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Abstract 

This study examines the effectiveness of long-term formant frequency distributions (LTFDs), Mel-frequency cepstral 

coefficients (MFCCs), and their combined application in distinguishing Kurdish-Persian bilingual speakers. Speech 

samples were collected from 20 early male bilingual speakers who read the fable 'The North Wind and the Sun' in 

Kurdish (Sorani dialect) and Persian. The Random Forest algorithm was employed to analyze the data. Feature 

importance for formant frequencies and MFCCs was evaluated using the mean decrease in accuracy metric. The 

results indicated that LTFD measures provided moderate accuracy in speaker differentiation, reflecting their capacity 

to capture vowel-related articulatory patterns. In contrast, MFCCs demonstrated superior performance, effectively 

encoding spectral and speaker-specific characteristics. When LTFDs and MFCCs were combined, system accuracy 

was slightly improved compared to using MFCCs alone. This marginal enhancement underscores the potential 

benefits of integrating LTFDs with MFCCs in forensic voice comparison, where even small gains can have 

significant practical implications. The findings contribute to a deeper understanding of bilingual speaker variability 

and provide insights for optimizing speaker identification systems in bilingual contexts. 

Keywords: Bilingual speakers, Kurdish, Persian, long-term formant frequencies, Mel-frequency cepstral coefficients 
 

1. Introduction  

Forensic voice comparison (FVC) involves comparing an unknown criminal’s sample to a known suspect(s)’ sample(s). 
The main objective of FVC is to provide well-informed opinions and support law enforcement agencies and legal 

decision-makers, such as judges or juries, in determining whether the known and unknown voice samples originate 

from the same individual or different speakers (Chan & Wang, 2024; Gold, 2014). Expert forensic phoneticians achieve 

this goal by employing different methods, including acoustic analysis, auditory analysis, a combination of auditory and 

acoustic analysis, fully automatic speaker recognition (ASR), or human-assisted ASR. Results from several 

international surveys of FVC practices among law-enforcement agencies and forensic practitioners reveal that the most 

widely implemented approach involves integrating auditory and acoustic phonetic analysis (Gold & French, 2011, 2019; 

Morrison et al., 2016). However, ASR methods, whether fully automatic or human-assisted, were reported to be more 

prevalent in North America (Morrison et al., 2016). 

In FVC, selecting robust acoustic parameters ensures reliable speaker identification. While implementing the 

auditory-acoustic method, expert forensic phoneticians must determine which acoustic parameters are more effective in 

distinguishing speakers. Consequently, over the past few decades, many research studies have focused on examining the 

role of various phonetic parameters, such as fundamental frequency, formant frequencies, and voice quality, in shaping 

a speaker’s unique vocal signature. These parameters are believed to be reflective of articulatory settings, individual 
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speech habits, and even socially acquired behaviors by speakers (Chan & Wang, 2024). Among these parameters, formant 

frequencies are reliable indicators of vowel quality and articulatory configurations. They are the acoustic correlates of 

vocal tract resonances and are primarily influenced by the shape and size of a speaker’s supralaryngeal vocal tract, as 
they are inversely correlated with the speaker’s vocal tract length.  

Over time, researchers have employed various methods to analyze formant frequencies. The mid-point center 

frequency method, the most common approach, measures formants at vowel midpoints, representing their articulatory 

targets (Jessen, 2008; Rose, 2002). However, this approach overlooks dynamic format variations (Goldstein, 1976; 

McDougall & Nolan, 2007), leading to alternative techniques. Long-term spectra (LTS) analyze formant trajectories by 

averaging spectral slices but include voiceless portions and background noises, reducing the precision of the approach 

(Nolan & Grigoras, 2005). To address this, the long-term formant distribution (LTFD) method was introduced, focusing 

solely on vowels and voiced segments across entire speech samples rather than individual speech sounds, providing a 

more accurate representation of formant dynamics (Nolan, 1983; Rose, 2002; Gold, 2014). 

Nolan and Grigoras (2005), who first proposed the LTFD method, claimed that LTFDs represent not only the 

physiological characteristics of an individual’s vocal tract but also the speaker’s overall articulatory habits. Empirical 
findings indicate that mean LTF1 values correlate with variations in laryngeal height, while elevated mean LTF2 values 

are associated with a more anterior positioning of the tongue body (Gold et al., 2013; Lo, 2021; Nolan & Grigoras, 2005). 

While many studies have explored and reported the speaker-specificity of LTFDs in monolinguals (Asadi et al., 2018; 

Gold et al., 2013; McDougall, 2004; Moos, 2010; Skarnitzl et al., 2015), research on bilingual speakers has been limited and 

has yielded mixed results. Lo (2021) studied the language- and speaker-specificity of LTFDs in 60 male English-French 

bilinguals. He found systematic differences in LTFDs between the two languages, with French exhibiting higher LTF2-

4 values than English, reflecting differences in vowel inventories and language-specific phonetic settings. However, a 

high degree of within-speaker consistency was also observed across the languages. He reported that while LTFDs were 

more effective for speaker discrimination in same-language comparisons, they still provided speaker-specific 

information across both languages. Asiaee et al. (2019) investigated the effectiveness of LTFDs in discriminating 

bilingual speakers, analyzing spontaneous speech samples from six Arabic-Persian bilinguals (three male, three female). 

They found LTF1 and LTF3 to be effective in discriminating bilinguals. In a study conducted by Cho and Munro 

(2017), Korean-English bilinguals retained the general shapes of their LTFDs across languages, yet they exhibited 

lower LTF2 peaks in Korean compared to English. Heeren et al. (2014) measured LTFs in Dutch-Turkish bilinguals and 

reported LTF2 and LTF3 to be comparable between languages when spoken by the same speaker, however, the shape of 

their LTF2 varied cross-linguistically, suggesting that while some aspects of LFTDs remain speaker-specific, others 

may be influenced by language. Indeed, Kinoshita (2001) noted that variations in phonological systems across 

languages can lead to differing results for the same acoustic parameters, emphasizing the language-specificity of some 

parameters.  

Apart from the auditory-acoustic approach in FVC, ASR methods have also gained popularity among forensic 

practitioners, with Mel-frequency cepstral coefficients (MFCCs) being the most widely employed as input features 
(Hughes et al., 2023; Ashar et al., 2020; Nagaraja & Jayanna, 2014; Luengo et al., 2008; Nagaraja & Jayanna, 2014; Zhen et al., 

2001). MFCCs are a set of features that represent the spectral characteristics of a sound signal. They are extracted by 

applying a linear cosine transform to the logarithm of the power spectrum, which is mapped onto a nonlinear mel scale 

(Davis & Mermelstein, 1980). Since MFCCs are derived from the mel-frequency cepstrum, where frequency bands are 

spaced according to the mel scale and not linearly-spaced frequency bands, they are more effective in modeling human 

auditory perception (Mistry & Kulkarni, 2013; Tirumala et al., 2017).   

Contradictory results have been reported regarding improved speaker identification when acoustic parameters are 

integrated with MFCCs. While some studies indicated that incorporating acoustic features into MFCC-based systems 

does not always significantly enhance system performance, others suggested that acoustic features can indeed 

complement MFCC-based systems. In a study on 75 male Australian English speakers, Chan and Wang (2024) did not 

find any significant improvement in the system when integrating MFCCs with long-term acoustic features. Overall, in 

their study, MFCCs outperformed long-term acoustic features. Hughes et al. (2017) performed likelihood ratio-based 

testing using MFCCs and LTFDs. The fusion of MFCCs and LTFDs resulted in only marginal performance 

improvements over the baseline MFCC system, suggesting that these measures primarily encode similar speaker-

specific information. Similarly, in a study conducted on the /iau/ tokens produced by 60 female speakers of Mandarin, 

no substantial improvement was yielded when integrating a formal-trajectory-based system with a baseline MFCC 

system (Zhang et al., 2013). However, Hughes et al. (2023) examined the hesitation marker um in Southern British 

English and found that integrating dynamic formant information significantly improved the MFCC-based system’s 
performance.  

Despite advances in forensic voice comparison (FVC) and speaker identification techniques, relatively little research 

has focused on bilinguals, particularly regarding the integration of MFCCs and LTFDs to assess system performance. 

Bilingualism adds complexity to such analyses, as speakers exhibit distinct acoustic profiles in their native (L1) and 

non-native (L2) languages, influenced by factors such as linguistic proficiency, phonological interference, and 

articulatory habits. Therefore, this study focuses of Kurdish-Persian bilinguals, providing a valuable case for examining 

acoustic variability across languages. The acoustic differences and distinct phonetic inventories of Kurdish and Persian 

create an optimal environment for investigating how acoustic features reflect speaker-specific characteristics. Two key 
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acoustic features are examined in this analysis: formant frequencies, which relate to articulatory mechanisms, and 

MFCCs, which capture broader spectral properties of speech. This study seeks to answer the following research 

questions:  

1) To what extent can traditional formant frequency parameters effectively differentiate between Kurdish-Persian 

bilingual speakers? 

2) To what extent can Mel-Frequency Cepstral Coefficients (MFCCs) effectively differentiate between Kurdish-

Persian bilingual speakers? 

3) To what extent can the combination of traditional formant frequency parameters and MFCCs effectively 

differentiate between Kurdish-Persian bilingual speakers? 

These questions are investigated using an exploratory study conducted on a speech dataset of Kurdish-Persian 

bilingual speakers. Understanding the relative contributions of formant frequencies and MFCCs in bilingual contexts 

has significant implications for both theoretical linguistics and practical applications in speaker recognition systems. 

This knowledge can enhance the accuracy of speaker identification methodologies, particularly for diverse linguistic 

populations. Through the application of advanced machine learning models, we can better understand how individual 

acoustic profiles manifest in bilingual speech, ultimately advancing both forensic phonetics and our broader 

understanding of bilingual speech production.  
 

2. Methodology 

The subsequent sections detail participant information, audio data acquisition procedures, data preprocessing 

techniques, the methodology for extracting formant frequencies and MFFCs, and the selected statistical methods for 

data analysis. 
  

2.1 Data collection 

Speech samples were collected from 20 simultaneous male bilinguals of Kurdish-Persian. All participants spoke a 

Sorani dialect of Kurdish and had an age range of 25-39 years (Mean = 36, SD = ±4.76). Each participant read the fable 

"The North Wind and the Sun" once in Persian and once in Kurdish during separate recording sessions. Recordings were 

conducted using a ZOOM H5 hand-held recorder set at 44.1 kHz sampling rate and 16-bit resolution. The recorder was 

positioned 20 cm from the speaker's mouth at a 45-degree angle. All recordings were performed in a quiet room to 

minimize background noise. Participants were instructed to read at their natural speaking rate, pitch, and loudness. 
 

2.2 Pre-processing the speech samples 

Prior to acoustic analysis, all vowel segments within the speech signals were extracted using the "Extract Vowels" 

command within the Praat Vocal Toolkit (Corretge, 2022). This freely accessible plugin, integrated into the Praat 

software environment (Boersma & Weenink, 2022, version 6.2.09), offers a collection of automated scripts for diverse 

voice processing operations. After extraction, all isolated vowel segments were concatenated into a single continuous 

sequence for subsequent analysis.  
 

2.3 Formant frequencies extraction  

Following the preprocessing phase, formant frequencies were extracted, focusing on the first four formants (F1, F2, F3, 

and F4) of the concatenated vowel sequences. To capture the inherent temporal dynamics of formant frequency 

variations over time, a long-term analysis approach was adopted. This method has been demonstrated in previous 

research (Nolan, 1983; Rose, 2002; Nolan & Grigoras, 2005; Moos, 2010; Gold et al., 2013; Gold, 2014) to yield more robust 

and accurate representations of speaker-specific characteristics when compared to short-term analysis techniques. The 

extraction of formant frequencies was conducted using the LPC-Burg algorithm within the Praat software, with an LPC 

order of 12 and a ceiling frequency of 5000 Hz, ensuring accurate tracking of formant trajectories. The analysis was 

carried out with a frame size of 5 milliseconds, ensuring high temporal resolution and precision in the measurement of 

formant trajectories. To streamline this process, a pre-written script tailored explicitly for the Praat environment was 

utilized. This script automated the extraction process, reducing the potential for human error and ensuring consistency 

across all speech samples.  
 

2.4 MFCC features extraction  

The MFCC extraction process involved multiple stages. Initially, the speech signal was segmented into 15 ms frames 

with a 5 ms overlap. Each frame was subjected to a windowing function to minimize spectral leakage. Pre-emphasis 

filtering with a coefficient of 0.97 was applied to amplify high-frequency components, compensating for the natural 

attenuation of these frequencies in the human voice. The Fast Fourier Transform (FFT) was then applied to each frame 

to convert the time-domain signal into its frequency-domain representation. Subsequently, a Mel filter bank was 

employed to model the nonlinear frequency sensitivity of the human auditory system. The output of the Mel filters was 

logarithmically transformed to compress the dynamic range, enhancing the robustness of the feature set to variations in 

speech intensity. Finally, the Discrete Cosine Transform (DCT) was applied to the log-Mel energies to derive the 

MFCCs, which encapsulate the spectral characteristics of the speech signal in a compact and efficient representation. 

All processing steps were automated using a custom script within the Praat environment. 
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2.5 Statistical analysis 

The Random Forest algorithm was employed for data analysis, given its effectiveness in handling high-dimensional and 

mixed-type data. The classification process was conducted independently for each feature set (long-term formant 

frequencies, MFCCs, and their combined set) for both Kurdish and Persian speech. To ensure a balanced representation 

of speakers and languages within the dataset, stratified sampling was employed to divide the data into training (70%) 

and testing (30%) subsets. A grid search approach, combined with 5-fold cross-validation, was utilized to optimize key 

hyperparameters of the Random Forest model, including the number of trees, maximum depth, and minimum samples 

per leaf. Model performance was assessed using classification accuracy, precision, recall, and F1-score to analyze 

classification errors. The feature importance scores computed by the Random Forest algorithm were analyzed to 

determine the contribution of individual features to speaker differentiation. Feature importance was calculated based on 

the mean decrease in accuracy, which measures the decrease in model performance when a specific feature is excluded 

or permuted. The feature with the largest mean decrease in accuracy is considered the most important, as removing or 

altering this feature leads to the largest drop in model performance. In contrast, features that cause little to no change in 

accuracy are deemed less important. For formant frequencies, the relative importance of F1, F2, F3, and F4 was 

evaluated to understand their role in encoding speaker-specific characteristics. For MFCCs, the contributions of each 

coefficient were analyzed to identify the most discriminative spectral features. For the combined feature set, the 

importance of formant frequencies and MFCC-derived features was compared to examine the interplay between these 

two feature types. The effectiveness of the three feature sets (Long-term formant frequencies, MFCCs, and combined 

features) was compared for Kurdish and Persian speech.  
 

3. Results 

3.1 Speaker classification using LTFD measures across Kurdish, Persian, and combined dataset   

Table 1 presents the model performance metrics—accuracy, precision, recall, and F1-score—when LTF measures were 

used to differentiate bilingual speakers. 
  

Table 1- Model performance using LTFD features in Persian, Kurdish, and combined data 

Performance metrics Kurdish Persian Combined 

Accuracy 67.3% 60% 59.2% 

Precision 66.7% 59.6% 58.9% 

Recall 67.3% 60% 59.2% 

F1-score 66.% 59.6% 58.8% 
 

Results show that the model achieves 67.3% accuracy for Kurdish, indicating that 67.3% of predictions match the 

ground truth. Precision and recall are also high, resulting in an F1-score of 66.0%. These values suggest strong 

performance with balanced precision and recall. For the Persian dataset, performance is slightly lower, with an accuracy 

of 60% and a corresponding F1-score of 59.6%. These values indicate moderate performance with balanced precision 

and recall. The combined dataset shows the lowest performance, with an accuracy of 59.2% and an F1-score of 58.8%. 

The decrease may be attributed to increased variability in speaker characteristics across the two languages. 
 

3.2 Speaker classification using MFCC measures across Kurdish, Persian, and combined dataset  

Table 2 presents the performance of the model when MFCC features are used as features for speaker differentiation in 

Kurdish, Persian, and combined Kurdish-Persian dataset. The metrics reported include accuracy, precision, recall, and 

F1-score, which are closely aligned across all datasets. 
 

Table 2- Model performance using MFCC features in Kurdish, Persian, and combined data 

Performance metrics Kurdish Persian Combined 

Accuracy 91.8% 91.9% 90.9% 

Precision 91.8% 91.8% 90.9% 

Recall 91.8% 91.9% 90.9% 

F1-score 91.8% 91.8% 90.9% 

 

Based on the results, the model achieves an accuracy of 91.8% for the Kurdish dataset, indicating that nearly 92% of 

predictions correctly match the true speaker labels. Precision and recall are also 91.8%, respectively, reflecting the 

model's reliability and ability to retrieve speaker-specific instances effectively. The F1-score, which balances precision 

and recall, is similarly high at 91.8%, demonstrating overall robust performance. For the Persian dataset, the metrics are 

consistent with those of the Kurdish dataset, with accuracy, precision, recall, and F1-score all at 91.9%. This indicates 

that the model performs equally well in differentiating speakers within the Persian language. In the combined dataset, 

the model's accuracy is slightly lower at 90.9%. Precision, recall, and F1-score are also slightly reduced, each at 90.9%. 

These small decreases suggest that including both Persian and Kurdish speech introduces additional variability, making 

the task of speaker differentiation slightly more challenging. However, the results still indicate excellent performance 

and demonstrate the model's ability to generalize effectively across both languages. 
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3.3 Speaker classification using a combination of  LTFD  and MFCC measures across Kurdish, Persian, and 

combined data 

Table 3 shows the feature importance of the combination of LTFD measures and MFCCs across Kurdish and Persian, as 

well as the whole dataset for distinguishing speakers in Persian and Kurdish and their combined dataset.  
 

Table 3- Model performance using LTF + MFCC features in Kurdish, Persian, and combined data 

Performance metrics Kurdish Persian Combined 

Accuracy 92.5% 93.9% 92.3% 

Precision 92.5% 93.9% 92.3% 

Recall 92.5% 93.9% 92.3% 

F1-score 92.4% 93.9% 92.3% 
 

Results show that the highest classification performance was achieved for Persian speech, with an accuracy of 

93.9%. For Kurdish speech, the metrics were slightly lower, with an accuracy of 92.5%. When the combined dataset 

was analyzed, the overall performance declined slightly, yielding an accuracy, precision, recall, and F1-score of 92.3% 

across all metrics. These findings suggest that speaker-specific characteristics may be more distinct within single-

language datasets compared to the pooled dataset, where variability between the two languages may introduce 

additional complexity.  
 

3.4 Feature importance based on LTFD measures 

Table 4 illustrates the importance of four acoustic parameters (LTF1, LTF2, LTF3, and LTF4) for distinguishing 

speakers in Kurdish and Persian and their combined dataset. Each value represents the relative contribution of a feature 

to the differentiation task, normalized as percentages.  
 

Table 4- Feature importance of LTFD parameters (LTF1–LTF4) across Kurdish, Persian, and combined data, 

represented as percentages 

Feature Kurdish (%) Persian (%) Combined (%) 

LTF1 42.6 24.8 33.9 

LTF2 38.7 22.0 30.2 

LTF3 44.7 23.6 32.9 

LTF4 42.5 21.5 30.9 
 

Table 4 shows the relative importance of LTF measures for distinguishing speakers in Persian, Kurdish, and their 

combined dataset. The percentages indicate how much each feature contributes to speaker differentiation. In Kurdish, 

LTF3 and LTF1 emerge as the most significant, contributing 44.7`% and 44.7%. LTF4 and LTF2 also show substantial 

importance, contributing 42.5% and 38.7%, respectively. In Persian, the importance of the four LTF parameters is 

relatively balanced. LTF1 contributes the most with 24.8%, closely followed by LTF3 at 23.6% and LTF2 at 22.0%. 

LTF4 has the most minor contribution, accounting for 21.5%. This even distribution suggests that all four parameters 

play a similar role in speaker differentiation for Persian speakers. The combined dataset reflects an averaging of their 

contributions in Persian and Kurdish. LTF1 remains the most important parameter, contributing 33.9%, followed by 

LTF3 at 32.9%. LTF4 and LTF2 contribute 30.9% and 30.2%, respectively. The combined dataset maintains the 

prominence of LTF1 and LTF3, albeit with less variation compared to the individual datasets. 
 

3.5 Feature importance based on MFCC measures 

Table 5 displays the feature importance of MFCC parameters for speaker differentiation in Persian, Kurdish, and their 

combined dataset. The percentages represent each feature's relative contribution to speaker distinction. 
 

Table 5- Feature importance of MFCC parameters across Kurdish, Persian, and combined data, represented as 

percentages 

Feature Kurdish (%) Persian (%) Combined (%) 

C0 24.4 15.1 17.2 

C1 11.3 11.1 9.0 

C2 14.2 7.0 12.9 

C3 16.1 7.7 11.5 

C4 43.6 29.6 39.1 

C5 20.9 17.3 16.4 

C6 9.2 2.9 5.9 

C7 26.0 24.1 29.6 

C8 18.2 13.9 16.4 

C9 6.2 3.0 4.8 

C10 9.2 6.0 8.5 

C11 5.3 1.7 3.3 
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Based on the results, C4 demonstrates the highest importance across all datasets, especially in Kurdish (43.6%) and 

the combined dataset (39.1%). In Persian, C4 also plays a significant role, contributing 29.6%. Other notable features 

include C7, which contributes 26.0% in Kurdish and 24.1% in Persian, and C0, which is influential in both Persian 

(15.1%) and Kurdish (24.4%). Lower contributions are observed for C11, C6, and C9, which collectively contribute less 

than 10% in all datasets. This indicates that these features are less relevant for distinguishing speakers. Overall, the 

results highlight the dominance of C4 and C7 in capturing speaker-specific characteristics, particularly in Kurdish 

speech. The combined dataset emphasizes C4 and C7 as the most important parameters for speaker differentiation.  

 

3.6 Feature importance based on a combination of LTFD with MFCC measures across Kurdish, Persian, and 

combined data, represented as percentages 
For the last analysis, we combined measures of LTFD with MFCCs to see how well the combination of these 

parameters works out in bilingual speaker identification. Figure 1 displays the bar chart showing the strengths of the 

selected parameters in showing between-speaker variability in bilingual speakers. As is evident in the chart, C4 and C7 

had the best performance in Kurdish, Persian, and combined data. LTFD measures showed a moderate performance and 

F3 was the best parameter among them across Kurdish, Persian, and combined data. Moreover, LTF3 showed a better 

performance in Kurdish compared to the other two conditions.  

 

 
Figure 1- Feature importance of LTFD parameters (LTF1–LTF4) and MFCC features across Kurdish, Persian, 

and combined datasets, represented as percentages 

 
4. Discussion  

This study investigated the effectiveness of traditional formant frequencies and MFCCs and their combination in 

differentiating Kurdish-Persian bilingual speakers. Our primary objective was to determine which feature set exhibits 

the highest performance in capturing between-speaker variability within Kurdish-Persian bilingual speakers. We also 

examined model performance for each language individually and collectively to assess model accuracy and its 

variability across these conditions. 

The results show that LTFD parameters capture speaker-specific information with varying degrees of success. For 

Persian, the model achieves a moderate accuracy of 60%. In contrast, the Kurdish dataset demonstrates significantly 

better performance, reaching an accuracy of 67.3%. This indicates that LTFDs are more effective in capturing speaker-

specific features in a speaker's first language (Kurdish) compared to their second language (Persian). When speakers use 

their native language, they typically exhibit greater articulatory freedom, leading to increased variability in acoustic 

features such as formant frequencies. This enhanced flexibility may stem from their in-depth understanding of the 

native language's phonetic and phonological rules, allowing them to explore a wider range of articulatory gestures. This 

dynamic control subsequently contributes to greater individual variation, particularly in features like long-term formant 

frequencies, which capture unique speaker-specific characteristics. On the other hand, even early bilinguals may face 

constraints in their articulatory movements when speaking in a second language. These limitations can arise from 

incomplete mastery of the second language's phonetic system or a tendency toward first-language phonological 

interference. These factors can diminish the variability in formant frequencies observed in second-language speech, 
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potentially obscuring speaker-specific traits that are more evident in the first language. Furthermore, Kurdish and 

Persian have distinct phonetic characteristics, and early bilinguals may exhibit more natural and individualized 

articulation patterns in their native language. This could enhance the variability captured by LTFDs, making them more 

effective for speaker identification in the first language. Moreover, the results for the combined dataset yielded the 

lowest performance, with an accuracy of 59.2%. The reduced performance likely results from increased variability in 

speaker characteristics across the two languages, which may introduce additional complexities when modeling speaker-

specific information.  

The analysis of feature importance in the Kurdish dataset showed that among LTFDs, LTF3 (44.7%) and LTF1 

(42.6%) emerged as the most important features, highlighting their important role in capturing speaker-specific 

information. The Persian dataset shows balanced contributions from all four parameters, with LTF1 (24.8%) and LTF3 

(23.6%) being slightly more prominent. The combined dataset reflects an averaging effect, with LTF1 (33.9%) and 

LTF3 (32.9%) remaining the most significant. The sensitivity of these formants to subtle variations in vocal tract shape 

likely contributes significantly to their effectiveness in distinguishing between individual speakers. For instance, F1 is 

closely associated with the degree of oral cavity aperture during vowel production while F3 relates to lip rounding and 

tongue positioning. The dominance of LTF1 and LTF3 in the analysis reinforces their utility in speaker identification 

tasks, particularly in bilingual and multilingual contexts. The findings support previous research (Asadi et al., 2023; Asadi 

& Alinezhad, 2020; Asiaee et al., 2019; Becker et al., 2008; Gold et al., 2013; He et al., 2019; Lo, 2021; Vaňková & Skarnitzl, 2014) 
and contribute to the growing evidence that these formants effectively capture speaker-specific variations. Furthermore, 

the results underscore the importance of considering language-specific characteristics when designing speaker 

recognition systems, as the prominence of certain features can vary based on the linguistic and acoustic properties of the 

speech data.  

Regarding MFCCs, the model demonstrates a better performance in distinguishing speakers. The model achieves 

high accuracy for both Persian and Kurdish datasets (91.9% and 91.8%, respectively). The effectiveness of MFCCs in 

retrieving speaker-specific information further supports the established reliability of MFCCs. Previous research has also 

consistently demonstrated that MFCCs effectively capture between-speaker variability (Ashar et al., 2020; Leu & Lin, 

2017; Liu et al., 2018; Luengo et al., 2008; Nagaraja & Jayanna, 2014; Zhen et al., 2001). Furthermore, the consistent 

performance across the two languages suggests that MFCCs effectively capture speaker variability, regardless of 

language-specific features. For the combined dataset, the model's accuracy slightly decreases to 90.9%, with 

corresponding reductions in precision, recall, and F1-score. This small decline reflects the additional variability 

introduced by combining Persian and Kurdish speech. Nonetheless, the overall performance remains excellent, 

demonstrating the robustness of MFCCs in distinguishing speakers across languages. These results underscore the 

capability of MFCCs to generalize effectively in bilingual contexts. As for the feature importance of MFCCs, C4 

consistently demonstrates the highest importance across all datasets, especially in Kurdish (43.6%) and the combined 

dataset (39.1%). C7 and C0 also show notable contributions, particularly in Kurdish speech. The prominent role of C4 

and C7 in capturing speaker-specific characteristics suggests that these cepstral coefficients are robust against within-

speaker variability, potentially including variations arising from linguistic differences. C4, the fourth MFCC coefficient, 

reflects mid-range spectral features, representing the shape of the spectral envelope in the middle-frequency range. This 

coefficient is especially sensitive to vowel sounds, as vowels are characterized by distinct formant structures and vocal 

tract resonances, which vary uniquely across speakers. C7, the seventh MFCC coefficient, captures higher frequency 

details of the spectral envelope and highlights finer spectral variations. These variations can reveal subtle articulatory 

differences during vowel production, making C7 essential for identifying speaker-specific information embedded in 

speech signals.  

In addressing how LTFDs and MFCCs perform together for bilingual speaker identification, results showed that the 

combined system achieved high performance across all datasets, with a slight improvement over MFCCs used 

independently. The model maintains an accuracy of around 92.5% and 93.9% for Kurdish and Persian data. The 

combined dataset shows a marginal decrease in performance, with accuracy at 92.3%. These results indicate that while 

the combination of LTFDs and MFCCs enhances the richness of feature representation, it does not significantly 

outperform MFCCs alone. Our findings diverge from those of Chan and Wang (2024), who reported no significant 

performance improvement and even a slight degradation when incorporating long-term phonetic features into an 

MFCC-based speaker identification system. In contrast, our study observed a very slight performance enhancement 

with the addition of LTFDs. While this improvement may seem marginal, it still holds potential value in forensic voice 

comparison tasks where even minor gains in accuracy can have significant implications. 

 

5. Conclusion 

This study investigated the effectiveness of LTFDs, MFCCs, and their combination for speaker differentiation in 

Kurdish-Persian bilinguals. The primary objective was identifying the most effective acoustic features for capturing 

between-speaker variability. We also evaluated model performance for each language individually and collectively. 

Results demonstrated that while LTFDs exhibit moderate discriminative power, their performance varies significantly 

across languages. In contrast, MFCCs consistently demonstrated robust speaker differentiation across both languages, 

proving effective in this bilingual context. Although combining LTFDs and MFCCs resulted in a slight performance 

enhancement over MFCCs alone, the improvement was marginal. While our findings demonstrate promising results, 

certain limitations of this study should be acknowledged. Firstly, the dataset exclusively comprises male speakers and is 
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relatively small, limiting the findings' generalizability. Future research should focus on expanding the dataset to include 

female voices and incorporate spontaneous speech data to better reflect natural speaking styles. Furthermore, future 

studies could explore more sophisticated feature fusion techniques, such as deep learning-based approaches. 

Additionally, incorporating other acoustic features, including prosodic features and voice quality measures, could 

potentially enhance speaker differentiation accuracy in bilingual settings. 
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