax 

1 v− 
50 ω 

Standard settings for noise traders' group parameters are listed in Table 6. 

These parameters are needed to set up the noise traders. 

Table 6. Noise trader settings 

Probability Order direction 

0.5 buy or sell 

Probability Event Type 

𝝀𝒎 = 𝟎. 𝟎𝟑 submit a market order 

𝝀𝒍 = 𝟎. 𝟓𝟒 submit a limit order 

𝝀𝒄 = 𝟎. 𝟒𝟑 cancel a limit order 

Probability Limit Order Type 

𝝀𝒄𝒓𝒔 = 𝟎. 𝟎𝟎𝟑𝟐 crossing the limit order 

𝝀𝒊𝒏𝒔𝒑𝒓 = 𝟎. 𝟎𝟗𝟕𝟖 inside-spread limit order 

𝝀𝒔𝒑𝒓 = 𝟎. 𝟏𝟕𝟐𝟔 spread limit order 

𝝀𝒐𝒇𝒇𝒔𝒑𝒓 = 𝟎. 𝟕𝟐𝟔𝟒 off-spread limit order 

Parameters of Log-normal Distribution Order Size Type 

𝝁𝒎𝒐 = 𝟕     𝝈𝒎𝒐 = 𝟎. 𝟏 market order size 

𝝁𝒍𝒐 = 𝟖       𝝈𝒍𝒐 = 𝟎. 𝟕 limit order size 

Parameters of Power-law Distribution Limit Price Type 

𝒙𝒎𝒊𝒏𝒐𝒇𝒇𝒔𝒑𝒓 = 𝟎. 𝟎𝟓    𝜷𝒐𝒇𝒇𝒔𝒑𝒓 = 𝟐. 𝟕𝟐 off-spread relative price 

If the model's free parameters are chosen too far from the default values, 

much larger jumps and long periods where the price does not change can result. 
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2. Model calibration 

Calibration determines parameters so that model and market prices match 

closely for a given set of liquidly traded instruments (Hirsa & Neftci, 2013). 

Calibration involves adjusting the model parameters so that the model's outputs 

are consistent with observed market prices or returns (Crooks et al., 2018). 

These techniques can be used to fine-tune the ABM model to reflect real-

world scenarios better and improve the model's predictive capabilities: 

 Sensitivity analysis: Evaluating how changes in model parameters affect 

the model output. Sensitivity analysis helps identify which parameters have 

the most significant impact and should be prioritized during calibration 

(Crooks et al., 2018) . 
 Parameter sweeping: Systematically varying one or more parameters across 

their possible range and running multiple simulations. This helps identify 

the combination of parameters that best fit the observed data (Crooks et al., 

2018). 
 Optimization algorithms: Using algorithms such as Genetic Algorithms, 

Simulated Annealing, or Particle Swarm Optimization to automatically 

search for the best parameter values that minimize the difference between 

the model output and the real-world data (Calvez & Hutzler, 2005). 

 Bayesian calibration: Incorporating prior knowledge about parameters and 

updating them based on observed data using Bayesian methods. This 

approach provides a probabilistic framework for parameter estimation and 

quantifies uncertainty (Frazier, 2018). 

 Data Assimilation: Integrating real-time data into the model to dynamically 

adjust parameters. Techniques such as the Ensemble Kalman Filter can be 

used for this (Evensen, 2003). 

 Machine Learning: Using machine learning techniques to build surrogate 

models that approximate the behavior of the ABM. These surrogate models 

can quickly explore the parameter space and identify optimal values 

(Calvez & Hutzler, 2005). 

This paper uses sensitivity analysis and parameter sweep methods to 

calibrate the model. 

The results of the sensitivity analysis test (Figure 7) show that the initial 

values selected for the model (Tables 5 and 6) can effectively reduce the 

uncertainties in the parameter space. The output parameters are shown in Table 

8. 

The model's input parameters were set to the values in Table 7 for 
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parameter sweeping. Then, 10,000 samples were taken from the parameter 

space with the input parameters uniformly distributed in the ranges. After 

100,000 runs, the posterior model was obtained. 

3. Implementation of the sensitivity analysis test 

In this model, 20 input parameters and four output parameters are considered. 

The parameters related to the groups of traders and the range of initialization 

are given in Table 7. 

Table 7. Input parameter ranges for global sensitivity analysis 

Setting Symbol Parameter 

[0.05, 0.95] 𝛿𝑝 Probability of Liquidity Providers acting 

[0.05, 0.95] 𝛿𝑐 Probability of Liquidity Consumers acting 

[0.05, 0.95] 𝛿𝑛 Probability of Noise Traders acting 

[0.05, 0.95] 𝛿𝑡 Probability of Trained Traders acting 

  Liquidity Providers parameters 

[𝟏𝟎𝟑, 𝟏𝟎𝟔] 𝑣𝑚𝑎𝑥 Max order volume 

[𝟏𝟎, 𝟏𝟎𝟑] ω Rolling mean period 

  Liquidity Consumers parameters 

[𝟏𝟎𝟑, 𝟏𝟎𝟔] ℎ𝑚𝑎𝑥 Max order volume 

  Noise Traders parameters 

[0, 1] 𝜆𝑚 Market order probability 

[0, 1] 𝜆𝑙 Limit order probability 

[0, 1] 𝜆𝑐 Cancel order probability 

[2, 10] 𝜇𝑚𝑜 Market order size 

[0, 1] 𝜎𝑚𝑜 Market order size 

[2, 10] 𝜇𝑙𝑜 Limit order size 

[0, 1] 𝜎𝑙𝑜 Limit order size 

[0, 1] 𝑥𝑚𝑖𝑛𝑜𝑓𝑓𝑠𝑝𝑟  Off-spread relative price 

[0, 1] 𝛽𝑜𝑓𝑓𝑠𝑝𝑟  Off-spread relative price 

[0, 1] 𝜆𝑐𝑟𝑠 Crossing limit order 

[0, 1] 𝜆𝑖𝑛𝑠𝑝𝑟 Inside-spread limit order 

[0, 1] 𝜆𝑠𝑝𝑟 Spread limit order 

[0, 1] 𝜆𝑜𝑓𝑓𝑠𝑝𝑟  Off-spread limit order 

The output parameters of the sensitivity analysis test are given in Table 8. 

Table 8. Output parameters of global sensitivity analysis 

Symbol Parameter 

H Hurst exponent of volatility 

R(m) Median Autocorrelations of mid-price returns 

R(o) Mean first lag autocorrelation term of the order-sign series 

𝛽 Concave Price Impact 

As the model is stochastic (agents' actions are defined over probability 
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distributions), there is inherent uncertainty in the range of outputs, even for 

fixed input parameters. Ten thousand samples from within the parameter space 

were generated in the following, with the input parameters distributed 

uniformly in the ranges. Alternatively, for each sample of the parameters' 

space, the model is run for 100000 trading periods to approximately simulate a 

trading day on a "high-frequency" timescale. 

The global variance sensitivity, as defined in Eq. 23, is presented in Figure 

7. 

 

Figure 7. Heatmap of the global variance sensitivity 
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The global variance sensitivities identify the upper limit of the distribution 

from which liquidity consumers' order volume is drawn (hmax) and the 

probabilities of each agent group acting (particularly those of the high-

frequency traders) as the most important input parameters for all outputs. The 

most significant influence of these parameters was on the mean first lag 

autocorrelation term of the order-sign series R(o), followed by the exponent of 

the price impact function β. 𝛽 is calculated from Equation (27). 

4. Fat-Tailed Distribution of Returns 

In this model, only substantial cancellations, orders that fall inside the spread, 

and large orders that cross the spread can alter the mid-price. This generates 

many periods with returns of 0, significantly reducing the variance estimate 

and generating a leptokurtic distribution in the short run.  

Figure 8 shows a side-by-side comparison of how the kurtosis of the mid-

price return series varies with the lag length for this model. 

 

Figure 8. Kurtosis by timescale 

Kurtosis is found to be relatively high for short time scales but falls to 

match levels of the normal distribution at longer time scales, which matches 

the pattern of decay seen in the empirical data. 

5. Volatility Clustering 

The Hurst exponent of volatility has been computed using the DFA method 

described by Peng et al. (1994) to test for volatility clustering. The figure 

below details the percentage of simulations run with significant volatility 

clustering defined as 0.6 < 𝐻 < 1. Once again, in the shortest time lags, 
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volatility clustering is present at short time scales in all the simulations but 

rapidly disappears for longer lags. Figure 9 shows the clustering of change 

volatility by timescale for this model. 

 

Figure 9. Volatility clustering by timescale 

6. Autocorrelation of returns 

Table 9 reports descriptive statistics for the first-lag autocorrelation of the 

return series for our agent-based model: 

Table 9. Return autocorrelation statistics 

Max. Q3 Mean Q1 Min. Stats 

0.0361 0.0216 0.0074 -0.0070 -0.0212 AC mid-price returns 

0.5345 0.3199 0.1059 -0.1071 -0.3219 AC trade price returns 

There is a weak but significant autocorrelation in the mid-price and trade 

price returns. This has been empirically observed in other studies and is 

commonly thought to be due to the refilling effect of the order book after a 

trade that changes the best price. The result is similar for the trade price 

autocorrelation, but as a trade price will always occur at the best bid/ask price, 

a slight oscillation is to be expected and is observed. 

7. Long Memory in Order Flow 

The descriptive statistics of the order sign series in the model are shown in the 

table below: 
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Table 10. Order sign statistics 

Max. Q3 Mean Q1 Min. Stats 

0.2159 0.1679 0.1191 0.0705 0.0218 AC order signs 

0.7425 0.7070 0.6713 0.6355 0.5997 H order signs 

In Table 10, H Order signs show a mean Hurst exponent of the order signs 

time series, which indicates a long-memory process and corresponds with the 

empirical study results. 

8. Concave Price Impact 

Figure 10 illustrates the price impact on the model as a function of order size 

on a log-log scale. 

 

Figure 10. Price Impact 

The shape of this curve is very similar to that of the other empirical 

studies. The price impact is calculated by Equation (25), and for the model is 

found to be the best fit by the relation ∆𝑝 ∝ 𝑣31, while the empirically 

measured impact was the best fit by ∆𝑝 ∝ 𝑣0.35. When the market maker's 

order volume is reduced, the volume at the opposing best price reduces 

compared to the rest of the book. This allows smaller trades to eat further into 

the liquidity, stretching the right-most side of the curve. 

Figure 11 demonstrates the effects of varying consumers’ volume 
parameter ℎ𝑚𝑎𝑥 and providers' volume parameter 𝑣𝑚𝑎𝑥 on the price impact 

curve. 
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Figure 11. The price impact function with different liquidity consumer and 

liquidity provider parameterizations 

This parameter has little influence on the shape of the price impact 

function. However, it does affect the size of the impact. Although ℎ𝑚𝑎𝑥 is 

relatively insensitive to minor changes, when the volume traded by the 

liquidity consumers is reduced dramatically, the relative amount of available 

liquidity in the market increases to the point where the price impact is reduced. 

Similar results are seen as the market makers' order size (𝑣𝑚𝑎𝑥 ) increases. 

9. Extreme price events 

Table 11 shows Flash Crash statistics for the simulated day in the model: 

Table 11. Flash crash statistics 

Max. Mean Median Min. Stats 

4 0.9734 1 0 Events per day in ABM 

In the model, on average, there are 0.9734 events per day, which are very 

close to the average number observed in empirical data. Such events occur 

when an agent makes a huge order that eats through the best price (and 

sometimes further price levels). 

Figure 12 shows relative numbers of crash/spike events as a function of 

their duration. 
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Figure 12. Relative numbers of crash/spike events as a function of their duration 

The event duration is the time difference (in simulation time) between the 

first and last tick in the sequence of jumps in a particular direction. These 

extreme price events are more likely to occur quickly than over a longer 

timescale. 

Discussion and Conclusion  

In this research, machine learning and agent-based modeling methods have 

been used to discover the driving factors of market price dynamics. The 

proposed model is designed better to understand the behavior of automated 

algorithmic trading strategies. The agents are entirely logical and follow simple 

rules. This is the main feature of any behavioral model, and agent-based 

models have this feature. Financial markets are an important challenge for 

agent-based modeling, and one of the most important areas that can show their 

problem-solving ability. This is because the field has many questions that older 

approaches cannot solve, and a lot of financial data is available to test the 

model. The designed model can replicate several well-known statistical 

features of financial markets, including Volatility Clustering, the 

autocorrelation of returns, long memory in order flow, concave price impact, 

and extreme price events. Long memory in the order flow and selection of 

liquidity behavior of agents plays an important role in the results. This supports 

the prevailing empirical research results on the microstructure of financial 
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markets. Although the well-known trading strategies in this study are modeled 

on previous studies, the addition of intelligent agent activity trained using the 

recurrent neural network adds a new capability to previous models. 

It should be noted that extreme price events occur not only due to 

destructive behaviors that seek to disrupt the market and make a profit after it. 

However, it can also be due to the interactions of trading strategies. 

Policymakers must know that focusing efforts to prevent malicious behavior 

and enforce a regulation in this direction may not be helpful. Instead, market 

regulators need to focus on understanding how market participants' interactions 

can lead to unexpected systemic behaviors. 

Market impact is an important topic for theoretical and practical research. 

This cannot only help us understand how information is integrated into market 

prices, but also help reduce transaction costs. This is especially important for 

large financial institutions such as pension funds, which have diversified 

portfolios. 

The balance of trading strategies is important in determining price impact 

performance. In particular, over-activity due to aggressive liquidity-consuming 

strategies leads to a market where the price effect increases. 

The results show that increasing the total number of participants with high 

frequency does not significantly affect price impact performance. However, the 

balance of trading strategies is important in determining price impact 

performance. In particular, over-activity due to aggressive strategies in the 

liquidity consumer group leads to a market in which the price effect increases. 

Policymakers in the financial markets should be aware that focusing efforts 

to prevent the adverse effects of algorithmic trading and updating regulations 

in this regard can be helpful. Market regulators must focus on understanding 

how market participants' interactions can lead to unexpected systemic 

behaviors. 

Studies on algorithmic trading in developed markets, such as those by 

Jacob Leal et al. (2016), have highlighted the dominance of institutional 

investors and the efficiency gains from high-frequency trading. However, 

emerging markets present different challenges and opportunities. Research by 

Chaboud et al. (2014) and Hendershott et al. (2011) has shown that emerging 

markets are often characterized by higher volatility, liquidity asymmetry, and a 

significant proportion of retail investors. These factors can affect the 

effectiveness of algorithmic trading strategies. 

Comparing the performance of the hybrid model with existing research in 
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both developed and emerging markets provides a comprehensive understanding 

of its applicability. For example, Avellaneda and Stoikov (2008) developed a 

high-frequency trading model for developed markets, while Gould et al. (2013) 

studied the statistical properties of limit order books in emerging markets. The 

paper can highlight its advantages and potential improvements by comparing 

the hybrid model to these studies. 

Similar research shows that integrating agent-based modeling with 

machine learning leads to more accurate and realistic simulations of complex 

systems, particularly in financial markets. Kanzari & Ben Said (2023) pointed 

out that adaptive agents, which can learn and adjust their strategies based on 

market conditions, are critical for mimicking real-world market dynamics. For 

example, models populated with adaptive agents were able to reproduce the 

statistical properties of the S&P 500, especially during periods of crisis . 
Including practical implications of the hybrid model in real trading 

scenarios can enhance the paper's relevance. In addition, addressing limitations 

and suggesting directions for future research, as recommended by Cont (2001) 

and Bouchaud (2002), can provide a balanced perspective. 
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