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ABSTRACT

Out-of-domain intent detection in natural language understanding systems faces significant challenges from
suboptimal threshold selection and signal degradation through inappropriate normalization techniques. This
paper presents an adaptive ensemble thresholding framework that substantially extends our previous
conference work by addressing fundamental limitations in existing variational autoencoder-based detection
methods. Our approach combines reconstruction loss from variational autoencoders with classifier confidence
scores to create a unified detection signal that captures both semantic deviation and prediction uncertainty.
The framework incorporates a novel smart scaling strategy that preserves natural separation ratios between
in-domain and out-of-domain samples, preventing the signal destruction caused by standard normalization
approaches. Through systematic parameter optimization using grid search techniques, the method adaptively
determines optimal ensemble weights and threshold selection strategies tailored to specific dataset
characteristics. We evaluate our framework across multiple datasets with varying semantic complexity and
domain structures, demonstrating consistent performance improvements over baseline variational
autoencoder approaches and recent state-of-the-art methods. Compared to our previous VAE-based
approach, the framework demonstrates an average performance gain of 3.15 percentage points across all
evaluation metrics. Our analysis reveals that ensemble scaling strategy significantly impacts detection
performance, with proper signal preservation being more critical than sophisticated threshold selection
methods. This work provides a principled approach to adaptive ensemble learning for out-of-domain
detection, offering a robust solution that generalizes effectively across diverse datasets and linguistic contexts
including low-resource languages like Persian.

Keywords— Natural Language Understanding, Out-of-Domain Intent Detection — Adaptive Thresholding —
Ensemble Learning

. formulation [3], with NLU applications expanding
1. Introduction to specialized industrial domains [4]. As these
The rapid evolution of conversational Al systems increasingly extend beyond traditional
systems has fundamentally transformed human- ~ consumer applications into sectors such as
computer interaction across diverse domains, from  automotive software analytics [5], their operational
customer service automation to sophisticated ~ robustness and reliability requirements have grown
personal assistants and industrial applications [1].  €xponentially.
These systems rely heavily on Natural Language
Understanding (NLU) modules to accurately
interpret user intents and extract meaningful
semantic information from conversational inputs [2].
Modern  task-oriented  dialogue architectures
represent a complex integration of three
interconnected components: Natural Language
Understanding for intent recognition and slot filling,
Dialogue Management for conversation flow control
and context maintenance, and Natural Language
Generation for contextually appropriate response

The deployment of dialogue systems in real-
world  environments  presents  unprecedented
challenges in maintaining service quality and user
trust when confronted with unexpected or out-of-
scope inputs. Intent detection, serving as the
foundational component of NLU pipelines, faces
significant operational challenges when
encountering Out-of-Domain (OOD) and Out-of-
Scope (O0S) inputs that extend beyond the system's
predefined operational boundaries [6]. These
challenges have become increasingly critical as
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dialogue systems are deployed in safety-critical
domains where incorrect intent classification can
have serious consequences for system reliability and
user safety.

Recent technological advances in large language
models and transformer-based architectures have
substantially ~ enhanced intent  classification
capabilities across various domains [7, 8]. However,
these  improvements  have  simultaneously
highlighted the fundamental challenge of detecting
when user queries exceed system capabilities—a
problem that becomes increasingly complex in
multi-domain  environments  where  semantic
boundaries between in-domain and out-of-domain
samples can be subtle and context-dependent. The
emergence of context-aware OOD detection
frameworks that consider multi-turn dialogue
contexts demonstrates the evolving complexity of
this problem space and the need for more
sophisticated detection mechanisms [9].

Contemporary research in OOD detection
emphasizes that effective systems must not only
identify unknown intents with high precision but
also maintain superior accuracy for in-domain
classifications while minimizing false rejections that
could degrade user experience [10]. Recent
comprehensive surveys have highlighted the broader
challenges of out-of-distribution generalization in
natural language processing, emphasizing the
systematic biases that can artificially inflate model
performance and the need for more robust
evaluation frameworks across different domains and
deployment contexts [11]. This dual requirement
creates a complex optimization problem that
traditional binary classification approaches often fail
to address adequately. The challenge is further
compounded by the need for systems to operate
reliably across diverse linguistic contexts, user
populations, and application domains.

Current methodological approaches to OOD
intent detection can be broadly categorized into
training-driven and training-agnostic methodologies,
with recent comprehensive surveys highlighting the
growing importance and effectiveness of ensemble-
based techniques in addressing the limitations of
individual ~ detection  methods [12, 13].
Reconstruction-based methods employing
autoencoders and variational autoencoders have
demonstrated promising results in learning robust
representations of in-domain data distributions,
though they often encounter significant challenges
with optimal threshold selection and signal
optimization processes [14, 15]. These challenges
become particularly pronounced when dealing with
datasets that exhibit varying semantic complexity or
when deployed across different linguistic contexts.

Probability-based approaches that model in-
domain data distributions through various statistical
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techniques face inherent challenges with distribution
sensitivity and often produce unreliable likelihood
estimates when confronted with high-dimensional
semantic spaces or domain shift scenarios [16].
Distance-based techniques, while conceptually
straightforward, encounter computational and
interpretability difficulties in high-dimensional
semantic spaces where meaningful distance metrics
can be challenging to define and optimize [16]. The
integration of advanced embedding techniques with
uncertainty  quantification —methodologies has
emerged as a particularly promising research
direction, especially for handling semantically
similar intents that share surface-level linguistic
characteristics but represent fundamentally different
user intentions [17].

Variational ~ Autoencoder  (VAE)  based
approaches have gained significant research
attention for OOD detection due to their theoretical
foundation in probabilistic modeling and their
demonstrated ability to learn robust probabilistic
representations that are relatively independent of
specific input data distributions [18, 19]. These
methods leverage the reconstruction error as a
natural indicator of how well a given input conforms
to the learned in-domain data distribution. However,
recent empirical studies have identified several
critical limitations in VAE-based OOD detection
systems, particularly concerning reconstruction error
thresholding strategies and the counterintuitive
phenomenon where certain OOD samples can
receive lower reconstruction errors than legitimate
in-domain samples [20, 21].

The challenge of optimal threshold selection
remains a persistent and fundamental issue in VAE-
based detection systems. Fixed percentile-based
thresholds, while computationally efficient and easy
to implement, often fail to adapt effectively to
dataset-specific characteristics and can lead to
suboptimal separation between in-domain and OOD
samples across different deployment contexts [22].
This limitation becomes particularly problematic in
production environments where data distributions
may shift over time or when systems are deployed
across  multiple  domains  with  varying
characteristics.

Furthermore, standard normalization techniques
commonly applied to reconstruction errors can
inadvertently destroy natural separation signals
inherent in the data, thereby reducing the
discriminative power of the underlying VAE model
and compromising overall detection performance
[22]. This signal degradation problem represents a
fundamental challenge in the preprocessing pipeline
that has received insufficient attention in existing
literature, despite its significant impact on system
performance. The broader landscape of natural
language processing continues to evolve rapidly



with advances in deep learning and large language
models, creating both new opportunities and
challenges for robust OOD detection systems [23].

This work represents a comprehensive extension
and significant advancement of our previous
research on hybrid architectures for OOD intent
detection and intent discovery [24]. While our initial
conference framework successfully demonstrated
the effectiveness of VAE-based OOD detection
combined with unsupervised clustering techniques
for intent discovery, subsequent detailed analysis
and real-world deployment experience revealed
substantial opportunities for improvement in the
threshold selection mechanisms, signal processing
components, and overall system robustness. The
original approach employed fixed reconstruction
error thresholds determined through percentile-
based methods, which proved inadequate for
achieving optimal performance across diverse
datasets, linguistic contexts, and application
domains.

Additionally, our original framework's exclusive
reliance on reconstruction error signals, while
theoretically sound and mathematically principled,
left unexploited the rich complementary information
available from classifier confidence scores and other
uncertainty measures. This limitation became
particularly apparent when deploying the system
across different user populations and query types,
where the combination of multiple information
sources could provide more robust and reliable
detection capabilities.

To address these identified limitations and
advance the state-of-the-art in OOD detection, we
propose an innovative adaptive  ensemble
thresholding  framework  that  fundamentally
reconceptualizes OOD detection as a multi-signal
optimization problem rather than a single-metric
classification task. Our comprehensive methodology
introduces three key technical innovations that
collectively address the limitations identified in
existing approaches.

First, we develop an advanced ensemble
approach  that intelligently combines VAE
reconstruction losses with classifier confidence
scores through sophisticated dataset-adaptive
weighting schemes. This ensemble methodology
goes beyond simple linear combinations by
incorporating domain-specific knowledge and
adaptive learning mechanisms that can adjust to
varying dataset characteristics and deployment
contexts.

Second, we introduce a novel smart scaling
strategy that preserves natural separation ratios
inherent in reconstruction errors rather than applying
conventional normali
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zation techniques that can destroy crucial
discriminative information. This approach maintains
the semantic relationships between different data
points while enabling effective comparison and
combination of signals from different sources.

Third, we implement a systematic parameter
optimization ~ framework  that  automatically
determines optimal ensemble weights and threshold
values for specific datasets and application domains,
eliminating the need for manual parameter tuning
and reducing deployment complexity.

This optimization framework incorporates
advanced search techniques and cross-validation
strategies to ensure robust performance across
different scenarios.

The framework demonstrates exceptional
effectiveness in cross-lingual scenarios, showing
substantial performance improvements for low-
resource languages while maintaining competitive
performance on high-resource datasets. This cross-
lingual capability is particularly important for global
deployment of dialogue systems and represents a
significant advan

cement over existing approaches that often
struggle with linguistic diversity.

The primary contributions of this work include
several significant technical and practical advances:
(1) identification and systematic resolution of signal
degradation issues in VAE-based OOD detection
through novel scaling methodologies that preserve
critical discriminative information, (2) development
of a comprehensive adaptive ensemble framework
that  effectively leverages complementary

information  from  reconstruction and  conf
idence signals through intelligent weighting
mechanisms, (3) introduction of sy

stematic parameter optimization techniques that
eliminate manual threshold tuning requirements and
enable automated deployment across diverse
contexts, (4) comprehensive experimental validation
across multiple languages including English and
Persian datasets demonstrating average performance
improvements of 3.96% across all evaluation
metrics, and (5) detailed analysis of dataset-specific
adaptation  patterns  that provide valuable

insights for future OOD detection system design
and deployment strategies.

Additionally, we provide extensive ablation
studies examining the impact of different scaling
strategies and ensemble weighting schemes, offering
practical guidance and theoretical insights for
practitioners implementing OOD detection systems
in production environments. These studies reveal
important trade-offs between different approaches
and provide empirical evidence for the design
decisions incorporated in our framework.



The remainder of this paper is structured to
provide  comprehensive  coverage of  our
methodology and findings. Section 2 reviews related
work in OOD detection methodologies, ensemble
learning approaches, and threshold selection
strategies, positioning our contributions within the
broader research landscape and highlighting the
novel aspects of our approach. Section 3 presents
our proposed adaptive ensemble thresholding
methodology, including detailed mathematical
formulations,  algorithmic  descriptions,  and
theoretical justifications for our design choices.
Section 4 describes our comprehensive experimental
setup, including detailed descriptions of datasets,
baseline comparison methodologies, evaluation
metrics, and detailed experimental results and
analysis, including comparative performance
evaluation, ablation studies examining individual
component  contributions, and  cross-lingual
performance assessment across different language
contexts. Finally, Section 5 concludes with a
comprehensive discussion of our findings, analysis
of practical implications for real-world deployment,
identification of current limitations, and directions
for future research in adaptive ensemble learning for
OOD detection.

2. Related Works

The task of Out-of-Domain (OOD) intent
detection has garnered significant attention in recent
years as dialogue systems increasingly deploy in
real-world environments where users may express
intents beyond the system's predefined capabilities.
This section provides a comprehensive review of
existing approaches to OOD detection, with
particular focus on VAE-based methods, threshold
selection strategies, and ensemble techniques that
inform our proposed adaptive framework.

2.1. Taxonomy of OOD Detection Approaches

Recent comprehensive surveys [8, 12] have
established a fundamental taxonomy for OOD
detection methods, categorizing them based on their
training paradigms and data requirements. This
categorization provides a systematic framework for
understanding the evolution of OOD detection
techniques and their relative strengths and
limitations.

Approaches with Only In-Domain Data

When OOD training data is unavailable,
methods must rely exclusively on modeling the in-
domain distribution. Reconstruction-based
approaches have emerged as a prominent technique
in this category [25-27]. These methods leverage
autoencoders and generative models to detect OOD
samples by analyzing reconstruction quality,
operating under the assumption that models trained
on in-domain data will struggle to reconstruct out-
of-distribution inputs effectively. Zhou [26]
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introduces an auxiliary module to extract activations
of feature vectors, aiding the model in constraining
the latent reconstruction space to filter potential
OOD data. Recent work by Li et al. [27]
demonstrates that masked image modeling can be
effectively leveraged for OOD detection, showing
significant advantages in learning the internal
distribution of data.

Probability-based approaches constitute another
major category, focusing on modeling the likelihood
distribution of in-domain data [28],[29]. Du et al.
[28] propose SIREN, which shapes representations
for detecting out-of-distribution objects, while Pei
[29] demonstrates that image background can serve
as a good proxy for out-of-distribution data. These
methods often face challenges with distribution
sensitivity and may produce unreliable likelihood
estimates, particularly when confronted with high-
dimensional data or complex semantic spaces.

Logits-based techniques analyze the output
confidence scores of neural networks to identify
OOD samples [30]. Liu et al. [30] propose
unsupervised out-of-distribution detection with
diffusion inpainting, leveraging generative models
to improve detection capabilities. These approaches
typically establish confidence thresholds below
which samples are classified as out-of-domain.
However, recent studies have shown that neural
networks can exhibit overconfidence on OOD
inputs, necessitating  careful calibration  of
confidence scores.

OOD synthesis methods attempt to generate
pseudo-OOD samples during training to improve
detection capabilities [31-34]. Gao et al. [31]
introduce DIFFGUARD, which uses semantic
mismatch guidance with pre-trained diffusion
models. Wei et al. [32] address neural network
overconfidence through logit normalization, while
Tao et al. [33] propose non-parametric outlier
synthesis techniques. Liu et al. [34] extend this work
to large-scale long-tailed recognition in open-world
scenarios.

Approaches Leveraging Both ID and OOD Data

When real OOD data is available during training,
more sophisticated approaches become feasible.
Boundary regularization methods explicitly optimize
decision boundaries between in-domain and out-of-
domain regions [35]. Lu et al. [35] propose learning
with mixture of prototypes for out-of-distribution
detection, which explicitly models the decision
boundary using OOD samples.

Outlier exposure techniques directly incorporate
real OOD samples during training [36], allowing
models to learn explicit representations of out-of-
distribution data. This approach has shown
significant improvements in detection performance,



particularly when the OOD training data is
representative of test-time OOD samples.

Distance-based approaches focus on learning
discriminative feature spaces where ID and OOD
samples are well-separated [36]. Regmi et al. [36]
introduce ReweightOOD, which employs loss
reweighting strategies for distance-based OOD
detection, demonstrating improved performance on
challenging benchmarks.

Meta-learning based approaches, particularly
those employing Model-Agnostic Meta-Learning
(MAML), have shown promise for rapid adaptation
to new OOD detection scenarios with minimal
examples [37]. Rahimi and Veisi [37] demonstrate
the integration of model-agnostic meta-learning with
advanced language embeddings for few-shot intent
classification, showing particular value in
multilingual contexts where training data may be
limited.

2.2. VAE-Based OOD Detection Methods

Variational Autoencoders have emerged as a
powerful tool for OOD detection due to their
probabilistic framework and ability to learn robust
latent representations. An and Cho [38] provide
foundational work on variational autoencoder based
anomaly detection using reconstruction probability,
establishing the theoretical basis for VAE-based
OOD detection.

Recent advances in VAE-based OOD detection
have addressed several key challenges. Memory-
augmented VAEs incorporate external memory
modules that store prototypical patterns of normal
data distributions, enabling more effective
discrimination between ID and OOD samples [18].
The memory mechanism allows the model to
maintain a repository of in-domain patterns, against
which new inputs can be compared during inference.

The challenge of VAE overestimation in OOD
detection has been thoroughly investigated [39],
revealing that this phenomenon arises from
improper prior distribution design and gaps in
dataset entropy-mutual integration between ID and
OOD datasets. The AVOID framework proposes
post-hoc prior calibration and dataset entropy-
mutual calibration techniques to mitigate these
issues, demonstrating significant improvements in
unsupervised OOD detection performance.

Compression techniques for VAE-based OOD
detectors have been explored to enable deployment
on resource-constrained embedded systems [40].
These approaches apply quantization, pruning, and
knowledge distillation while maintaining detection
performance, demonstrating that VAE reconstruction
losses remain informative even after significant
model compression.

Adaptive Ensemble Thresholding for OOD Intent Detection

The application of VAEs in cyber-physical
systems has introduced novel approaches using B-
VAE architectures [41]. These methods leverage the
disentangled representations learned by B-VAES to
identify OOD inputs based on KL-divergence scores
and implement runtime detection pipelines using
martingale theory and CUSUM  statistics for
continuous monitoring.

Recent theoretical work has reinterpreted VAESs
through the lens of fast and slow weights, proposing
the Likelihood Path (LPath) principle [42]. This
approach selects sufficient statistics that form the
path toward likelihood estimation, achieving state-
of-the-art OOD detection performance even when
the likelihood itself proves unreliable.

2.3. Threshold Selection and Adaptive Strategies

The selection of appropriate thresholds for OOD
detection remains a critical challenge across all
detection  methods.  Fixed  percentile-based
thresholds, while simple to implement, often fail to
adapt to dataset-specific characteristics and can lead
to suboptimal performance [22, 43]. Zheng et al.
[43] investigate out-of-domain detection for natural
language understanding in dialog  systems,
highlighting the importance of adaptive threshold
selection.

Class-wise thresholding approaches recognize
that different classes may require different decision
boundaries for effective OOD detection [16].
Guarrera et al. [16] propose class-wise thresholding
for robust out-of-distribution detection, demonstrating
that inter-class differences significantly impact OOD
detection performance and necessitate more granular
threshold strategies.

Adaptive threshold selection has been explored
in various domains, including vision-based systems
[44] and radar detection [45]. These approaches
dynamically adjust detection thresholds based on
environmental conditions or data characteristics,
providing inspiration for similar techniques in NLU
applications. Magaz et al. [45] demonstrate
automatic threshold selection in OS-CFAR radar
detection using information theoretic criteria,
offering methodological insights applicable to OOD
detection in NLU.

Human-in-the-loop adaptive OOD detection
incorporates expert feedback to safely update
detection thresholds post-deployment [46]. This
approach addresses the challenge of distribution
shift in production environments, where the
characteristics of OOD data may evolve over time.

Meta OOD learning frameworks enable
continuous adaptation of OOD detectors to new
environments [47]. These methods learn to quickly
adjust detection strategies based on limited
examples from new domains, addressing the



challenge of maintaining effective OOD detection
across diverse deployment scenarios.

Ensemble Methods for OOD Detection

Ensemble approaches have gained prominence
in OOD detection due to their ability to combine
multiple complementary signals and improve
robustness [17, 48],. Fang et al. [48] revisit deep
ensemble for out-of-distribution detection from a
loss landscape perspective, revealing that models
trained independently with different random seeds
converge to isolated modes, yielding significantly
different OOD detection performance.

The integration of norm-based scoring functions
with contrastive representation learning has shown
particular promise for near-OOD detection [17].
These approaches employ ensemble scores that
combine models optimized for different types of
OOD data, addressing the challenge that near-OOD
and far-OOD samples often require different
detection strategies.

Combined OOD detection methods (COOD) use
supervised models to combine individual OOD
measures into unified ensemble scores, similar to
random forest approaches [49]. Hogeweg et al. [49]
demonstrate that carefully designed ensemble
strategies can outperform individual detectors across
diverse OOD scenarios.

2.4. Persian Language Processing and Intent

Detection

The development of OOD detection systems for
low-resource languages presents unique challenges.
A recent comprehensive review [50] examines user
intent detection in Persian text-based chatbots,
highlighting the scarcity of labeled data, structural
differences between Persian and other languages,
and the need for language-specific approaches.

Persian language models have advanced
significantly with the introduction of ParsBERT
[51], a transformer-based model specifically
designed for Persian language understanding.
However, the application of these models to OOD
detection remains largely unexplored, presenting
both challenges and opportunities for research.

Cross-lingual training approaches have shown
promise for intent detection and slot filling in
Persian [52]. These methods leverage rich-resource
languages like English to improve performance on
low-resource Persian data, demonstrating that
careful transfer learning strategies can partially
mitigate data scarcity issues.

Recent benchmarking studies of large language
models for Persian [53] reveal that while models
like GPT-3.5 and GPT-4 show strong performance
on various Persian NLU tasks, their capabilities for
OOD detection in Persian remain understudied. The
evaluation of open-source multilingual models like
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OpenChat-3.5 provides insights into the current state
of Persian language understanding in modern LLMs.

The creation of Persian benchmarks for joint
intent detection and slot filling [54] represents
important progress in establishing evaluation
standards for Persian NLU systems. These datasets,
while focused on in-domain performance, provide
valuable resources for developing and evaluating
OOD detection methods for Persian.

2.5. Summary and Research Gaps

While significant progress has been made in
OOD detection for dialogue systems, several critical
gaps remain. First, existing VAE-based methods
often employ suboptimal threshold selection
strategies that fail to adapt to dataset-specific
characteristics. Second, the potential for combining
reconstruction-based and confidence-based signals
through principled ensemble methods remains
underexplored. Third, the challenge of signal
degradation  through  standard  normalization
techniques has received limited attention despite its
impact on detection performance.

Our work addresses these gaps by proposing an
adaptive ensemble thresholding framework that
preserves natural separation signals, optimizes
ensemble weights for specific datasets, and provides
systematic parameter selection methods. By building
upon the foundations established in previous
research while introducing novel techniques for
signal preservation and adaptive optimization, our
approach advances the state-of-the-art in OOD
detection for dialogue systems.

3. Methodology

This section presents our adaptive ensemble
thresholding framework for Out-of-Domain (OOD)
intent detection. Building upon the limitations
identified in traditional VAE-based approaches, we
introduce a novel methodology that addresses signal
degradation, threshold selection, and ensemble
optimization  challenges  through  systematic
parameter adaptation. Figure 1 summarizes the
whole process visually.

3.1. Problem Formulation

Given a set of utterances U = {u, ua, ..., Us} with
known intents I = {ii, i, ..., i}, and a stream of test
utterances U' that may contain both in-domain and
out-of-domain samples, we formulate the OOD
detection problem as Equation (1):

Input: u|lueUVuel'
Output: Yensemble = f(SVAE(U), Sconfidence(u), a) (1)

where Syae(u) represents the VAE reconstruction
signal, Sconficence(U) denotes the classifier confidence
signal, and o is the dataset-adaptive ensemble
weight.
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Figure. 1. Architecture overview of the adaptive ensemble thresholding framework for OOD intent detection. The system processes
input utterance u through BERT to obtain representation x, which feeds into two parallel branches: (1) VAE branch computing
reconstruction loss L_rec(x,x"), and (2) Classifier branch generating confidence score S_conf(x). Both signals undergo smart scaling
strategy before ensemble combination with adaptive weight a. The final adaptive threshold t determines whether the input is classified
as in-domain (proceeding to intent classifier for label y) or out-of-domain (OOD).

3.2. Theoretical Foundation

Signal Degradation Analysis

Traditional VAE-based OOD detection relies on
reconstruction loss as the primary signal for
distinguishing between in-domain and out-of-
domain  samples [38]. However, standard
normalization techniques applied to reconstruction
errors can inadvertently destroy natural separation
signals. Let Lrec(X) denote the reconstruction loss for
input x, and let Lip and Loop represent the sets of
reconstruction losses for in-domain and out-of-
domain samples respectively. The natural separation
ratio is as defined in Equation (2):

p =mean(Loop) / mean(Lp) 2

Our empirical analysis reveals that standard min-
max normalization significantly reduces p, thereby
diminishing the discriminative power of the
reconstruction signal. This observation motivates
our smart scaling strategy that preserves the natural
separation characteristics.

Ensemble Signal Integration

While reconstruction loss captures semantic
deviation from learned patterns, classifier
confidence  scores  provide  complementary
information about prediction uncertainty [17],[48].
We propose combining these signals through an
adaptive ensemble framework, defined in Equation

©F

Sensemble(X) = a SVAE(X) + (1'05) : Sconfidence(x) (3)

where Svag(X) represents the scaled VAE signal,
Sconfigence(X) represents the confidence-based signal,
and o €[0,1] is a dataset-adaptive weight parameter.

3.3. Adaptive Ensemble Framework

VAE Architecture and Training

Following our previous work [24], we employ a
Variational Autoencoder with an encoder-decoder
architecture. The encoder maps input representations
to parameters (u, o) of a latent Gaussian distribution,
while the decoder reconstructs the input from
sampled latent vectors. The VAE is trained by
optimizing the Evidence Lower Bound (ELBO),
expressed in Equation (4):

Lvae = Eq(z | )[log p(x | 2)] - Dxe(a(z | X) | p(2)) ~ (4)

where the first term represents reconstruction
quality and the second term regularizes the latent
space toward a standard normal distribution [38].

Smart Scaling Strategy

While standard normalization destroys natural
separation ratios, our framework employs dataset-
adaptive scaling. We evaluate three scaling
strategies:

e Max-scaling: Preserves natural separation by
dividing by maximum value

e Standardization with range normalization:
Beneficial for multi-domain scenarios

e Robust scaling: Handles outliers using
quartile-based normalization



The optimal scaling method is selected based on
dataset characteristics during the systematic
parameter optimization phase.

Confidence Score Integration
The classifier confidence signal is defined in
Equation (5):

Sconfidence(X) = 1 - max(Pelassifier(X)) 5)

where  Pgassiier(X)  represents  the  softmax
probability distribution over known intent classes.
This formulation ensures that high-confidence
predictions yield low OOD scores, consistent with
the intuition that uncertain predictions indicate
potential out-of-domain samples.

3.4. Systematic Parameter Optimization

Grid Seach Framework
We employ a systematic grid search to optimize
ensemble parameters for each dataset. The
optimization space includes:

o Ensemble weights: « €{0.1,0.2, ..., 0.9}

e Scaling methods: @ & {max_scale, std_scale,
robust_scale}

e Threshold selection: T & {percentile_based,
optimal_f1, balanced}

The optimization objective is defined in

Equation (6):

(o*, ®*, T*) = argmax 0,01} Flmacro(Val; o, @, T)  (6)

3.5. Two-Stage Classification Pipeline

The complete OOD-aware intent detection
system operates in two stages:

1. OOD Detection Stage: Apply the adaptive
ensemble thresholding to determine if the
input is in-domain or out-of-domain.

2. Intent Classification Stage: For samples
classified as in-domain, proceed with
standard intent classification using the
trained classifier.

This two-stage approach ensures that the system
can gracefully handle out-of-domain inputs while
maintaining high accuracy for in-domain intent
classification.

3.6. Cross-Lingual Considerations

For cross-lingual evaluation, we employ
language-specific encoders (BERT for English,
ParsBERT for Persian) while maintaining the same
architectural framework. The adaptive nature of our
parameter optimization allows the system to
automatically  adjust  to language-specific
characteristics, addressing challenges in low-
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resource language processing where confidence
signals may be more reliable than reconstruction-
based metrics.

4. Experiments

4.1. Experiments Setup

We conduct comprehensive experiments to
evaluate our adaptive ensemble thresholding
framework against established baselines and our
previous VAE-based approach. All experiments
were performed on an NVIDIA RTX 4000 GPU
with implementations made publicly available?.

Baselines

We compare against several established
methods:

e BERT [24]: Softmax confidence with

threshold-based OOD detection

e BERT + LMCL [55]: Large Margin Cosine
Loss for enhanced separation

e BERT + DOC [56]:
Classification approach

e BERT + ADB [57]: Adaptive Decision
Boundary method

e BERT + GEN [58]: Generalized Entropy
score approach that uses a novel entropy-
based scoring function.

e BERT + VAE [24]: Our conference paper
using fixed thresholds

Deep Open

Datasets
We evaluate our method on three datasets
following the experimental protocol from [24]:
e ATIS [59]: Contains 26 intent classes related
to airline travel information systems, with
high semantic similarity between classes.

e SNIPS [60]: Comprises utterances from five
distinct domains with minimal semantic
overlap.

e Persian-ATIS [54]: A Persian translation of
ATIS, enabling cross-lingual evaluation.

Following our previous work, we designate
specific intents as out-of-domain: airline, meal,
airfare, day _name, and distance for ATIS and
Persian-ATIS, and GetWeather and
BookRestaurant} for SNIPS.

Training Configuration

We use BERT-base for English and ParsBERT
for Persian. The VAE employs latent dimension of
32 with f=1.0. The adaptive ensemble framework
performs grid search over a € {0.1,...,0.9}, three

! https://github.com/Makbari1997/AET



scaling methods, and three threshold selection
strategies.

4.2. Results and Analysis

Figure 2 illustrates the sensitivity of our
ensemble framework to the weight parameter o,
revealing striking dataset-specific patterns that
validate our adaptive approach. For SNIPS,
performance steadily increases from 91.4% at a=0.1
to a peak of 95.6% at a=0.8, demonstrating that
VAE reconstruction signals provide superior
discriminative power in multi-domain scenarios.
The sharp rise between a=0.1 and a=0.3 (from
91.4% to 94.2%) indicates that even small amounts
of VAE signal significantly enhance detection
capabilities when dealing with distinct domain
boundaries. This finding aligns with the intuition
that reconstruction-based methods excel when in-
domain and out-of-domain samples exhibit clear
structural differences.

In contrast, ATIS exhibits a markedly different
pattern, with performance peaking at o=0.5 (86.5%)
before gradually declining. This balanced optimal
point suggests that neither signal alone sufficiently
captures the nuanced differences between
semantically similar flight-related intents. The
relatively flat curve around the optimum (ranging
from 86.0% to 86.5% for a€[0.3,0.6]) indicates
robustness to exact weight selection, providing
practical advantages for deployment. Persian-ATIS
presents the most intriguing behavior, with optimal
performance at «=0.I (85.8%) and steady
degradation as VAE influence increases. This
confidence-heavy configuration highlights the
challenges of reconstruction-based methods in low-
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resource settings where the VAE may not have
learned sufficiently discriminative representations.

To understand these patterns more deeply, we
examine the extreme cases where each component
operates independently (Table 1). When a=0
(confidence-only), SNIPS achieves merely 48.0%
macro F1-score, indicating that softmax confidence
alone fails to distinguish between domains
effectively. This poor performance stems from the
model's tendency to produce high confidence even
for out-of-domain samples that share surface-level
similarities with training data. Conversely, at a=1
(VAE-only), SNIPS maintains strong performance
at 95.2%, confirming that reconstruction errors
effectively capture domain boundaries. The
marginal improvement from the optimal ensemble
(95.6%) suggests that confidence signals provide
limited additional value in clear-cut multi-domain
scenarios.

Figure. 2. Sensitivity of the proposed framework to different o
values

Table 1. Comparison of Ensemble approach with VAE-only and Conf-only approaches

Dataset Method a Threshold Binary F1 Multi F1 AUC-ROC
VAE-only 1.0 0.816 95.21 98.24 97.72
SNIPS Conf-only 0.0 9.89 47.99 17.01 94.81
Ensemble 0.8 0.065 95.61 92.03 97.67
VAE-only 1.0 0.062 84.67 74.09 84.80
ATIS Conf-only 0.0 0.016 79.08 81.89 93.62
Ensemble 0.4 0.039 86.39 84.65 89.10
VAE-only 1.0 0.520 45.64 8.09 46.22
Persian-ATIS Conf-only 0.0 0.119 46.90 8.39 47.50
Ensemble 0.1 0.011 85.85 79.02 88.66




ATIS tells a different story, with confidence-
only achieving 79.1% and VAE-only reaching
84.7%, both respectable but suboptimal compared to
the ensemble peak of 86.5%. This pattern indicates
that semantic similarity within the airline domain
creates  challenges for  both  approaches
independently—confidence scores struggle with
similar intent phrasings, while reconstruction may
successfully reconstruct semantically related out-of-
domain samples. The ensemble's ability to combine
these complementary signals results in more robust
detection. Persian-ATIS exhibits the most dramatic
validation of our ensemble approach, with both
individual ~ components  performing  poorly
(confidence-only: 46.9%, VAE-only: 45.6%) while
their optimal combination achieves 85.8%. This 40
percentage point improvement demonstrates that the
signals contain complementary information that
becomes especially valuable in low-resource
scenarios.

Our comprehensive evaluation (Table 2 and
Table 3) across all baseline methods reveals
consistent improvements, with our adaptive
ensemble thresholding (AET) framework achieving
notable gains in most scenarios. The BERT + GEN
baseline, which employs a generalized entropy-
based scoring function, provides a particularly
strong comparison point for evaluating the
effectiveness of our ensemble approach.

For binary OOD detection (Table 2), our
framework demonstrates substantial improvements
over BERT + GEN across all datasets. SNIPS shows
a 1.95% improvement in macro F1-score (95.6% vs.
93.7%), while ATIS achieves a 2.22% gain (86.4%
vs. 84.2%). The most striking improvement occurs
with Persian-ATIS, where our method achieves
85.9% compared to BERT + GEN's 72.6%,
representing a remarkable 13.3% improvement. This
substantial gain in the low-resource setting
demonstrates the particular effectiveness of our
adaptive ensemble approach when dealing with
limited training data and cross-lingual challenges.

The performance differences become even more
pronounced in multi-class scenarios (Table 3).
While SNIPS shows a modest 2.19% improvement
(92.0% vs. 89.8%), both ATIS and Persian-ATIS
exhibit dramatic gains. ATIS demonstrates a
substantial 71.1% improvement in macro F1l-score
(84.7% vs. 13.6%), while Persian-ATIS achieves a
remarkable 67.6% improvement (79.0% vs. 11.5%).
These dramatic improvements in multi-class
performance suggest that BERT + GEN's entropy-
based approach struggles with maintaining class-

specific  discrimination when dealing  with
semantically similar intents or low-resource
scenarios.

The comparison with our previous VAE baseline
(BERT + VAE) reveals nuanced performance trade-
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offs. For SNIPS, our adaptive framework achieves a
3.3% improvement over the VAE baseline in binary
classification (95.6% vs. 92.3%), demonstrating the
value of confidence signal integration in multi-
domain scenarios. ATIS presents a more complex
picture, with a slight decrease in binary
classification performance (-0.4%) but significant
improvements in multi-class scenarios (+5.3%). This
trade-off suggests that our adaptive framework
better preserves intent-specific information while
maintaining comparable OOD detection capabilities.

Persian-ATIS demonstrates the most consistent
improvements across both binary (+6.9%) and
multi-class scenarios when compared to the VAE
baseline. The comparison with BERT + GEN is
even more favorable, with improvements of 13.3%
in binary and 67.6% in multi-class performance.
These results underscore the particular effectiveness
of our adaptive approach in challenging deployment
scenarios involving resource constraints and cross-
lingual applications.

The impact of our smart scaling strategy
becomes evident through dataset-specific optimal
configurations discovered during grid search. SNIPS
consistently prefers standard deviation scaling
across all a values, which effectively amplifies the
separation between distinct domains by normalizing
based on global statistics. This scaling method
transforms the reconstruction error distribution to
have zero mean and unit variance, then maps to [0,1]
range, creating clearer boundaries between domains.
Conversely, both ATIS and Persian-ATIS achieve
optimal results with max-scaling, which simply
divides by the maximum reconstruction error. This
preservation of natural scale ratios proves crucial for
datasets with subtle semantic boundaries, where
aggressive normalization might obscure meaningful
differences between in-domain and closely related
out-of-domain samples.

The threshold selection methods also exhibit
dataset-dependent patterns, with SNIPS and ATIS
benefiting from optimal F1-based thresholds that
directly maximize performance metrics on
validation data. Persian-ATIS, however, performs
best with percentile-based thresholds, suggesting
that distribution-based methods provide more stable
decision boundaries in low-resource settings where
validation sets may be less representative. These
systematic variations across datasets validate our
core thesis that adaptive optimization significantly
outperforms fixed strategies.

Beyond raw performance metrics, our analysis
reveals important insights about the nature of OOD
detection challenges across different scenarios. The
high AUC-ROC scores (SNIPS: 97.7%, ATIS:
89.1%, Persian-ATIS: 88.7%) indicate robust
performance across various threshold settings,
suggesting that our framework successfully creates
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Table 2. F1-score for OOD Intent Detection as binary classification

SNIPS ATIS Persian-ATIS
Models
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1
BERT 51.98 59.38 76.85 76.99 70.47 70.65
BERT + LMCL 52.91 60.18 80.13 80.24 69.82 70.00
BERT + DOC 63.75 78.19 82.78 82.85 66.87 67.24
BERT + ADB 62.79 73.35 83.73 83.74 42.15 47.97
BERT + GEN 93.66 97.64 84.17 84.19 72.60 72.75
BERT + VAE 92.32 96.91 86.79 87.15 79.03 79.67
BERT + AET 95.61 98.41 86.39 86.41 85.85 85.87
Table 3. F1-score for OOD Intent Detection as multi-class classification
SNIPS ATIS Persian-ATIS
Models
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1
BERT 20.02 66.43 20.38 68.78 41.95 62.11
BERT + LMCL 20.71 58.40 67.38 71.87 55.18 60.65
BERT + DOC 28.54 66.20 67.38 74.09 55.18 66.43
BERT + ADB 71.93 7331 78.83 83.50 2551 40.73
BERT + GEN 89.84 97.65 13.59 84.19 11.47 71.40
BERT + VAE 89.58 96.85 79.38 86.83 79.03 79.68
BERT + AET 92.03 98.27 84.65 86.33 79.02 85.46
well-separated decision boundaries rather than  demonstrate its practical value for real-world

relying on careful threshold tuning. The consistency
of improvements across both binary and multi-class
scenarios further demonstrates that the ensemble
approach preserves valuable information for
downstream intent classification while enhancing
OOD detection capabilities.

Averaging across all datasets and metrics, our
adaptive ensemble framework achieves a 5.8%
improvement in binary classification and a 46.9%
improvement in multi-class classification over the
BERT + GEN baseline. When compared to our
previous VAE-based approach, the framework
achieves an average improvement of 3.96% across
all evaluation metrics, with particularly strong gains

deployment scenarios.

5. Conclusion and Future Work

This paper presented an adaptive ensemble
thresholding framework that addresses fundamental
limitations in VAE-based OOD intent detection. Our
key contributions include: (1) identification of signal
degradation issues in standard normalization
approaches and introduction of smart scaling
strategies that preserve natural separation ratios, (2)
development of an adaptive ensemble framework
that optimally combines VAE reconstruction and
classifier confidence signals based on dataset
characteristics, and (3) systematic parameter
optimization that eliminates manual threshold tuning

in challenging scenarios involving semantic X . e ;
similarity or  resource  constraints.  These while adapting to specific dataset properties.
comprehensive  improvements  validate  the The experimental results demonstrate substantial

effectiveness of our adaptive ensemble approach and

improvements across multiple evaluation scenarios.



When compared to the recently introduced BERT +
GEN baseline, our framework achieves significant
gains: 7.4% average improvement in binary
classification and 6.3% average improvement in
multi-class classification. Multi-class results exclude
ATIS Macro and Persian-ATIS Macro F1
comparisons where the GEN baseline showed
anomalously low performance (13.59% and 11.47%
respectively). Compared to our previous VAE-based
approach, the framework demonstrates an average
performance gain of 3.96% across all evaluation
metrics, with the ability to automatically discover
optimal ensemble weights ranging from confidence-
heavy (¢=0.1) for Persian to VAE-heavy (¢=0.8) for
multi-domain English.

Our analysis reveals that reconstruction-based
signals excel in cross-domain scenarios with clear
boundaries, while confidence signals become crucial
when dealing with limited training data or subtle
semantic distinctions. The success of dataset-
adaptive scaling methods emphasizes that signal
processing strategies must align with data
characteristics rather than applying uniform
transformations.

Future work will explore several promising
directions: (1) extending the framework to
multilingual and code-mixed scenarios where signal
reliability may vary dynamically, (2) investigating
meta-learning approaches for rapid adaptation to
new domains without extensive parameter search,
(3) incorporating additional signals such as gradient-
based uncertainty measures or attention patterns, and
(4) developing theoretical frameworks to predict
optimal ensemble configurations based on dataset
statistics. Additionally, deployment considerations
such as computational efficiency and online
adaptation mechanisms warrant further investigation
for real-world applications.
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