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Abstract

The current study employed a comparative analytical framework to
examine credit-default prediction. It relied on a comprehensive dataset
of 56,965 loan contracts issued between 2019 and 2024 across the
northern branches of Bank Melli Iran. Three modeling approaches were
evaluated: traditional logistic regression and two ensemble machine
learning methods—random forest (RF) and extreme gradient boosting
(XGBoost). The analysis incorporated 29 predictive features
categorized into three conceptual groups: loan contract characteristics
(e.g., principal amount, repayment tenure, collateral type), borrower
attributes (e.g., age, occupational profile, credit history), and
institutional factors (e.g., branch location, branch type). Data
preprocessing included outlier removal, text categorization, and the
extraction of variables such as age and grace period. The models were
evaluated under both baseline and optimized (hyperparameter-tuned)
settings. The results showed that the machine learning models
substantially outperformed the conventional logistic regression model.
XGBoost delivered the highest discriminatory power (ROC-AUC =
99.73%), followed closely by RF (99.68%), whereas logistic regression
lagged significantly (75.34%). On average, the AUC difference
between the machine learning models and logistic regression was
approximately 0.243, and statistical tests with 95% confidence intervals
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confirmed the significance of this gap. Overall, the findings provided
strong evidence for the superior reliability of machine learning
approaches in forecasting loan default.

1. Introduction

Although traditional econometric models such as logistic regression
have long served as the foundation of credit scoring systems, their
reliance on linearity assumptions and error independence limits their
ability to capture the complex, nonlinear patterns typical of financial
data. These limitations are further compounded by sensitivity to
multicollinearity and distributional assumptions that are frequently
inconsistent with real-world conditions. The present research aimed to
address these shortcomings by conducting a rigorous comparative
analysis of predictive methodologies within Iran’s banking sector—a
context in which machine learning applications remain relatively
underutilized despite widespread global adoption of artificial
intelligence in finance. Specifically, the study intended to compare the
performance of two ensemble learning techniques ( i.e., random forest
and extreme gradient boosting or XGBoost), with that of conventional
logistic regression in forecasting loan defaults using extensive real-
world data from Bank Melli Iran. The methodological advantages of
machine learning approaches arise from their ability to model complex
nonlinear relationships without requiring predefined functional forms,
to automatically capture variable interactions through hierarchical
partitioning, to maintain robustness in the presence of outliers and non-
normal distributions, and to detect subtle patterns in high-dimensional
data that escape parametric detection. By systematically evaluating
these capabilities, the current study tried to offer empirical evidence to
support financial institutions in adopting more advanced and reliable
risk modeling frameworks.

2. Materials and Methods

The selection of predictive models in this study is informed by
theoretical foundations, empirical literature, and practical forecasting
capabilities. Three distinct modeling approaches—random forest (RF),
extreme gradient boosting (XGBoost), and logistic regression (LR)—
were employed to evaluate their effectiveness in predicting loan
defaults. As a widely used ensemble learning algorithm, random forest
(RF) builds multiple decision trees using bootstrap aggregating and
random subsets of observations and features. Each tree is trained
independently, and final predictions are obtained through majority
voting (classification) or averaging (regression). This structure reduces
overfitting and improves generalization compared to single decision
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trees. XGBoost is an advanced gradient boosting algorithm known for
its efficiency and high predictive accuracy. XGBoost constructs trees
sequentially, with each new tree reducing the residual errors of the
ensemble through gradient descent optimization. Rooted in the logistic
function and formalized in modern choice modeling, logistic regression
improves on linear probability models by mapping predictions to the
[0,1] interval via a sigmoid transformation. Although valued for its
interpretability, conventional econometric models such as logistic
regression suffer from a series limitations, including linearity
assumptions, limited interaction detection, multicollinearity sensitivity,
and distributional constraints. These methodological constraints
potentially compromise predictive performance in complex, non-linear
domains such as credit risk assessment.

3. Results and Discussion

The machine learning models were evaluated under two configurations:
a baseline setting using default parameters and an optimized setting
using hyperparameter tuning. Hyperparameters—settings external to
the model that are not learned from data—strongly influence predictive
accuracy, computational efficiency, and generalization. Suboptimal
hyperparameter selection can lead to underfitting or overfitting, thereby
compromising model performance. Common optimization strategies
include grid search, random search, and Bayesian optimization.
Empirical evidence shows that random search is often more efficient in
high-dimensional spaces (Bergstra & Bengio, 2012). Although default
parameters may Yield reasonable baseline performance, they rarely
yield optimal performance (Probst et al., 2019). Prior research suggests
that systematic tuning can increase accuracy by 10-20% (Hutter et al.,
2019) and improve generalization (Liao et al., 2018). In this study,
hyperparameters were optimized to maximize the area under the curve
(AUC), a standard practice in credit risk modeling (Feurer et al., 2015).
This approach can reduce prediction errors and enhance model stability
in ensemble methods. The empirical results revealed substantial
performance improvements through hyperparameter optimization. For
the RF model, accuracy increased from 96% in the untuned
configuration to 99% after tuning, with a notable reduction in false
negatives and improved precision, albeit with a slight decline in recall
for the default class. The optimized XGBoost model—using 375 trees,
a maximum depth of 12, and a learning rate of 0.03—achieved the
lowest false-negative and false-positive rates, offering an optimal
balance between learning capacity and predictive accuracy. In contrast,
logistic regression showed limited discriminatory power, with a recall
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of 0.16 and a ROC-AUC of 0.75, indicating inherent limitations in
capturing the complex patterns associated with default events.

Random Forest Model (With Random Forest Model (Without
Hyperparameter Tuning) Hyperparameter Tuning)
(XGBoost) Model (With Hyperparameter (XGBoost) Model (Without
Tuning) Hyperparameter Tuning)

Logistic Regression Model
Source: Research Results
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Summary of Model Results

ROC- (2503’0;3) ?Eéfﬁ Recal  Reall precsin  Precion  acoipacy  State  Model
0/935 098 0/88 099 0/83 0/98 0/94 97% Unoptimized RF
0/9968 099 0/95 099 094 099 0/97 99% Optimized RF
0/9966 099 0/90 0/99 0/85 0/99 0/96 98% Unoptimized XGBOOST
0/9973 099 0/92 0/99 0/88 0/99 0/97 99% Optimized ~ XGBOOST
0/7534 098 0/27 0/98 0/16 0/96 0/90 96% - LR

Source: Research Results

4. Conclusion

The empirical results of this study demonstrates the superior predictive
capabilities of machine learning methods—particularly XGBoost)—
compared with conventional econometric approaches for estimating the
probability of default (PD) in Bank Melli Iran’s loan portfolio. This
performance gap primarily arises from machine learning algorithms’
ability to capture nonlinear relationships and latent structural patterns
among default determinants—features that linear parametric models are
unable to detect. Model precision was evaluated using several metrics,
including confusion matrix analysis, total accuracy, and area under the
ROC Curve (AUC). The findings indicated that machine learning
models deliver substantially higher predictive precision and improved
default detection rates. The optimized XGBoost model achieved
outstanding performance (accuracy = 99%, AUC = 0.9973), far
surpassing the logistic regression model’s ability to identify default
cases (recall = 0.16). This distinct performance disparity strongly
supports the research hypothesis regarding the comparative advantage
of machine learning in PD estimation. Despite their superior predictive
performance, the operational deployment of advanced machine learning
techniques in financial institutions remains constrained by two key
challenges: the computational complexity of hyperparameter
optimization and the interpretability limitations inherent in black-box
models. These limitations highlight the practical importance of
developing hybrid frameworks that integrate the interpretive
transparency of traditional methods with the predictive power of
machine learning approaches. This research provided evidence of a
paradigm shift in credit risk analytics, moving away from the long-
standing reliance on conventional statistical models (such as logistic
regression and linear probability models) toward machine learning
methodologies. While prior studies using traditional techniques
achieved moderate success, their limitations in handling imbalanced
distributions and complex interaction effects have become increasingly
apparent. The present findings align with international research trends
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and offer novel empirical evidence from Iran’s banking sector—
demonstrating that well-tuned machine learning algorithms can achieve
unprecedented levels of accuracy (99% accuracy compared with a 16%
default identification rate for logistic regression).

Keywords: Probability of Loan Default, Credit Risk, Machine
Learning, Random Forest Model, XGBoost Model
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