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Abstract

The exchange rate is recognized as a key economic indicator influenced
by multiple factors. Some of these factors manifest as measurable
economic variables, while others are reflected in political and financial
news. A central, unresolved question is whether it is possible to develop
a comprehensive and scalable model for exchange rate modeling and
forecasting that accounts for all relevant variables and factors. Using a
data fusion approach, the present study proposed a comprehensive deep
learning—based model supporting multiple data types. To train the
model, exchange rate—related news was collected from ten major
national and international sources covering the period from 2014 to
2023 (1393-1402 in the Iranian calendar). The data was then combined
with exchange rate figures and other economic indicators. To identify
the best model, eight machine learning models, two statistical models,
and one large language model were trained and evaluated under both
regression and classification settings. To mitigate bias and random
effects, the study applied time series—aware cross-validation along with
repeated training and testing using different random initializations. The
results demonstrated that the proposed approach, which directly
incorporates all influential factors, significantly outperforms existing
methods.
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1. Introduction

Exchange rate fluctuations represent one of the most complex
challenges in modern economic analysis, shaped by a dynamic interplay
of macroeconomic fundamentals, policy decisions, and informational
signals disseminated through the media. Traditional econometric
approaches often fail to capture these multidimensional interactions, as
they rely primarily on quantitative variables and lagged historical data.
As a result, they tend to overlook the qualitative influence of news,
market sentiment, and expectations that often precede measurable
economic changes. Recent advances in artificial intelligence and
machine learning have introduced powerful tools for integrating diverse
forms of data—both numerical and textual—into unified predictive
systems. The present research tried to propose a comprehensive and
extensible model for forecasting exchange rates in lIran, combining
structured economic indicators with unstructured news data through a
data fusion approach.

2. Materials and Methods

This study employed a quantitative and applied methodology based on
supervised machine learning techniques. The dataset spans the period
from April 2014 to March 2023 (1393-1402 in the Iranian calendar).
Daily free-market exchange rates were obtained from three verified
sources: the National Exchange website, the Gold and Currency
Information Network, and the Bonbast platform. Additionally, key
macroeconomic indicators—including GDP growth, inflation rate,
unemployment rate, trade balance, public debt, foreign reserves, and oil
prices—were collected from official statistical repositories. Then the
study went on to incorporate qualitative dimensions. In this respect,
news articles related to exchange rate dynamics were gathered from ten
major national and international media outlets, including Donya-e-
Eqtesad, San’at-Madan-Tijarat, Asia Daily, ISNA, Khabaronline,
Tabnak, BBC Persian, and VVoice of America Persian. Each news item
was labeled according to the contemporaneous changes in exchange
rates. Data preprocessing involved normalization, outlier removal, and
interpolation of missing values for numerical data. Textual data
underwent cleaning, tokenization, and embedding using the ParsBERT
model (Farahani et al., 2021), which was fine-tuned on domain-specific
economic texts to improve contextual representation. Following
preprocessing, approximately 388,354 fused samples were constructed.
Eight machine learning models (Random Forest, XGBoost, LightGBM,
CNN-LSTM, GRU, Bi-GRU, LSTM, and Bi-LSTM), two statistical
models (ARIMA and Prophet), and one large language model (GPT-4)
were trained and compared under both regression and classification
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settings. Model evaluation was conducted through time-series—aware
cross-validation and repeated random initialization to minimize bias.
Performance metrics included Mean Absolute Error (MAE), Mean
Squared Error (MSE), Accuracy, and F1-score.

3. Results and Discussion

The results revealed that models integrating textual and numerical data
substantially outperform those trained solely on numerical inputs.
Specifically, the inclusion of news embeddings reduced forecasting
error by more than 5% across most deep learning architectures. Among
the evaluated models, the fine-tuned GPT-4 achieved the highest
overall accuracy and the lowest error metrics in both regression and
classification  tasks. However, considering constraints on
interpretability and data security, the Bi-directional Gated Recurrent
Unit (Bi-GRU) model was identified as the optimal choice for practical
implementation. The Bi-GRU model exhibited strong learning
capability in capturing temporal dependencies and contextual
relationships between macroeconomic variables and market sentiment.
In classification mode, it achieved an F1-score of 0.84 and an accuracy
rate of 0.86 when textual data were incorporated. In contrast, traditional
statistical models such as ARIMA and Prophet showed limited capacity
to reflect short-term market shocks influenced by real-time news.

The findings highlighted the importance of data fusion in financial
forecasting. Textual news data provide early signals of market
sentiment that often precede observable changes in economic variables.
By integrating these heterogeneous data sources, the proposed model
can offer a more dynamic and responsive forecasting framework,
particularly suited to volatile markets such as Iran’s foreign exchange
sector.

4. Conclusion

This study proposed a comprehensive machine learning—based model
that successfully integrates textual and numerical data for exchange rate
forecasting in Iran. The results confirmed that data fusion enhances
predictive accuracy and robustness, outperforming both conventional
econometric methods and single-modality deep learning models.
Among the evaluated architectures, Bi-GRU offered the most practical
balance between performance, interpretability, and computational
efficiency. The findings underscored that incorporating news-driven
sentiment and contextual information provides a timely advantage for
policy formulation and risk management. Moreover, the modular
structure of the proposed model allows for future extensions to other
economic domains such as stock market analysis and inflation
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forecasting. Future studies are recommended to expand the dataset to
include social media sentiment and to adopt explainable Al (XAl)
techniques to improve interpretability and transparency.

Keywords: Exchange Rate Forecasting, Data Fusion, Comprehensive
Model, Machine Learning, Artificial Intelligence
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3. Font
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5. Unicode



VEOE Ol [ Vo oledi | ¥ Jlo| O ) eolasdl sla ings | VS

St 4ol Jle 5 (63555 e OT 43 &S Sl (5l S 5 AT 5 el dl> e

e Slecze 5ladle s 5 (53le soad 5l dar el o Foslir 53358 oo SCh SIS
S5 ods e S Sl alob b oS T o oS 0 Sl ol L) (3,5
Dridan &) 5,05 555 5l S 85 $lp 50 6 a4 i o bgy all g dalp
s 4 poman AS 0 ColS ol as i pl 5,58 (6l 457 (Oepen, 2012
s 4 65 (ol slade 53 6855 L slade 5 a3 iy slacsslale Sl eslizal

s (88 5 OlalS ol g glaty ) Jo e

e sesly oLl ¥-Y
o3litl Ol 5 oo Lasslal g1l 5 cgade slajls 4 g2 glaesls glaijl ) skie 4
05 s SlalS ey 4 Ols e adsl e s, 5 L(LI & Yang, 2018) 5 S
T s aliae Lailg) ISR 5 siledie jshte 4 Olej Jsb 53 3 sad o a1 OoligsT
wlme Llg) 51 obadpas s w5 (6 Fad iy e lagilule gl HLisL a0l

.@loﬁo:\:&@bdﬁi,;h;ﬁj&yﬁj

.d.»JUJ: ‘_;‘,:dj&.:l..«.n ‘k"‘}JJ‘ ‘5‘43‘,.43 .0 JS.Z

(s2lame) 05— 950 bl (5923) Jasdl Gl sl (2020) 550 =y gubs sl

Mikolov, et al., 2013) Lulul ; s O diws 55 Lo 35 0k 1 b 3L 10 le

s, Slarw 5 o5 (Farahani, et al., 2021) b "o, gilals Sl dlas opl s

;,aw 45 ‘:)J‘f ‘SJL.»B C,.w‘ o ld ealazu! L}.&A 6\.&53‘.} lel.u)b LS‘J" cs';.w\ LSL'A‘ C)J;.

1. TF-IDF
2. Semantic
3. Syntactic
4, BERT



Y| O1)Ken 5 bwyy Juol

Gsme S8l o YA Lo 3 il Ma oy g 5 5140 b 55 (18U sla o a3
YL e b e 53 SIS (g5ledis a5 (Devlin, etal., 2018) 88 o5 s
A3 5wl

Sl ol osls 55 4eT aosls r:le.; = S df)_}{ sl ST Jds &
Sl e s aS 2l )8 5o g S 4 e D son O Sled e
lags ol ol b Jaul 5 ol 3 yls o g0 CuiS Lo gas clils S 05 S5 Slusl
LT3 o) (7 JSE) oS (g5l ol b T 585 ol g b LS e leesls L)
5 o glesls 5 S L aS Sl gilul W5 g S5sel QT}}‘M&\)JA
035 53 o3kl 3550 Oste gled3l CohS Sles L7055 s plonil 0dd o35 li
(83505 Hw Sl a0 oS (ilalr g 225, dal YL (Ll L g
Tdde 5seT HsA o3luil 4 635 oot Slles callin ol 3 .l VIA Sll L Sl 65
Blod & ileler 23l nbe 568 e 85 5o b palie pl il 0 ol
bl Tas 031l 5 03 [Le = 5,5e = 5] o3l 550585k &5 rieen Ailoks
ol 0l CBBIFY LVF ez 53V (K1 el

PR 5 e sesls g9y gilulr s s IS

1
(oo —— \ 1
1 L a5 silaies |
i T ®
I 3
! =

Shash claasl sle

1. Bi-directional Encoder Representation from Transformers
2. Fine-Tuning
Ll 35 50 SOUSA, €t al., 2019 ;5w T 5 ol Sl ¥

4. Epoch

5. Learning Rate
6. Batch Size
7.GPU



VEOE Ol | VoV oled | ¥ Jl | Ot solasdl sla ing s | VYA

S o ol 6F 55 S5 ladde 61y Cgar 53 (Sl S SN 5l ladle 53
ded T T gl sl OS50 b g o 1)1 S o S sladie T o 5 e e
Gl Sasr b dhe 3l sy iV dw ol ag Ol b .(Brown, et al., 2020)
Ls s’ S g e B s aS Sl GPTA-0 wbeus 0T adeus op 5T oS ol
e Sl agn opl s (Mohamadi, et al., 2023) coul osls 5 36 Cos |,
sl o oslizal b3l slade 1SS Olsew 8,5 S

e Sy owikge Y-¢
34 g0 LS‘AL;/},’J O3 L1 L (gdias ou OT y3 &8 ol L;.L:;“Tjé L“L;}i) (g
Nargesian, et ) > 54 oo o a5 alies U wlol p gd S8 S5 b 5 ods w)
.@l., 2017

Jie 59T 53 T Sl eslizal 31 43 500 & 55 L das o G S s 50 sk opl o
58Sl By bl Shy K Ligd jotie b1 sla Shs bods Sbj)l
ﬁw\itwh;}udlﬁw@lfbgabcgﬁ;)\itg.uw%QTﬁ
g oty b S5 G S s Lo 5 L g LI A L (3L

3503 3 g e sl S 55 Sl 5 15 Sl Sy 8L sl ke sla s,
3 RIS L S5 51K a (Kaaes 0155 o Il o josle s .(Heaton, 2016)
Sl (er (5 A LS 2 S5y 5038wl |y (s F e b e
Sl S5 5l Sl S Bl 1y clish oo Lo 57 6,503 (S35 Ly b il

1l 25 g 0T (Stas bl i X = [X7, o Xp] S o
P11 " Pin

_ cov(X,, X])
nn —
’ XO'iXO'j

Corr(X) = ()

Pn1 " Pnn _ _
Ed> Q;ﬁFL;E.S-VA sdasOLi Py palae 5855 o3Il X Sower s Sle 5o
S Aoy o bV S wlul s (Nargesian, et al., 2017) Cualj 50 juice 55 53

1.GPT

2. OpenAl

3. ChatGPT

4. Co-Linearity



14| 08 5 b gy o

ST L 5o 5 41 (oo i (S iy 5 o goe Ak O e P ES
wtr  Soean sl 55 35 b 5 Ks galaml sla ety sle imen )l
L3 am pl 5 el 48 gazes pl s (1)) dgwlrffj.ij@.aa\fd)}bq

RGSw| 6:@‘ Q‘MW‘, \A&)}.‘J L: QT s"_j;l.k.nj ol LGJJTC‘? Lg\.hc:‘) Cowe

(YOXY — Yoon) Ol ) golal sla jasls  Kiwmen Hls 50 ¥ K3

-1.0
(W) 31T 13 53 Y5 Cuasd
-08
I ... ..“ .
-06
e ... .. ..
-04
-0.2
-0.0
e /W"M... .
-0.2
(aSido 0 ¥5) i cand - 0.1
-0.4
(Y5 3)lilse) 555l l53 0.63 1.00 0.16
-0.6

e .-.-.- - - -
" "

(%) pag5 &5
(8 oS &5
(%) Sy by

OV 2,lde) (5501 >3

(JUy) ST l3L 3 Y5 Cuasd
(9 sl pallsb sgs 3,
(V3 5,lk0) (5,25 515
(Sl o HV5) Cas Caond

(215 LalBL agi 51 %) osas Loy

o gbeasl sl

@V (Sor Gl 7516 9) SaK LS ol gla e g ¢ K03 alts

J.<;.\§a 4yl “;S;"L‘B Loy 5 (paes AL b i ¥ Ji.:' bl ls
T 51 S5 il 503,50 ol dis 4 (g DMl b e pl ¢ ol ol .l as e
Il lad LialS jskie w655 i 5Ll SIS Jie s Shas 5 5550 (5l 5



VEOE Ol [ Vo oplei | ¥ Jlo | Ot solasdl @la iags | VY-

s Ly an S 93 ol w8 Cdo 1y s s ol 3l S 0l e el

6:%: Jae Y-0
Calises sladus .ﬁ\cJ}A)‘T 3 Solwesly |y salibes gladde ccanle Jie Sl (4l
33 G @A Ol gy dlins Jgl Sl 3 6l 033 55 50T alius 51 Sl 53 6l
sl o dd o O e S5 s &K Ol iy alis (p33 T 53 5 odd w5 L
B0 Jsl g5 ilo osls 25 5T 0313 ¢ 55 33 b adube cadl 516 pa (61 oot
Ll 03 2o (glaosls o gMeay (gade glaosls ful £95 F 5 9 S slresls Jols
w,ﬁ1,,\,5\}”@\&;Eﬁlﬁwﬁﬁsw\mﬁww‘p;
-

S ol Sls il il pdle (S al SIS gladie S ol 4
(Khan, et al., 2023) 6,105 wlie o151 5 55 5 ocomn Jilws o NARPAERS,
o313 4 ladie opl 31 &K a LIS .ol ol oslital Gree (5,850 (slade I 11
Obe 51 a5ls (Soey Jia 35587 ikS omen 5 Je b b 5 olems ¢8558
bl glag w5 Slj slresls b L8 ol lawl 51 aS il L;J:f.sl.i sl
o 31 6,8 o 5 53 551, Sled Glas e 5 Wesls g 55 35 ge Lalgy clileds
Gladty 5 ol Dol oS sl " 2585l ae ladSs dde ol op 55 ,me
.VUJ;@ Sl omee et o 05 s bl o) soled Aea ® 156509 s gsuf)b

Lsls 35 5 6 e B Ly St ladde (55 50 s S5 slade x4
S5 & joysiei s Solene e Sadie & Ol 0 6T o Fpr dhazll &S
Joe s o AT 51057 05l clilos o3l by T Gl » S 057 M

1. Support Vector Machine (SVM)

2. Random Forest (RF)

3. Recurrent Neural Network (RNN)
4. Long Short-Term Memory (LSTM)
5. Gated Recurrent Unit (GRU)



VY| O g by o

S 3,805 b5 ST b g s Doty (e ol 3585 0L 53) Fger
el o S5 aalsl 53 0T SIS =4S o oslizl 35
WLlodd 385 02 5 55 eT (6 jlmesly i b lize ladile o 555 2 caslsl 5o
S5l sladsly Jue 5 ol s s 6E 55 S Je 34 se gladis Ol o
S Jbe STl Llazils Calides (gla g sl 53 1) aoma o g 4 b gs Hls05055s
(213 (o o OT 0 ol din &5 Aile g 039 o 2ns 53 ST 081 G2 b [JE gy
Wl ol 25 Jde (2 O iy 46 b3 10515 58 3L gladsl 5 e aalsl s

& bgs laeilgys iS5k gladsly Jds X¥-0-)
e & s Juto ) o 2,8 0 3T AT (e SLaaS 0 05 53 Ja !
ST o cos oslial s sla_iags ST 534S T4 bgs dil Sokaols S aladl
Sleslizal 5 S 5 s 4 oalgii Jue e (Seabe, et al., 2023) col 0T YL
Sivaih JB Tlaosls Gl LSS o3 cmite 5 hiseT T o esl ¢l
.(Liu, etal., 2020) e

@315 (glols Je ol ol s nls 2ol A Ko 5 o eslizul Jie S ket L
3a3;¢él.:)>\)4:}if)'j)f4{bﬁf Glrosls al o 8 j3 a8 Sl dly b al> s
Ol 5 st 2 sl IS s a1y Jde sl jzel )l b a0 s 0T el
ST STT R (A3 Jew ly[t=f+1, ..t —=1] o5L 45 35,5 pslas
Ll aelsl ol B d5y Slayiasa Lish oo Sasa (e gllas Olje lal 2 0
Sl 4 b g bl 2ol Jie Jigme 55eT 0)50 dizr 1l & e sl It oS
GUA{@U@‘ Ll ol o3l il ¥ Ahg\))zllz;cb'..uj ol (o a5 Jsd 3 ) 40
(il T3 55 cnlin Sllows sa 855 s 4 5 035 Copme  Jlize o5 5T
2 ¥E 5 dde Gt P daly ol 53 el e pa sl G WIST filus o

1. Access Point Interface (API)
2. Recurrent Neural Networks
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1. Multi Layer Perceptron (MLP)
2. Fully Connected

3. SoftMax

4. Binary

5. Configuration



VEOR Ol | Vo oledi | ¥ Jlo | O ) sslasdl sla ings | VYE

sk oy gty 4,b55 13050553 2285k ladaly Je 51 4Y ¥ e (golens 3
Jde cpl 5 Ga5ls  dslg FY ca a ys iomes (ol ol wjfjla;).sr.a 3 ok
el 0l w;)b 33

Sl 5 e aslizal (631l 3 ST 1 e 3t 1 6,8 sk skt 4
RGO P Ik N PO PRV M FRVA S5 RGPPSR PP

Jrate Lles @Y Y by 5lse3l555 (25550 Sl slaa¥ 5 glazty JUis &
b ormer Sl 0dd 5 a5 )3 09,5 YOF JIFF 4 a3 o el esls Ll 3
bt b O 85 S 55 s 2 Y ol ) b Ol sl Gl 5l de
Ll 0kt Bl Ty 508 el S S Ll s s A Y G

s gdoe 5 (SIS 0l b cmlie Tams o311 cdde 55 5eT yshite w
s [le —3.1e — 4] o3b s &Sl FF 5 oks OBl FF LYY caliils 5 o
Ll 05N Sosel o Ver jSham 500 Blas Jue oS 35507 (6l Tl 0l
23 €38 b (Silukings (Sl 25 g paintie Jde 1 Bon Londy olal  GB5 s
Wl 0k o3lizal By = +/298 5By = +/4 (la eyl b plsT jlosigs 1 eJoke

U st WS o gl 5 st Sl o 80 w5 0 g 8 - 51 U
S posde Wibe 23l b 3168 sl 5 slite 4 Tl ol alons olize g5 5T
o Jame Ll sl s (Lojs 2al) YU faw Sl edd S5 (o510,
) ol oslawl

ks NS s (5,108 U F0-Y
Mﬁ}&.ﬂh‘@)ﬁ))})‘tj Mﬁﬂbuﬂ J‘.’."L‘: l"‘".’.‘)" L;)‘fﬂj‘)jb;ﬁ
ﬁ‘w;JEJJWJMWJJw%CMQ‘

T 10 31 eSOl uds i (gl 6 iSO 9o b slre (WIS &S5 @

yA U/'/au:ag)\j::ﬂ‘ L;\quw%)} °

1. Rectifier Linear Unite (ReLU)
2. Sigmoid

3. Batch Size

4. L2 Regularization
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3. Test Set
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1. Cross-Validation

2. Mean Absolute Error (MAE)
3. Mean Squared Error (MSE)
4. Accuracy

5. Confusion Matrix
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