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Abstract

Artificial intelligence (AI) and machine learning (ML) have emerged as

transformative tools in preserving, analyzing, and representing cultural

heritage and arts. This article provides a systematic and comprehensive

review of Al applications in this domain, exploring their potential to Knowledge of
address longstanding challenges such as natural degradation, limited Conservation and
accessibility, and complex documentation. By integrating classical and Restoration
advanced ML algorithms, we examine case studies including the Time
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Machine Europe project, the Ithaca model for ancient Greek texts, and
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metaverse-based heritage digitization. These initiatives demonstrate Serial_No.21,
AT’s capacity to enhance precision, speed, and interactivity in heritage
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tasks, from virtual reconstruction to multimodal data analysis. However, tps://kerric
limitations such as data quality, ethical concerns, and computational
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complexity pose significant barriers to widespread adoption. Emerging

technologies like non-fungible tokens (NFTs), prompt engineering, and Cottesponding Author

quantum Al are highlighted as future directions that promise further .
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innovation. This study underscores the need for interdisciplinary

collaboration and ethical frameworks to ensure sustainable advancements, Assistant Machine Learning
offering a roadmap for researchers and policymakers in the digital era. Researcher, NOAI, Tehran,
Iran.
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Introduction

As tangible and intangible testaments to human
history, cultural heritage and arts face persistent
threats from natural decay, human-induced
damage, and restricted access. These challenges
impede preservation efforts and limit global
engagement with historical artifacts and traditions
(Fiorucci etal., 2020). Artificial intelligence, with its
ability to process multimodal data—ranging from
hyperspectral imaging to genomic sequences—
offers innovative solutions to safeguard and
reinterpret this heritage (Picollo et al.,, 2020).
Beyond technical utility, Al redefines human
interaction with the past through immersive
technologies like the metaverse and generative
models that recreate lost cultural elements
(Buragohain et al., 2024). This article aims to
synthesize the role of Al and ML in cultural
heritage, addressing three core questions: How
can Al mitigate preservation and accessibility
challenges? What are its current limitations? How
can it foster sustainable heritage management? By
analyzing algorithms, flagship projects, and future
trends, we provide a holistic perspective on Al’s

transformative impact.

AI and ML: Concepts and Techniques

Al a branch of computer science, simulates
human cognitive functions such as learning,
reasoning, and petrception through mathematical
models rooted in optimization and probability
(Russell & Norvig, 2021). Machine learning, its
primary subset, leverages algorithms to extract
patterns from data by minimizing cost functions,
such as ...... (Goodfellow et al., 2016). Key ML
Learning paradigms include:

1. Supervised Learning utilizes labeled

datasets to train models such as Support Vector
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Machines (SVMs) and Convolutional Neural
Networks (CNNs) for tasks like classification
and regression (Hastie et al., 2009). For example,
regression tasks often minimize a loss function
such as L(0)=1/n};—1(y;-y;")* CNNs, on the
other hand, can classify artistic styles with high
accuracy (Li & Zhang, 2024).

2. Unsupervised Learning: Identifies
hidden structures using methods like K-Means
clustering and Generative Adversarial Networks
(GANs), applied in texture reconstruction

(Fiorucci et al., 2020).

3. Reinforcement Learning: Optimizes
decision-making via reward-based systems like
Deep Q-Networks (DQN), guiding virtual
agents in heritage simulations (Sutton & Barto,
2018).

These techniques operate on diverse data types—
numerical (e.g., XRE, Molecular Analysis), Signal
(e.g.,, chemical spectra), textual (e.g., inscriptions),
and visual (e.g, RGB images)—forming the

backbone of Al applications in cultural heritage.

Applications in Cultural Heritage

Als versatility spans multiple dimensions of

heritage preservation and analysis:

- Computer Vision: CNNs and Vision
Transformers restore damaged artworks,
such as frescoes, and detect forgeries with
high precision, leveraging pixel-level feature

extraction (Gaber et al, 2023).

- Natural Language Processing (INLP):
Models like BERT and GPT decode ancient
texts and generate interactive narratives,

enhancing museum expetiences (Koutsoudis et
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al, 2023).

- Numerical and Spectral Analysis: PCA and
SVM analyze material compositions via XRF
spectroscopy, revealing artifact properties non-
invasively (Reich et al., 2023).

- Robotics: Projects like RePAIR employ
reinforcement learning (e.g,, PPO) to automate
physical reassembly of fragmented artifacts
(RePAIR  Project, n.d.).

Virtual
environments integrate CNNs and GANs to

- Metaverse  Applications:
recreate historical sites, offering immersive

educational platforms (Buragohain et al., 2024).

These applications demonstrate Al’s ability to
bridge physical and digital realms, amplifying both

preservation and public engagement.

Flagship Projects

Several high-profile initiatives exemplify Al’s

potential:

1. Time Machine Europe: This ambitious
project digitizes FEuropean history using
TrOCR for text recognition, StyleGAN for
map restoration, and Graph Neural Networks
(GNNs) for social network reconstruction.
Subprojects like Venice Time Machine achieve
%80 accuracy in digitizing Venetian archives,
enabling temporal urban analysis (Time Machine
Europe, 2025).

2. Ithaca: Targeting ancient Greek inscriptions,
Ithaca employs deep neural networks to restore
texts (%061 accuracy), attribute geographic
origins (%062), and date artifacts (%71),
augmenting human expertise to %72 precision
(Assael et al., 2022).

3. RePAIR: Combining robotics and Al, this

project uses U-Net and GANSs to reassemble
Pompeii frescoes, reducing manual labor and

enhancing accuracy (RePAIR Project, n.d.).

4. Metaverse Digitization: Buragohain et al.
(2024) integrate Transformers and DQN to
create interactive heritage experiences, such
as virtual Pompeii, balancing tangible and

intangible elements.

These projects highlight Al’s capacity to integrate
interdisciplinary data, offering scalable solutions

for heritage tasks.

Challenges and Limitations
Despite its promise, Al faces significant hurdles:

- Data Quality: Incomplete or noisy datasets
undermine model accuracy, as seen in metaverse
reconstructions requiring precise historical

mputs (Buragohain et al., 2023).

- Ethical Concerns: Al-generated restorations
risk distorting cultural authenticity, raising
questions about ownership and representation
(Fiorucci et al., 2022).

- Cost and Accessibility: High computational
demands and infrastructure costs limit adoption,

particularly for smaller institutions (Marchello
et al., 2023).

- Computational Complexity: Deep learning

models  necessitate  advanced  hardware,
constraining  scalability in resource-limited

settings (Goodfellow et al, 2016).

- Bias and Interpretability: Opaque algorithms
may produce biased outputs, especially in

culturally nuanced contexts like ancient texts
(Chen & Wang, 2023).

Addressing these challenges requires robust
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data pipelines, ethical guidelines, and affordable

technological  solutions.

Future Directions

- Emerging Al technologies offer transformative

potential for cultural heritage:

- Metaverse and VR/AR: Advanced
simulations enhance user immersion, integrating

tangible and intangible heritage.

- NFTs: Blockchain-based tokens ensure digital
authenticity and ownership, revolutionizing

heritage monetization.

- Prompt  Engineering:  Optimized
interactions with language models improve

content generation for educational purposes

- Quantum AI: Quantum computing could
accelerate complex analyses, such as genomic or

spectral data processing.

- IoT and Predictive Conservation: Sensor-
driven Al predicts environmental threats,

enabling proactive preservation.

These innovations, grounded in advanced
optimization and multimodal integration, promise
a future where heritage is both preserved and

dynamically  experienced.

Conclusion

Al and ML have redefined cultural heritage
management by enhancing precision, accessibility,
and interactivity. Projects like Time Machine
Europe and Ithaca illustrate their capacity to
unlock hidden historical insights, while metaverse
applications bridge past and present (Time
Machine Europe, 2025; Assael et al, 2022;
Buragohain et al., 2024). Yet, challenges such as

data scarcity, ethical dilemmas, and computational
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barriers necessitate interdisciplinary collaboration
and standardized frameworks (Fiorucci et al.,
2020). As emerging technologies like quantum Al
and NFTs mature, they hold the potential to create
a sustainable, digital heritage ecosystem (Stubli¢ et
al., 2023). This study provides a comprehensive
foundation for researchers and conservationists,
advocating for responsible Al deployment to

safeguard humanity’s cultural legacy.
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Techniques that enable computers to imitate human intelligence

MACHINE LEARNING

Techniques that enable computers to improve with experience
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Algorithms that enable machines to train
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networks to vast datasets

NEURAL
NETWORKS

[(Kastelan et al,, 2022) 4l polic g ALY JS5
Figure 3. Al and Its Elements (Kastelan et al., 2022).
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Figure 13. Components and function of transformer network architecture (Bishop & Bishop, 2024a).
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Figure 14. Autoencoder-based algorithm architecture (Autoencoder in Deep Learning, n.d.).
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Figure 16. Reconstruction of the missing parts of Rembrandt's The Night Watch using CNN-based algorithms.
These algorithms analyzed existing images and learned Rembrandt's painting style and techniques to accurately and

precisely reconstruct the lost sections (Art et al., n.d.).
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Figure 17. Examples of Al-assisted visual inspection systems for surface defects: (left) use of YOLO for detecting
surface damage in a case study, (right) identification of damage caused by efflorescence and flaking (Mishra &
Lourenco, 2024).
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Figure 18. (Left) Faster R-CNN model for crack detection (light red boxes, bright red boxes), (right) classification of
five types of damage for cultural heritage (CH) in Macau (Mishra & Lourengo, 2024).
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Figure 19. Detection and analysis of forgery using CNN-based networks in Rembrandt's works (right, center:
previously attributed to him) and Salvator Mundi (left). Heatmaps highlight areas where the classifier has identified
with high probability that the right and left works were painted by artists associated with the original. However, the

second work attributed to Rembrandt does not exhibit the thermal pattern consistent with his style

(This AI Can Spot an Art Forgery - IEEE Spectrum, n.d.).

Lasaponara) 4S8 s caiS |y Lasdls g Lajley o il
(& Masini, 2012

ol (gy9ld ol g sl )8 51 (S
wolidlinl ladbge [Kds 5 (ca_ddb o
9 Yl_) C?“"? l_, dlo)b_ml.n )_>9L.a.> )‘ odla_wl l_: Sl

oslai_wl Ly (Remote Sensing) 93 5l ionw .o ad 0
L S 0 edie Sliwl ladbsse olwlis

J=los L gy ol A S o pl B 1) LS i S
&)Udb)bu¢flﬁ5wﬁl_idupo\)_@



o 39 CapmBly B Lol by (sbog) jleyim g (Ko jd lyne ) (ogiumn yogm (clad )l g wuplie p gals Ll

Sl S i o slaedh a o ac
by 5y eddoldy (bbbl la Sy
Aadlogoen 503, 5 iy o Ly oL
g Sly S S |, A g ad_bazslis M5 S
o 5WwaS 5 3, IS (Zhang et al 2024) o), K,
ol liwly (gl (saipunds ;3 1) YOLOVS
G 5 Ao ol le—a ) gl i Lok
sl bl (3 d9—e )3 |y r—dle £ —50L
5| o glmodly pleal cslys j0 05,8 dl s
Cblis g gl (gjluodiins 4o (Sgtuas (g Ly
S (Singp e i il Sy §
9 bz ljlyale yglal S 5l 03, S
@)l Sl (ypile (6550 sl oI L (il ]
03,5 el 1) (e ladbge Spolins C e g
Q]A_.»‘A.e('»' )_g]).g Pl LmAJo?:u Q_ﬂ as A2 o L‘)l_;.:.ojol 9
5 925 dig—ii e clilone Sl g aomec s
b2, (Argyrou and Agapiou 2022) 45|
 eoliglinly 13 )93 jl pioxiw g (S9—iuas (b
Jeblis 1l Lagl oS 5 Jsliy 5 1505 55
ol lwlid A8 ST Sim b ely
LS 3l edlii il L Lable olesy (a3l
ety sy iyl (S (ML) ile (62530
ool el Yz (il dlils goj5>
S8ty sl oSl adllas (ol )3 ¥+ JS 5
sbrojlw 5 oS olwlid (gl (dle 5 )50k
015 odlit_sl Lo Sl (sl nabogoms )3 5oils
959 slpodld laie 4 glad bl 1 glai .l
5 Slogad Sy ay lagSs ] o a8 wia s ow
Wiloa s 0aly s Abw ) ay (go-dls slaojlw
Muluchtzekel (MLS). (galogzes dw ;0 byl 4]
Puuc gddlais p» (Huntichmul (HNT 4 (Sayil (SAY
il gl 5 ol (S 380 (i 5y
i i 2 Uley Huntichmul (g4 by )
ol slaojlw g g 35> gl gl |,
5 st St i S gl Ao LS
ol y sl 59y y— b S slaS—uls
Mbw g (slog0d Lo ssns i eold I, 8
sbrojlw g S (dej Cdids (sljpe i i
o ol 5 s 9 S o ey sl

s sdS i u Sl puile (5,50 (slap )Nl
Sy elaobyy oLt (ges =55k 5 (CNN)
g Lo o ile Lo Shy (suaiws 5 lwlis
4 Lagygld ol asholy dewgy Sliwl la,kidluw
W o Lol 38l 1y Laodly Jloo ce pw g By Lyl
> 9 oz LSl olwlid Sl S,
S o sl 33 455l ol (L aogons

.(Luo et al.,, 2019)

S e y8,y555 oyl bl Mo 3l (S
P el sy o8 Llsa Lo WSe
Sil LiSaly 0y o (Souan (oob dise) oy
Cblis 5 il 3 (et g ol y ogde
o=l il eslewl Loyl 5,08 55 sliwl sladbexes
25k dn ol o 55 g (aome i (5 p5l8
Lugyl oload uilsl.(Agapiou et al,, 2020) 5,5 »
=L L Sy o1y 590 5l tomw l eslawl 55
e gz ol sy 9 03, sy olidlily
European) couwl oy oLis |y Kooy el baos )
5l pomiw oS 5 ¢ IS 9o 4y (Space Agency, 2021
slmiglinls 3 (S)im Jo20 (sg—uas i g 593

ol 03,5 o]

s glaly jo o)l g (sl S0 0,8
led b oildy bbbl v glay il eslar wl Ly .l
gyt (Gee (SLB3)S09) 9 Bes 5 =53k 3 )b
g3lso ge 38 Slwlid Sl il o S il
S plodl ) e slaojlw 1 3940 (sl
Pl pEmdg (oLl (Sl (ilis ) (=)
EBg0dy i blas lolidl g 0 S o prly8 1y (g 3L
Tzortzis et al) )| 555 g )93 dolad oo Jutud |
bl Jobou )3 1) alaby) otz (il (2022
plsal o5l 5 Aol s S iy cbles co g
shmr oeblo )=S0k Loy 4yl pgad (30—
s ogde A0S Ay |y S e 5 i lis
S5k Gk 3l alop s jaglal (cd im0
dl.maliu}ﬁ_m J—>i g AR @Mﬁ_ﬂ (o
maS s Jael Ly el 03,8 sl sl il



390 Sladbgoes (L) (i) (sl (slaojlo 5 (cslogad) oo () imle 655k b lable oy sl bl (oLl ¥+ JS5
.Huntichmul (Zhang et al., 2024) ;> zluzwl goli (Cul)) csllas

Figure 20. Identification of hidden Maya structures using machine learning: (left) platforms (brown) and circular
structures (white), (center) study sites, (right) inference results in Huntichmul (Zhang et al., 2024).
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Figure 22. Architecture of the Manchu music generation framework: (left) GAN, (center) VAE, (right) Transformer
(Chen et al., 2024).
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Figure 23. Challenges Associated with Traditional Monitoring (Top), Smart Assistant-Based Monitoring, and Aerial
Robotics (Bottom) (Mishra & Lourengo, 2024).
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Figure 24. Preservation and Promotion of the Wenzhou Blue Dyeing Tradition Using the LoRA Generative Model
Through Public Interactive Experience: (Top) Experimental process of implementation and production stages
(high-quality wood carving is used to create durable patterns by engraving floral designs. Indigo dye is primarily
extracted from plants such as Polygonum tinctorium or Isatis tinctoria). (Middle) Design of the application user
interface and motivation for audience engagement. (Bottom) Simulation of the interactive experience scenario,

where users can create patterns based on keywords and personal preferences, and share, save, or export their
creations (Wang & Zhou, 2025).
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Figure 25. Reconstruction of Venice's social connections through the content of a 1000-year historical document
collection using ML algotithms. (The "Time Machine" scans and digitizes millions of documents, recording 1000
years of history and enabling researchers to reconstruct social interactions and exchanges from centuries ago.) (The
‘Time Machine’ Reconstructing Ancient Venice’s Social Networks | Nature, n.d.).
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Figure 26. 3D visualization of historical interactive maps of Amsterdam: Time slider plugin in the Netherlands 3D
platform (Amsterdam Time Machine, n.d.).
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Figure 27. A model of 3D datasets from the interactive history project of Amsterdam

(Projects — Amsterdam Time Machine, n.d.).

9 J—d>0) Arran Benchmark Dataset 859
(LDAR 3l eolewl Ly Sbiwl cladboes oLl
Sylsbil (glaodlbdas ez ydgl I (S Arran o5g,—
Sleslawl Ly Skl sl aabgse (glwliss gl
Time Machine > 45 cwl LIDAR y5lad o3l
039)_3. L)—’| ol 4_.5; )])_9 odlas_wl 2)9—o Europe
Sl Lo Ko o 5 c B8 Do g 4 3390
Adlyl 5 Gl 0a b Ao AY LS plen yola o
Time) 1S oLl LIDAR (glaodly i, 3,k

.(Machine Europe, 2025

o3l 3 )50 ML (glaeiy 1550 5 Lo o

LiDAR j5bay (g yi5u (¢l U-Net 4 RetinaNet
sl linly sla Shy padeis g

5 Lasi5 ¢y Faster RCNN 5 YOLOVS
s ymgbal > Sl ladbgme ollSe
Ol gy 5lwjl g gol> o515 VAL
ol

b Sl (i (BICuws g (gjluwil 059, 1aoMS

timeslider in Netherlands 3D — Amsterdam Time

.(Machine, n.d
9 Laly (¢jlwjl) Paris Time Machine 2jg —;
Paris 039y i eyl V2 9 VA ()8 (oo (slaaS s
Goloxe Yo 55 (g5luwil o Jdow 4 Time Machine
cL;o._MB dl.tbd_mm L;Lmab u»l_w1 — °39)—3 L)—’l
0)9)_3 L)‘ﬂ] J._JsL;o )lf L,’.>:_))|.J)_)9Lw9 d).e‘_w .)L-.w‘
Iy ot drwgi glagSl g 08 (gilawjl (Jlized

(PTM, 2019) les Jlows jop0l ay L5 VA (), 3
03laiwl 5y90 ML (sl 65 4 b Joto

&= (Deep Q-Networks (DQN g s (5,50
e 5 3 4 A S s
SRS Syl

slals ilwil sl CycdeGAN 4 StyleGAN
)b sla uSe ceaS de g g Laly od
o olbls,lsbul 5l Knowledge Graphs g GNN's
s dags 3 13 55T o8l g Lo o S b o



oo ol 03ls dcgemme oyl Milosis (g yol3 5
E—an yobdy (Ji o Shieol dlyua S el
4508 48 5,50 0l wlel i L5 Ailod s a8
3 s ) S il |y onssis ola jis
0j5=> A )3 93,5 0 0y Bses (pas sbaaS

S o el L

ol 3ggds slb yisy (0, S s e (53l—wil
b g 5L slaeSl s il eslat ) U Laass

oS )55 oo (058 1t bl pir (B3Cums
Elimdy Sumw 9 S sl S iy polwl

I Ggte (5B (Sloj dgi (e 1 Il (PO

LS (glyome Joloos 3o b
Ithaca Jao a S 2> o ool Gioh ool mols
Sl ly 4adl e o FVY iy L cudly
Ol —idgh b wgi gjlwib e dya S Sy S
L Jae ol Sy g o 0 YO plpisay Sl
YWY ao ) il b (sl liawmsce il
o FY By b el Jas yioman b i34
ol b o VY cdo L g oldliss coadee
&1_3193 ol i gl o=l S ess |y Laais
L bsiyo odmgy (sLanitl,b 350 5 Ithaca (VU

S i 09y ol sladidly (1 e ) (S
el Py o > sile’s s Gl
P8 s sl (653 sl Jao 4 S by
Sladidos oS i oo Jol5 gjlsil 4o
=t o 3y Slas Jae sl g Ly Sl
Oig—R 45 A ad o LS Gioaghy ol e e 4l
lallas 5 (Sea8 g5 Glpieds 1l o (£9ume
o=l e 53,5 )1y 8 edlai il 3)90 (Ll pyle
Sl 1) oS inggy o Jlog sy g B

e ()l lidplinl g ()b

05— > 5 Sl slapl plow a3 lgi o

‘Jl_..o d‘)—f Do ol oS L?H)U B
b glaas Jolos » alie gla e jl odlaiul

lgs oo oy Y ato Ly (g pmaan slacadS s un ( S

O 0o il sl 48 33l o SLh
Sl slpanis sl tilej 5 ol Cabse
d)_:fo).ge l_’ JJ—A O—" ol 00 L?‘)—L’ UL‘—“’I’
WLk w0 SoS odmdeaw] (claasS i g
laas 1 glodyus (slaodly d_cgeze jl oalawl L
Cwl ).)Lg 9 el 04D L)")Hi guL._.wb u;l._;y
il YU cBs L 1y oo 00 Dg-t00 (sla yisy
et 3 Y iy L cuily <L Lo vl
Bl g )80 gyl aop VY cd L oLl s
Oiposy oyl S gilwib ) a8l e Ao £
Sl opgte alllas 11,8 5900y Ll 0 (Sl
39— yoxie 45 slaSinyd g )bl ye S

(Assacl et al., 2022)

3 S, by lnatS oo g adllao iyt
calid sl i pere j S s jlapd
Lmzbw.f U"‘ )l L;)L.».u.u ch_>ua"¢ L] 039 O_IQA
O—%e )] u.»l_huu.’x, 9 03D g,‘_u.»] uLA) Jﬁ_lo 5
il gt il il ol a8y Sl L]
B0l 5 elindplinl Sldllas ojp > )5 (o
L)")b)—’ 0359 o] Ls’l—“”‘ LngJ.J?o 9 L;.a_AaDU
835529y (s Qb GBig gt (5Ll 9 sl
(23 g (Siluwl Sl s 50k o it
A_S‘_sn ‘_,’_9)_590 |) Ithaca JJ._A 9 4_91.)); ‘_,’.:L_wb Cyg—e
pote Clallas L (egiae (9o 38D )5 pte (o6
IS o 00y 400 S a L , s Tthaca Ju s
Gl 00 03D L)")?“’—l LS’L—“’L’ L;’l—’?’ <\_.....5 VA;"A)l
Packard Humanities Institute Ale alio jl S



o aglie Candly b Ll il sbig) iyt 5 (Kin 8 Slye 13 (ogtuae (hen (a3 )8 g pulie o ol (il

COEMTO $ T O]
onEyqﬂg

/

':o@ENTONEOELIo,tf
‘Al O M EAQ///’\ _Q( f_}/&

g w';(-’

“’eeAl H EKATON’A’P’ZE:"

,‘L’

|€PEA |
EN Y NE Lo MEN RO 7
QY RO THAY KIEY
PR I %

A

éi/\F

lt‘A‘OJA?
I RAGEAS
ME///J\“’

*"t‘_@A ! }’

EKPOMIOMEAANAT “”;,‘.-:“
EA&AAENEANAE‘M;TCV—CQ

ENT | AT M!AOQEX“, 4.0 AN ME X 7
- //T(W) AM A 4 | oA | B ) T /A S ENM
SEMO POSMEHEXEN O 'KEX

- aﬁLng; ERHLALLE LONMEMECHTE 1148
£ 4 YE5GALEANABTI : TOY TOLT HAPAIE O/

E‘;YKA!TOé\\W % oA SEANEO

IEYOYNELOA cKA €
————TOIHEKATv ) .sfc «rNTosTAM'A MES S
NEZ OINSTEP | 4T /’C/’ ZO‘E’A‘i@AT

A,Emno"eak

g

T V'@ NVO-2

POAELK A |TH8

m

A’,\’E'\L’ I ‘T%OI ;’P/"\A_/~‘~;.

[ A HEN AL MEP?\G_

.(Ithaca (Assael etal., 2022 Jao b g 50l sloanis (oiloil YA USG5
Figure 28. Reconstruction of historical Greek inscriptions using the Ithaca model (Assael et al., 2022).
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Figure 29. Robotic reconstruction and restoration in the RePAIR project (RePAIR Project, n.d.).
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(Buragohain et al., 2024).

Yol | IFY 5ol | VY olo oyleds | ¥ osles | ptin Jlo



o oglie Sl U ol bl (sbg i g (Kin 8 Slyen 3 (ogiuan Shen sad )8 g wanlio ol (Julow

e G L (Fo—o il (sl generative Al
O ) ddyan 4 S a5 JLs (658 JliSlec
pic sl p» (Buragohain et al., 2023) ¢
=Sl ol Lot ol ) (659w 5 cudlid
Kol dm? 4 S 0 oo jlis L gy .l
asls yre Ly dleiel LB szl o ales o AT 9
o) 45 (Fb gte Jlod 3 0j g 09 poxie
o= (Chen & Wang, 2023) 1) (gla o Son)d
9 Al ansie yuw ()5 ad 4 njls Lacudgisxe
.L‘,_M:mej el ol (s el lwlis)ls

AT ,So00is1 (559Ud g 4 gy (5laD 0,157
Eguan (g g (B3 Sl o iylBg 5
g (Smb e ML g ALy Sios] i )6
J= sl by 5 y90bgi (sLas)5lid jloslail 4y
bis e clacis)d 515 g (L8 slaille
L )8 ol oyl o)Ll &l o gy g ¢ ow i awd
9 Sl (oo VR/ARNFET o olocdyiny
Egean (g i)y yoyglie chiasdon (glayliwd
Wl go 9 4 o g0 0t (10T) Ll s ol g ¢ gog-lsS
Bl )k g S |y (Sns claaes
S ol Cl (- Sae Lns 5l ol (5Ll
it sl (50555 Slalore 2 ilo j Sodny
bmodls Lo sy iy dnpie sloads Lo
l_m).iw) O—.’.l @l ul_:) L) AsS ool (R=>9
9 4 (o oS SailiiaSgn g Sy |) Lsodls
L Blgse8 slacsilamil Jte (s LK
D) o 3l Al yie cobles

85 Alsd ) B gy 90 Sl dy alie pg

S 35 4 Y

Do Lo ygld L8 (s dy d s )
S b &ly e 05> )3 ble (5,50b 5 (£5tuan
Lacsyglis ol 4 a0 Lo g sy ()
o=l L wlailys e 8l Jgo0 Ll olo—isa,
loiil 5 il bl slaayl ) ce i g ey
Sy Cagp b ) g sl gl o o)l LS

by S Ll 6 S%e i ()l 9o
sbaisyld gl (Sm b e (il Jlions
slacuod oisie glagill 3925l oyl e
St el ol 4l g s ]y ol
drwgd g cwlio (gladyaly S sl ad ol 8L,
sbad s ol wlgi o (£ g-tas (oo sLa)l)
Cblis )3 (ot i 9 1 S8 sl g (5
le Liglos ol gla s gy (S o

Y U""?‘“ d&&q‘bgm 9 Lbu.db. .0
(S92 3 Olao iy lbg 4

slacuoyd yin g (v Sl )3 (5ian (b
g dmosly Jow LT (o5lujl aile (¢ puS0lceS i
Lo Lol el on, S ol Lolws sladyo 315
3 S DS e b o il 5 S a8
Cwlrodld g g ot ¢ Lol Lo il
l2odly 4 (5 as (6 30b 0F e ( Eouas
Sy Sl e 0 Lol b Ls ed i ud g caSL
AL .))‘Jul.»_wl)& l_: ‘DJ_S])J sua_'él; u.LCl Lol
ey 4S5, S o) YoVY i o isios e
bl 4 a iy oo 38> (Sl Lsodl
.(Buragohain et al., 2023) >3 ,2vie Cydl
ol wl ol el g (IMET Plae (0> il
O 58S g=te JeSS Ly U1 ags (ol ATl
2 glaallas S (oaa e |y (Soms cllol el
s yiwd 5 4y 3a (Fiorucd et al., 2022) a3 451
YL do ol (55 cedgdone 30 (gl ay
L VR e a8y g (slagyglid S o o LS
5 4 pije SasS sl 5 Laojge (sl SiL
Jlow 3 (EiS M) paads g ca by 4 Sl
Ay Slas (o ypiwd g9udge il 45D, S Syeyy
Marchello et al.,) S 0 390> |y Jlizwd &l
OB dn s g Slwlxe [ Siome (wizmen (2023
laJso Mo sl (6,0 il YU b,y



6)9TH?)>:W9M Wy (9 9= D.’-;—Mhlss
U»)K_’ 9 (S 9—a0 L)»Q_Q w_dbl.mo J_JDU IS
S eS8l  Somyd ely e

claodls JJog 31 oD g phemniad (i o
F9—an Gign pplio Ly Lol 5ilai 5 (S
Sl o8l

)l 28l aL&S

360 g0 g ol ylols

Do ol pla slmosly (L0l A ow o
o yimwd JoB Olslo U g ol Baugs Lol o

Elpo (paass Canliyd mlis )

OmniArt: http://www.vistory-omniart.com/-
WikiArt: http:/ /wwwwikiart.org)/.
BAM: https://bam-dataset.org/.
Behance: https:/ /wwwbehance.net/.
Artstor: https:/ /wwwartstor.org/.
Europeana: https://www.europeana.cu/.
Web Gallery of Art: https:/ /www.wga.hu/.
Arran: https://github.com/ickramer/Arran.
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https://www.timemachine.eu/3dbigdataspace-
kicks-off-with-first-consortium-meeting-in-
trento/.

https:/ /ai4culture.cu/-

https:/ /www.timemachine.cu/events/ai4culture-
final-conference-exploring-the-future-of-ai-in-
cultural-heritage/.

2. Supervised Learning .

3. Deep Learning .

4. Backpropagation .

5. Transformers.

6. Support Vector Machines.

7. GPU.

8. Generative Al.

9. GAN.

10. Large Language Models.

11. Attention,

12. Gartner.

13. Segmentation.

14. Classification

15. Decision Boundary .

16. Markov Decision Process .
17. States -

18. Actions.

19. Reward.

20. Policy.

21. Principal Component Analysis.
22. Convolutional Neural Networks.
23. Recurrent Neural Networks.
24. Long Short-Term Memory .
25. Graph Neural Networks .

26. Bidirectional Encoder Representations from
Transformers.

27. Feed-Forward Neural Networks .
28. Bidirectional Processing.

29. https:/ /cadenaser.com/euskadi/2024/12/30/
txikito-el-personaje-interactivo-que-ensena-
danzas-vascas-con-inteligencia-artificial-radio-

bilbao/.

30. Transformer-based OCR .
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