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The role of the insurance industry is changing nowadays. The reason
is that companies are using new analytical methods to predict losses and risks, and these methods
help them assess potential risks. In this era, traditional business models and old methods have always
been under threat from technology. New insurance companies are using the power of innovative
technologies to eliminate the traditional leaders of the insurance market. The protection provided to
the insured against risks and the proposed solutions provided to deal with risks are obtained through
services designed to identify potential risks, and these services can be used to warn of danger (in high-
risk cases). As a result, these services will be the most important distinction of these companies and
the key to their success in the future. Powerful artificial intelligence and analysis of large volumes of big
data give insurers the power to move towards predicting losses and incidents. The more information
insurance companies have about their policyholders, the better they can use these valuable data to
predict policyholders” behavior and create a historical profile for each individual, thereby reducing the
volume of claims and associated risks. Insurance companies enjoying leverage innovative technologies
have a significant opportunity for growth. However, those that continue to rely on basic questions
such as age, gender, and occupation to determine premiums are unlikely to survive in the digital era
and amidst the rise of insurtech. Insurers that fail to adopt predictive analytics and continue to use
outdated traditional systems may experience longer delays in processing and paying claims compared
to innovative companies. This gap will allow tech-driven insurers to attract more customers and cover
a wider range of policyholders in the long term. Insurance data often contains nonlinear and complex
relationships that simple models—such as linear regression or decision trees—cannot fully capture
or model effectively. These companies are also faced with vast volumes of data. Traditional methods
such as general linear models often fail to identify complex patterns in insurance data. Therefore,
we seek to improve existing methods by applying modern techniques such as deep learning, since
deep neural networks can more accurately identify complex patterns in insurance data, process large
datasets efficiently, and uncover hidden insights. Deep learning, with the ability to identify nonlinear
relationships and complex patterns, can overcome these limitations. In this paper, a method to improve
the performance of deep learning using sequential deep regression techniques is presented. The
proposed approach is a combination of deep learning and sequential models. Long Short-Term Memory
(LSTM) neural networks are used to model time series data.

In this study, data spanning the past seven years from Alborz Insurance Company—
specifically related to the issuance and loss records of fire insurance policies—has been systematically
utilized to analyze and forecast potential losses in this domain. The methodology places a strong
emphasis on comprehensive data pre-processing, including cleaning, normalization, and transformation
to ensure the reliability and quality of the input data. In the feature engineering stage, various
techniques were applied to extract the most informative and relevant attributes from the raw dataset.
Out of a total of 40 initially selected features, the top 20 features were identified through statistical
analysis and machine learning-based selection methods. These refined features were then used to train
the deep learning models. The proposed method is a hybrid approach that combines deep learning
with sequential modeling techniques. Specifically, Long Short-Term Memory (LSTM) neural networks
were employed due to their ability to capture time-dependent patterns in sequential data, making them
particularly suitable for modeling the temporal dynamics inherent in insurance data over multiple years.

The study involved the evaluation and comparison of multiple machine learning algorithms,
including traditional models and advanced deep learning techniques. The results demonstrated that the
proposed sequential deep regression approach significantly outperforms conventional models such as
general linear models and decision trees. Notably, the LSTM-based model provided higher prediction
accuracy and demonstrated superior performance in identifying complex, nonlinear patterns within
the data. Key findings highlight the critical role of temporal features in enhancing prediction reliability
and show that incorporating time series analysis is essential for improving the accuracy of damage
occurrence forecasts in fire insurance.

The results of this research underscore the effectiveness of combining deep learning
techniques with sequential models for predicting fire insurance losses. Using the confidential and
comprehensive issuance and claims dataset from Alborz Insurance Company over seven years, the
proposed hybrid model was capable of delivering better performance in comparison to previous
methods. The approach not only improved the precision of predictions but also offered a more robust
and scalable solution for risk assessment. Overall, the use of LSTM-based deep learning models
represents a significant advancement in the insurance industry’s ability to make data-driven decisions
regarding premium setting, policy issuance, and risk mitigation strategies.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). @ ®
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Fig. 1. Sample research dataset
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Fig. 4. Extracted features after the feature extraction
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Fig. 5. Implementing a deep learning algorithm with the relue function

YAQ
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1 0.2701, Test Accuracy: 0.8785
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:0.2575, Test Accuracy: 0.8350
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Fig. 6. Implementing a deep learning algorithm with the Switch function
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Fig. 7. Comparison of deep learning algorithm parameters with the two Relu and Swish methods
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Fig. 8. Implementing a deep learning algorithm with the swish and relue functions
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