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A B S T R A C T  

Out-of-domain intent detection in natural language understanding systems faces significant challenges from 

suboptimal threshold selection and signal degradation through inappropriate normalization techniques. This 

paper presents an adaptive ensemble thresholding framework that substantially extends our previous 

conference work by addressing fundamental limitations in existing variational autoencoder-based detection 

methods. Our approach combines reconstruction loss from variational autoencoders with classifier confidence 

scores to create a unified detection signal that captures both semantic deviation and prediction uncertainty. 

The framework incorporates a novel smart scaling strategy that preserves natural separation ratios between 

in-domain and out-of-domain samples, preventing the signal destruction caused by standard normalization 

approaches. Through systematic parameter optimization using grid search techniques, the method adaptively 

determines optimal ensemble weights and threshold selection strategies tailored to specific dataset 

characteristics. We evaluate our framework across multiple datasets with varying semantic complexity and 

domain structures, demonstrating consistent performance improvements over baseline variational 

autoencoder approaches and recent state-of-the-art methods. Compared to our previous VAE-based 

approach, the framework demonstrates an average performance gain of 3.15 percentage points across all 

evaluation metrics. Our analysis reveals that ensemble scaling strategy significantly impacts detection 

performance, with proper signal preservation being more critical than sophisticated threshold selection 

methods. This work provides a principled approach to adaptive ensemble learning for out-of-domain 

detection, offering a robust solution that generalizes effectively across diverse datasets and linguistic contexts 

including low-resource languages like Persian.  

Keywords— Natural Language Understanding, Out-of-Domain Intent Detection – Adaptive Thresholding – 

Ensemble Learning 
 

1. Introduction 

The rapid evolution of conversational AI 
systems has fundamentally transformed human-
computer interaction across diverse domains, from 
customer service automation to sophisticated 
personal assistants and industrial applications [1]. 
These systems rely heavily on Natural Language 
Understanding (NLU) modules to accurately 
interpret user intents and extract meaningful 
semantic information from conversational inputs [2]. 
Modern task-oriented dialogue architectures 
represent a complex integration of three 
interconnected components: Natural Language 
Understanding for intent recognition and slot filling, 
Dialogue Management for conversation flow control 
and context maintenance, and Natural Language 
Generation for contextually appropriate response 

formulation [3], with NLU applications expanding 
to specialized industrial domains [4]. As these 
systems increasingly extend beyond traditional 
consumer applications into sectors such as 
automotive software analytics [5], their operational 
robustness and reliability requirements have grown 
exponentially. 

The deployment of dialogue systems in real-
world environments presents unprecedented 
challenges in maintaining service quality and user 
trust when confronted with unexpected or out-of-
scope inputs. Intent detection, serving as the 
foundational component of NLU pipelines, faces 
significant operational challenges when 
encountering Out-of-Domain (OOD) and Out-of-
Scope (OOS) inputs that extend beyond the system's 
predefined operational boundaries [6]. These 
challenges have become increasingly critical as 
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dialogue systems are deployed in safety-critical 
domains where incorrect intent classification can 
have serious consequences for system reliability and 
user safety. 

Recent technological advances in large language 
models and transformer-based architectures have 
substantially enhanced intent classification 
capabilities across various domains [7, 8]. However, 
these improvements have simultaneously 
highlighted the fundamental challenge of detecting 
when user queries exceed system capabilities—a 
problem that becomes increasingly complex in 
multi-domain environments where semantic 
boundaries between in-domain and out-of-domain 
samples can be subtle and context-dependent. The 
emergence of context-aware OOD detection 
frameworks that consider multi-turn dialogue 
contexts demonstrates the evolving complexity of 
this problem space and the need for more 
sophisticated detection mechanisms [9]. 

Contemporary research in OOD detection 
emphasizes that effective systems must not only 
identify unknown intents with high precision but 
also maintain superior accuracy for in-domain 
classifications while minimizing false rejections that 
could degrade user experience [10]. Recent 
comprehensive surveys have highlighted the broader 
challenges of out-of-distribution generalization in 
natural language processing, emphasizing the 
systematic biases that can artificially inflate model 
performance and the need for more robust 
evaluation frameworks across different domains and 
deployment contexts [11]. This dual requirement 
creates a complex optimization problem that 
traditional binary classification approaches often fail 
to address adequately. The challenge is further 
compounded by the need for systems to operate 
reliably across diverse linguistic contexts, user 
populations, and application domains. 

Current methodological approaches to OOD 
intent detection can be broadly categorized into 
training-driven and training-agnostic methodologies, 
with recent comprehensive surveys highlighting the 
growing importance and effectiveness of ensemble-
based techniques in addressing the limitations of 
individual detection methods [12, 13]. 
Reconstruction-based methods employing 
autoencoders and variational autoencoders have 
demonstrated promising results in learning robust 
representations of in-domain data distributions, 
though they often encounter significant challenges 
with optimal threshold selection and signal 
optimization processes [14, 15]. These challenges 
become particularly pronounced when dealing with 
datasets that exhibit varying semantic complexity or 
when deployed across different linguistic contexts. 

Probability-based approaches that model in-
domain data distributions through various statistical 

techniques face inherent challenges with distribution 
sensitivity and often produce unreliable likelihood 
estimates when confronted with high-dimensional 
semantic spaces or domain shift scenarios [16]. 
Distance-based techniques, while conceptually 
straightforward, encounter computational and 
interpretability difficulties in high-dimensional 
semantic spaces where meaningful distance metrics 
can be challenging to define and optimize [16]. The 
integration of advanced embedding techniques with 
uncertainty quantification methodologies has 
emerged as a particularly promising research 
direction, especially for handling semantically 
similar intents that share surface-level linguistic 
characteristics but represent fundamentally different 
user intentions [17]. 

Variational Autoencoder (VAE) based 
approaches have gained significant research 
attention for OOD detection due to their theoretical 
foundation in probabilistic modeling and their 
demonstrated ability to learn robust probabilistic 
representations that are relatively independent of 
specific input data distributions  [18, 19]. These 
methods leverage the reconstruction error as a 
natural indicator of how well a given input conforms 
to the learned in-domain data distribution. However, 
recent empirical studies have identified several 
critical limitations in VAE-based OOD detection 
systems, particularly concerning reconstruction error 
thresholding strategies and the counterintuitive 
phenomenon where certain OOD samples can 
receive lower reconstruction errors than legitimate 
in-domain samples  [20, 21]. 

The challenge of optimal threshold selection 
remains a persistent and fundamental issue in VAE-
based detection systems. Fixed percentile-based 
thresholds, while computationally efficient and easy 
to implement, often fail to adapt effectively to 
dataset-specific characteristics and can lead to 
suboptimal separation between in-domain and OOD 
samples across different deployment contexts [22]. 
This limitation becomes particularly problematic in 
production environments where data distributions 
may shift over time or when systems are deployed 
across multiple domains with varying 
characteristics. 

Furthermore, standard normalization techniques 
commonly applied to reconstruction errors can 
inadvertently destroy natural separation signals 
inherent in the data, thereby reducing the 
discriminative power of the underlying VAE model 
and compromising overall detection performance 
[22]. This signal degradation problem represents a 
fundamental challenge in the preprocessing pipeline 
that has received insufficient attention in existing 
literature, despite its significant impact on system 
performance. The broader landscape of natural 
language processing continues to evolve rapidly 
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with advances in deep learning and large language 
models, creating both new opportunities and 
challenges for robust OOD detection systems [23]. 

This work represents a comprehensive extension 
and significant advancement of our previous 
research on hybrid architectures for OOD intent 
detection and intent discovery [24]. While our initial 
conference framework successfully demonstrated 
the effectiveness of VAE-based OOD detection 
combined with unsupervised clustering techniques 
for intent discovery, subsequent detailed analysis 
and real-world deployment experience revealed 
substantial opportunities for improvement in the 
threshold selection mechanisms, signal processing 
components, and overall system robustness. The 
original approach employed fixed reconstruction 
error thresholds determined through percentile-
based methods, which proved inadequate for 
achieving optimal performance across diverse 
datasets, linguistic contexts, and application 
domains. 

Additionally, our original framework's exclusive 
reliance on reconstruction error signals, while 
theoretically sound and mathematically principled, 
left unexploited the rich complementary information 
available from classifier confidence scores and other 
uncertainty measures. This limitation became 
particularly apparent when deploying the system 
across different user populations and query types, 
where the combination of multiple information 
sources could provide more robust and reliable 
detection capabilities. 

To address these identified limitations and 
advance the state-of-the-art in OOD detection, we 
propose an innovative adaptive ensemble 
thresholding framework that fundamentally 
reconceptualizes OOD detection as a multi-signal 
optimization problem rather than a single-metric 
classification task. Our comprehensive methodology 
introduces three key technical innovations that 
collectively address the limitations identified in 
existing approaches. 

First, we develop an advanced ensemble 
approach that intelligently combines VAE 
reconstruction losses with classifier confidence 
scores through sophisticated dataset-adaptive 
weighting schemes. This ensemble methodology 
goes beyond simple linear combinations by 
incorporating domain-specific knowledge and 
adaptive learning mechanisms that can adjust to 
varying dataset characteristics and deployment 
contexts. 

Second, we introduce a novel smart scaling 
strategy that preserves natural separation ratios 
inherent in reconstruction errors rather than applying 
conventional normali

zation techniques that can destroy crucial 
discriminative information. This approach maintains 
the semantic relationships between different data 
points while enabling effective comparison and 
combination of signals from different sources. 

Third, we implement a systematic parameter 
optimization framework that automatically 
determines optimal ensemble weights and threshold 
values for specific datasets and application domains, 
eliminating the need for manual parameter tuning 
and reducing deployment complexity.

 This optimization framework incorporates 
advanced search techniques and cross-validation 
strategies to ensure robust performance across 
different scenarios. 

The framework demonstrates exceptional 
effectiveness in cross-lingual scenarios, showing 
substantial performance improvements for low-
resource languages while maintaining competitive 
performance on high-resource datasets. This cross-
lingual capability is particularly important for global 
deployment of dialogue systems and represents a 
significant advan

cement over existing approaches that often 
struggle with linguistic diversity. 

The primary contributions of this work include 
several significant technical and practical advances: 
(1) identification and systematic resolution of signal 
degradation issues in VAE-based OOD detection 
through novel scaling methodologies that preserve 
critical discriminative information, (2) development 
of a comprehensive adaptive ensemble framework 
that effectively leverages complementary 
information from reconstruction and conf

idence signals through intelligent weighting 
mechanisms, (3) introduction of sy

stematic parameter optimization techniques that 
eliminate manual threshold tuning requirements and 
enable automated deployment across diverse 
contexts, (4) comprehensive experimental validation 
across multiple languages including English and 
Persian datasets demonstrating average performance 
improvements of 3.96% across all evaluation 
metrics, and (5) detailed analysis of dataset-specific 
adaptation patterns that provide valuable

 insights for future OOD detection system design 
and deployment strategies. 

Additionally, we provide extensive ablation 
studies examining the impact of different scaling 
strategies and ensemble weighting schemes, offering 
practical guidance and theoretical insights for 
practitioners implementing OOD detection systems 
in production environments. These studies reveal 
important trade-offs between different approaches 
and provide empirical evidence for the design 
decisions incorporated in our framework. 
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The remainder of this paper is structured to 
provide comprehensive coverage of our 
methodology and findings. Section 2 reviews related 
work in OOD detection methodologies, ensemble 
learning approaches, and threshold selection 
strategies, positioning our contributions within the 
broader research landscape and highlighting the 
novel aspects of our approach. Section 3 presents 
our proposed adaptive ensemble thresholding 
methodology, including detailed mathematical 
formulations, algorithmic descriptions, and 
theoretical justifications for our design choices. 
Section 4 describes our comprehensive experimental 
setup, including detailed descriptions of datasets, 
baseline comparison methodologies, evaluation 
metrics, and detailed experimental results and 
analysis, including comparative performance 
evaluation, ablation studies examining individual 
component contributions, and cross-lingual 
performance assessment across different language 
contexts. Finally, Section 5 concludes with a 
comprehensive discussion of our findings, analysis 
of practical implications for real-world deployment, 
identification of current limitations, and directions 
for future research in adaptive ensemble learning for 
OOD detection. 

2. Related Works 

The task of Out-of-Domain (OOD) intent 
detection has garnered significant attention in recent 
years as dialogue systems increasingly deploy in 
real-world environments where users may express 
intents beyond the system's predefined capabilities. 
This section provides a comprehensive review of 
existing approaches to OOD detection, with 
particular focus on VAE-based methods, threshold 
selection strategies, and ensemble techniques that 
inform our proposed adaptive framework.  

2.1. Taxonomy of OOD Detection Approaches  

Recent comprehensive surveys [8, 12] have 
established a fundamental taxonomy for OOD 
detection methods, categorizing them based on their 
training paradigms and data requirements. This 
categorization provides a systematic framework for 
understanding the evolution of OOD detection 
techniques and their relative strengths and 
limitations. 

 Approaches with Only In-Domain Data 

When OOD training data is unavailable, 
methods must rely exclusively on modeling the in-
domain distribution. Reconstruction-based 
approaches have emerged as a prominent technique 
in this category [25-27]. These methods leverage 
autoencoders and generative models to detect OOD 
samples by analyzing reconstruction quality, 
operating under the assumption that models trained 
on in-domain data will struggle to reconstruct out-
of-distribution inputs effectively. Zhou [26] 

introduces an auxiliary module to extract activations 
of feature vectors, aiding the model in constraining 
the latent reconstruction space to filter potential 
OOD data. Recent work by Li et al. [27] 
demonstrates that masked image modeling can be 
effectively leveraged for OOD detection, showing 
significant advantages in learning the internal 
distribution of data. 

Probability-based approaches constitute another 
major category, focusing on modeling the likelihood 
distribution of in-domain data [28],[29]. Du et al. 
[28] propose SIREN, which shapes representations 
for detecting out-of-distribution objects, while Pei 
[29] demonstrates that image background can serve 
as a good proxy for out-of-distribution data. These 
methods often face challenges with distribution 
sensitivity and may produce unreliable likelihood 
estimates, particularly when confronted with high-
dimensional data or complex semantic spaces. 

Logits-based techniques analyze the output 
confidence scores of neural networks to identify 
OOD samples [30]. Liu et al. [30] propose 
unsupervised out-of-distribution detection with 
diffusion inpainting, leveraging generative models 
to improve detection capabilities. These approaches 
typically establish confidence thresholds below 
which samples are classified as out-of-domain. 
However, recent studies have shown that neural 
networks can exhibit overconfidence on OOD 
inputs, necessitating careful calibration of 
confidence scores. 

OOD synthesis methods attempt to generate 
pseudo-OOD samples during training to improve 
detection capabilities [31-34]. Gao et al. [31] 
introduce DIFFGUARD, which uses semantic 
mismatch guidance with pre-trained diffusion 
models. Wei et al. [32] address neural network 
overconfidence through logit normalization, while 
Tao et al. [33] propose non-parametric outlier 
synthesis techniques. Liu et al. [34] extend this work 
to large-scale long-tailed recognition in open-world 
scenarios. 

 Approaches Leveraging Both ID and OOD Data 

When real OOD data is available during training, 
more sophisticated approaches become feasible. 
Boundary regularization methods explicitly optimize 
decision boundaries between in-domain and out-of-
domain regions [35]. Lu et al. [35] propose learning 
with mixture of prototypes for out-of-distribution 
detection, which explicitly models the decision 
boundary using OOD samples. 

Outlier exposure techniques directly incorporate 
real OOD samples during training [36], allowing 
models to learn explicit representations of out-of-
distribution data. This approach has shown 
significant improvements in detection performance, 



Adaptive Ensemble Thresholding for OOD Intent Detection 

29 

particularly when the OOD training data is 
representative of test-time OOD samples. 

Distance-based approaches focus on learning 
discriminative feature spaces where ID and OOD 
samples are well-separated [36]. Regmi et al. [36] 
introduce ReweightOOD, which employs loss 
reweighting strategies for distance-based OOD 
detection, demonstrating improved performance on 
challenging benchmarks. 

Meta-learning based approaches, particularly 
those employing Model-Agnostic Meta-Learning 
(MAML), have shown promise for rapid adaptation 
to new OOD detection scenarios with minimal 
examples [37]. Rahimi and Veisi [37] demonstrate 
the integration of model-agnostic meta-learning with 
advanced language embeddings for few-shot intent 
classification, showing particular value in 
multilingual contexts where training data may be 
limited. 

2.2. VAE-Based OOD Detection Methods 

Variational Autoencoders have emerged as a 
powerful tool for OOD detection due to their 
probabilistic framework and ability to learn robust 
latent representations. An and Cho [38] provide 
foundational work on variational autoencoder based 
anomaly detection using reconstruction probability, 
establishing the theoretical basis for VAE-based 
OOD detection. 

Recent advances in VAE-based OOD detection 
have addressed several key challenges. Memory-
augmented VAEs incorporate external memory 
modules that store prototypical patterns of normal 
data distributions, enabling more effective 
discrimination between ID and OOD samples [18]. 
The memory mechanism allows the model to 
maintain a repository of in-domain patterns, against 
which new inputs can be compared during inference. 

The challenge of VAE overestimation in OOD 
detection has been thoroughly investigated [39], 
revealing that this phenomenon arises from 
improper prior distribution design and gaps in 
dataset entropy-mutual integration between ID and 
OOD datasets. The AVOID framework proposes 
post-hoc prior calibration and dataset entropy-
mutual calibration techniques to mitigate these 
issues, demonstrating significant improvements in 
unsupervised OOD detection performance. 

Compression techniques for VAE-based OOD 
detectors have been explored to enable deployment 
on resource-constrained embedded systems [40]. 
These approaches apply quantization, pruning, and 
knowledge distillation while maintaining detection 
performance, demonstrating that VAE reconstruction 
losses remain informative even after significant 
model compression. 

The application of VAEs in cyber-physical 
systems has introduced novel approaches using β-
VAE architectures [41]. These methods leverage the 
disentangled representations learned by β-VAEs to 
identify OOD inputs based on KL-divergence scores 
and implement runtime detection pipelines using 
martingale theory and CUSUM statistics for 
continuous monitoring. 

Recent theoretical work has reinterpreted VAEs 
through the lens of fast and slow weights, proposing 
the Likelihood Path (LPath) principle [42]. This 
approach selects sufficient statistics that form the 
path toward likelihood estimation, achieving state-
of-the-art OOD detection performance even when 
the likelihood itself proves unreliable. 

2.3. Threshold Selection and Adaptive Strategies 

The selection of appropriate thresholds for OOD 
detection remains a critical challenge across all 
detection methods. Fixed percentile-based 
thresholds, while simple to implement, often fail to 
adapt to dataset-specific characteristics and can lead 
to suboptimal performance [22, 43]. Zheng et al. 
[43] investigate out-of-domain detection for natural 
language understanding in dialog systems, 
highlighting the importance of adaptive threshold 
selection. 

Class-wise thresholding approaches recognize 
that different classes may require different decision 
boundaries for effective OOD detection [16]. 
Guarrera et al. [16] propose class-wise thresholding 
for robust out-of-distribution detection, demonstrating 
that inter-class differences significantly impact OOD 
detection performance and necessitate more granular 
threshold strategies. 

Adaptive threshold selection has been explored 
in various domains, including vision-based systems 
[44] and radar detection [45]. These approaches 
dynamically adjust detection thresholds based on 
environmental conditions or data characteristics, 
providing inspiration for similar techniques in NLU 
applications. Magaz et al. [45] demonstrate 
automatic threshold selection in OS-CFAR radar 
detection using information theoretic criteria, 
offering methodological insights applicable to OOD 
detection in NLU. 

Human-in-the-loop adaptive OOD detection 
incorporates expert feedback to safely update 
detection thresholds post-deployment [46]. This 
approach addresses the challenge of distribution 
shift in production environments, where the 
characteristics of OOD data may evolve over time. 

Meta OOD learning frameworks enable 
continuous adaptation of OOD detectors to new 
environments [47]. These methods learn to quickly 
adjust detection strategies based on limited 
examples from new domains, addressing the 
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challenge of maintaining effective OOD detection 
across diverse deployment scenarios. 

 Ensemble Methods for OOD Detection 

Ensemble approaches have gained prominence 
in OOD detection due to their ability to combine 
multiple complementary signals and improve 
robustness [17, 48],. Fang et al. [48] revisit deep 
ensemble for out-of-distribution detection from a 
loss landscape perspective, revealing that models 
trained independently with different random seeds 
converge to isolated modes, yielding significantly 
different OOD detection performance. 

The integration of norm-based scoring functions 
with contrastive representation learning has shown 
particular promise for near-OOD detection [17]. 
These approaches employ ensemble scores that 
combine models optimized for different types of 
OOD data, addressing the challenge that near-OOD 
and far-OOD samples often require different 
detection strategies. 

Combined OOD detection methods (COOD) use 
supervised models to combine individual OOD 
measures into unified ensemble scores, similar to 
random forest approaches [49]. Hogeweg et al. [49] 
demonstrate that carefully designed ensemble 
strategies can outperform individual detectors across 
diverse OOD scenarios. 

2.4. Persian Language Processing and Intent 

Detection 

The development of OOD detection systems for 
low-resource languages presents unique challenges. 
A recent comprehensive review [50] examines user 
intent detection in Persian text-based chatbots, 
highlighting the scarcity of labeled data, structural 
differences between Persian and other languages, 
and the need for language-specific approaches. 

Persian language models have advanced 
significantly with the introduction of ParsBERT 
[51], a transformer-based model specifically 
designed for Persian language understanding. 
However, the application of these models to OOD 
detection remains largely unexplored, presenting 
both challenges and opportunities for research. 

Cross-lingual training approaches have shown 
promise for intent detection and slot filling in 
Persian [52]. These methods leverage rich-resource 
languages like English to improve performance on 
low-resource Persian data, demonstrating that 
careful transfer learning strategies can partially 
mitigate data scarcity issues. 

Recent benchmarking studies of large language 
models for Persian [53] reveal that while models 
like GPT-3.5 and GPT-4 show strong performance 
on various Persian NLU tasks, their capabilities for 
OOD detection in Persian remain understudied. The 
evaluation of open-source multilingual models like 

OpenChat-3.5 provides insights into the current state 
of Persian language understanding in modern LLMs. 

The creation of Persian benchmarks for joint 
intent detection and slot filling [54] represents 
important progress in establishing evaluation 
standards for Persian NLU systems. These datasets, 
while focused on in-domain performance, provide 
valuable resources for developing and evaluating 
OOD detection methods for Persian. 

2.5. Summary and Research Gaps 

While significant progress has been made in 
OOD detection for dialogue systems, several critical 
gaps remain. First, existing VAE-based methods 
often employ suboptimal threshold selection 
strategies that fail to adapt to dataset-specific 
characteristics. Second, the potential for combining 
reconstruction-based and confidence-based signals 
through principled ensemble methods remains 
underexplored. Third, the challenge of signal 
degradation through standard normalization 
techniques has received limited attention despite its 
impact on detection performance. 

Our work addresses these gaps by proposing an 
adaptive ensemble thresholding framework that 
preserves natural separation signals, optimizes 
ensemble weights for specific datasets, and provides 
systematic parameter selection methods. By building 
upon the foundations established in previous 
research while introducing novel techniques for 
signal preservation and adaptive optimization, our 
approach advances the state-of-the-art in OOD 
detection for dialogue systems. 

3. Methodology 

This section presents our adaptive ensemble 
thresholding framework for Out-of-Domain (OOD) 
intent detection. Building upon the limitations 
identified in traditional VAE-based approaches, we 
introduce a novel methodology that addresses signal 
degradation, threshold selection, and ensemble 
optimization challenges through systematic 
parameter adaptation. Figure 1 summarizes the 
whole process visually. 

3.1. Problem Formulation 

Given a set of utterances U = {u₁, u₂, ..., uₙ} with 
known intents I = {i₁, i₂, ..., iₖ}, and a stream of test 
utterances U' that may contain both in-domain and 
out-of-domain samples, we formulate the OOD 
detection problem as Equation (1): 

Input: u | u ϵ U ˅ u ϵ U' 

     Output: yensemble = f(SVAE(u), Sconfidence(u), α)      (1) 

where SVAE(u) represents the VAE reconstruction 
signal, Sconfidence(u) denotes the classifier confidence 
signal, and α is the dataset-adaptive ensemble 
weight. 
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Figure. 1. Architecture overview of the adaptive ensemble thresholding framework for OOD intent detection. The system processes 

input utterance u through BERT to obtain representation x, which feeds into two parallel branches: (1) VAE branch computing 
reconstruction loss L_rec(x,x'), and (2) Classifier branch generating confidence score S_conf(x). Both signals undergo smart scaling 

strategy before ensemble combination with adaptive weight α. The final adaptive threshold t determines whether the input is classified 

as in-domain (proceeding to intent classifier for label y) or out-of-domain (OOD). 

3.2. Theoretical Foundation 

 Signal Degradation Analysis 

Traditional VAE-based OOD detection relies on 
reconstruction loss as the primary signal for 
distinguishing between in-domain and out-of-
domain samples [38]. However, standard 
normalization techniques applied to reconstruction 
errors can inadvertently destroy natural separation 
signals. Let Lrec(x) denote the reconstruction loss for 
input x, and let LID and LOOD represent the sets of 
reconstruction losses for in-domain and out-of-
domain samples respectively. The natural separation 
ratio is as defined in Equation (2): 

ρ = mean(LOOD) / mean(LID)                (2) 

Our empirical analysis reveals that standard min-
max normalization significantly reduces ρ, thereby 
diminishing the discriminative power of the 
reconstruction signal. This observation motivates 
our smart scaling strategy that preserves the natural 
separation characteristics. 

 Ensemble Signal Integration 

While reconstruction loss captures semantic 
deviation from learned patterns, classifier 
confidence scores provide complementary 
information about prediction uncertainty [17],[48]. 
We propose combining these signals through an 
adaptive ensemble framework, defined in Equation 
(3): 

Sensemble(x) = α · SVAE(x) + (1-α) · Sconfidence(x)     (3) 

where SVAE(x) represents the scaled VAE signal, 
Sconfidence(x) represents the confidence-based signal, 
and α ∈ [0,1] is a dataset-adaptive weight parameter. 

3.3. Adaptive Ensemble Framework 

 VAE Architecture and Training 

Following our previous work [24], we employ a 
Variational Autoencoder with an encoder-decoder 
architecture. The encoder maps input representations 
to parameters (μ, σ) of a latent Gaussian distribution, 
while the decoder reconstructs the input from 
sampled latent vectors. The VAE is trained by 
optimizing the Evidence Lower Bound (ELBO), 
expressed in Equation (4): 

LVAE = Eq(z | x)[log p(x | z)] – DKL(q(z | x) || p(z))     (4) 
 

where the first term represents reconstruction 
quality and the second term regularizes the latent 
space toward a standard normal distribution [38]. 

 Smart Scaling Strategy 

While standard normalization destroys natural 
separation ratios, our framework employs dataset-
adaptive scaling. We evaluate three scaling 
strategies: 

• Max-scaling: Preserves natural separation by 
dividing by maximum value 

• Standardization with range normalization: 
Beneficial for multi-domain scenarios 

• Robust scaling: Handles outliers using 
quartile-based normalization 



International Journal of Web Research, Vol.8, No.4, 2025 

32 

The optimal scaling method is selected based on 

dataset characteristics during the systematic 

parameter optimization phase. 

 Confidence Score Integration 

The classifier confidence signal is defined in 
Equation (5): 

Sconfidence(x) = 1 - max(Pclassifier(x))                (5) 

where Pclassifier(x) represents the softmax 
probability distribution over known intent classes. 
This formulation ensures that high-confidence 
predictions yield low OOD scores, consistent with 
the intuition that uncertain predictions indicate 
potential out-of-domain samples. 

3.4. Systematic Parameter Optimization 

 Grid Seach Framework 

We employ a systematic grid search to optimize 
ensemble parameters for each dataset. The 
optimization space includes: 

• Ensemble weights: α ∈ {0.1, 0.2, ..., 0.9} 

• Scaling methods: Φ ∈ {max_scale, std_scale, 
robust_scale} 

• Threshold selection: T ∈ {percentile_based, 
optimal_f1, balanced} 

The optimization objective is defined in 
Equation (6): 

 
(α*, Φ*, T*) = argmax{α,Φ,T} F1macro(Val; α, Φ, T)      (6) 

3.5. Two-Stage Classification Pipeline 

The complete OOD-aware intent detection 
system operates in two stages: 

1. OOD Detection Stage: Apply the adaptive 
ensemble thresholding to determine if the 
input is in-domain or out-of-domain. 

2. Intent Classification Stage: For samples 
classified as in-domain, proceed with 
standard intent classification using the 
trained classifier. 

This two-stage approach ensures that the system 
can gracefully handle out-of-domain inputs while 
maintaining high accuracy for in-domain intent 
classification. 

3.6. Cross-Lingual Considerations 

For cross-lingual evaluation, we employ 
language-specific encoders (BERT for English, 
ParsBERT for Persian) while maintaining the same 
architectural framework. The adaptive nature of our 
parameter optimization allows the system to 
automatically adjust to language-specific 
characteristics, addressing challenges in low-

resource language processing where confidence 
signals may be more reliable than reconstruction-
based metrics. 

4. Experiments 

4.1. Experiments Setup 

We conduct comprehensive experiments to 
evaluate our adaptive ensemble thresholding 
framework against established baselines and our 
previous VAE-based approach. All experiments 
were performed on an NVIDIA RTX 4000 GPU 
with implementations made publicly available1. 

 Baselines 

We compare against several established 

methods: 

• BERT [24]: Softmax confidence with 
threshold-based OOD detection 

• BERT + LMCL  [55]: Large Margin Cosine 
Loss for enhanced separation 

• BERT + DOC  [56]: Deep Open 
Classification approach 

• BERT + ADB [57]: Adaptive Decision 
Boundary method 

• BERT + GEN [58]: Generalized Entropy 
score approach that uses a novel entropy-
based scoring function. 

• BERT + VAE [24]: Our conference paper 
using fixed thresholds 

 Datasets 

We evaluate our method on three datasets 

following the experimental protocol from [24]: 

• ATIS [59]: Contains 26 intent classes related 
to airline travel information systems, with 
high semantic similarity between classes. 

• SNIPS [60]: Comprises utterances from five 
distinct domains with minimal semantic 
overlap. 

• Persian-ATIS [54]: A Persian translation of 
ATIS, enabling cross-lingual evaluation. 

Following our previous work, we designate 
specific intents as out-of-domain: airline, meal, 
airfare, day_name, and distance for ATIS and 
Persian-ATIS, and GetWeather and 
BookRestaurant} for SNIPS. 

 Training Configuration 

We use BERT-base for English and ParsBERT 
for Persian. The VAE employs latent dimension of 
32 with β=1.0. The adaptive ensemble framework 
performs grid search over α ∈ {0.1,...,0.9}, three 

 
1 https://github.com/Makbari1997/AET 
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scaling methods, and three threshold selection 
strategies. 

4.2. Results and Analysis 

Figure 2 illustrates the sensitivity of our 
ensemble framework to the weight parameter α, 
revealing striking dataset-specific patterns that 
validate our adaptive approach. For SNIPS, 
performance steadily increases from 91.4% at α=0.1 
to a peak of 95.6% at α=0.8, demonstrating that 
VAE reconstruction signals provide superior 
discriminative power in multi-domain scenarios. 
The sharp rise between α=0.1 and α=0.3 (from 
91.4% to 94.2%) indicates that even small amounts 
of VAE signal significantly enhance detection 
capabilities when dealing with distinct domain 
boundaries. This finding aligns with the intuition 
that reconstruction-based methods excel when in-
domain and out-of-domain samples exhibit clear 
structural differences. 

In contrast, ATIS exhibits a markedly different 
pattern, with performance peaking at α=0.5 (86.5%) 
before gradually declining. This balanced optimal 
point suggests that neither signal alone sufficiently 
captures the nuanced differences between 
semantically similar flight-related intents. The 
relatively flat curve around the optimum (ranging 
from 86.0% to 86.5% for α∈[0.3,0.6]) indicates 
robustness to exact weight selection, providing 
practical advantages for deployment. Persian-ATIS 
presents the most intriguing behavior, with optimal 
performance at α=0.1 (85.8%) and steady 
degradation as VAE influence increases. This 
confidence-heavy configuration highlights the 
challenges of reconstruction-based methods in low-

resource settings where the VAE may not have 
learned sufficiently discriminative representations. 

To understand these patterns more deeply, we 
examine the extreme cases where each component 
operates independently (Table 1). When α=0 
(confidence-only), SNIPS achieves merely 48.0% 
macro F1-score, indicating that softmax confidence 
alone fails to distinguish between domains 
effectively. This poor performance stems from the 
model's tendency to produce high confidence even 
for out-of-domain samples that share surface-level 
similarities with training data. Conversely, at α=1 
(VAE-only), SNIPS maintains strong performance 
at 95.2%, confirming that reconstruction errors 
effectively capture domain boundaries. The 
marginal improvement from the optimal ensemble 
(95.6%) suggests that confidence signals provide 
limited additional value in clear-cut multi-domain 
scenarios. 

 

Figure. 2. Sensitivity of the proposed framework to different α 

values 

Table 1. Comparison of Ensemble approach with VAE-only and Conf-only approaches 

Dataset Method α Threshold Binary F1 Multi F1 AUC-ROC 

SNIPS 

VAE-only 1.0 0.816 95.21 98.24 97.72 

Conf-only 0.0 9.89 47.99 17.01 94.81 

Ensemble 0.8 0.065 95.61 92.03 97.67 

ATIS 

VAE-only 1.0 0.062 84.67 74.09 84.80 

Conf-only 0.0 0.016 79.08 81.89 93.62 

Ensemble 0.4 0.039 86.39 84.65 89.10 

Persian-ATIS 

VAE-only 1.0 0.520 45.64 8.09 46.22 

Conf-only 0.0 0.119 46.90 8.39 47.50 

Ensemble 0.1 0.011 85.85 79.02 88.66 
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ATIS tells a different story, with confidence-
only achieving 79.1% and VAE-only reaching 
84.7%, both respectable but suboptimal compared to 
the ensemble peak of 86.5%. This pattern indicates 
that semantic similarity within the airline domain 
creates challenges for both approaches 
independently—confidence scores struggle with 
similar intent phrasings, while reconstruction may 
successfully reconstruct semantically related out-of-
domain samples. The ensemble's ability to combine 
these complementary signals results in more robust 
detection. Persian-ATIS exhibits the most dramatic 
validation of our ensemble approach, with both 
individual components performing poorly 
(confidence-only: 46.9%, VAE-only: 45.6%) while 
their optimal combination achieves 85.8%. This 40 
percentage point improvement demonstrates that the 
signals contain complementary information that 
becomes especially valuable in low-resource 
scenarios. 

Our comprehensive evaluation (Table 2 and 
Table 3) across all baseline methods reveals 
consistent improvements, with our adaptive 
ensemble thresholding (AET) framework achieving 
notable gains in most scenarios. The BERT + GEN 
baseline, which employs a generalized entropy-
based scoring function, provides a particularly 
strong comparison point for evaluating the 
effectiveness of our ensemble approach. 

For binary OOD detection (Table 2), our 
framework demonstrates substantial improvements 
over BERT + GEN across all datasets. SNIPS shows 
a 1.95% improvement in macro F1-score (95.6% vs. 
93.7%), while ATIS achieves a 2.22% gain (86.4% 
vs. 84.2%). The most striking improvement occurs 
with Persian-ATIS, where our method achieves 
85.9% compared to BERT + GEN's 72.6%, 
representing a remarkable 13.3% improvement. This 
substantial gain in the low-resource setting 
demonstrates the particular effectiveness of our 
adaptive ensemble approach when dealing with 
limited training data and cross-lingual challenges. 

The performance differences become even more 
pronounced in multi-class scenarios (Table 3). 
While SNIPS shows a modest 2.19% improvement 
(92.0% vs. 89.8%), both ATIS and Persian-ATIS 
exhibit dramatic gains. ATIS demonstrates a 
substantial 71.1% improvement in macro F1-score 
(84.7% vs. 13.6%), while Persian-ATIS achieves a 
remarkable 67.6% improvement (79.0% vs. 11.5%). 
These dramatic improvements in multi-class 
performance suggest that BERT + GEN's entropy-
based approach struggles with maintaining class-
specific discrimination when dealing with 
semantically similar intents or low-resource 
scenarios. 

The comparison with our previous VAE baseline 
(BERT + VAE) reveals nuanced performance trade-

offs. For SNIPS, our adaptive framework achieves a 
3.3% improvement over the VAE baseline in binary 
classification (95.6% vs. 92.3%), demonstrating the 
value of confidence signal integration in multi-
domain scenarios. ATIS presents a more complex 
picture, with a slight decrease in binary 
classification performance (-0.4%) but significant 
improvements in multi-class scenarios (+5.3%). This 
trade-off suggests that our adaptive framework 
better preserves intent-specific information while 
maintaining comparable OOD detection capabilities. 

Persian-ATIS demonstrates the most consistent 
improvements across both binary (+6.9%) and 
multi-class scenarios when compared to the VAE 
baseline. The comparison with BERT + GEN is 
even more favorable, with improvements of 13.3% 
in binary and 67.6% in multi-class performance. 
These results underscore the particular effectiveness 
of our adaptive approach in challenging deployment 
scenarios involving resource constraints and cross-
lingual applications. 

The impact of our smart scaling strategy 
becomes evident through dataset-specific optimal 
configurations discovered during grid search. SNIPS 
consistently prefers standard deviation scaling 
across all α values, which effectively amplifies the 
separation between distinct domains by normalizing 
based on global statistics. This scaling method 
transforms the reconstruction error distribution to 
have zero mean and unit variance, then maps to [0,1] 
range, creating clearer boundaries between domains. 
Conversely, both ATIS and Persian-ATIS achieve 
optimal results with max-scaling, which simply 
divides by the maximum reconstruction error. This 
preservation of natural scale ratios proves crucial for 
datasets with subtle semantic boundaries, where 
aggressive normalization might obscure meaningful 
differences between in-domain and closely related 
out-of-domain samples. 

The threshold selection methods also exhibit 
dataset-dependent patterns, with SNIPS and ATIS 
benefiting from optimal F1-based thresholds that 
directly maximize performance metrics on 
validation data. Persian-ATIS, however, performs 
best with percentile-based thresholds, suggesting 
that distribution-based methods provide more stable 
decision boundaries in low-resource settings where 
validation sets may be less representative. These 
systematic variations across datasets validate our 
core thesis that adaptive optimization significantly 
outperforms fixed strategies. 

Beyond raw performance metrics, our analysis 
reveals important insights about the nature of OOD 
detection challenges across different scenarios. The 
high AUC-ROC scores (SNIPS: 97.7%, ATIS: 
89.1%, Persian-ATIS: 88.7%) indicate robust 
performance across various threshold settings, 
suggesting that our framework successfully creates 
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Table 2. F1-score for OOD Intent Detection as binary classification 

Models 

SNIPS ATIS Persian-ATIS 

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 

BERT 51.98 59.38 76.85 76.99 70.47 70.65 

BERT + LMCL 52.91 60.18 80.13 80.24 69.82 70.00 

BERT + DOC 63.75 78.19 82.78 82.85 66.87 67.24 

BERT + ADB 62.79 73.35 83.73 83.74 42.15 47.97 

BERT + GEN 93.66 97.64 84.17 84.19 72.60 72.75 

BERT + VAE 92.32 96.91 86.79 87.15 79.03 79.67 

BERT + AET 95.61 98.41 86.39 86.41 85.85 85.87 

Table 3. F1-score for OOD Intent Detection as multi-class classification 

Models 

SNIPS ATIS Persian-ATIS 

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 

BERT 20.02 66.43 20.38 68.78 41.95 62.11 

BERT + LMCL 20.71 58.40 67.38 71.87 55.18 60.65 

BERT + DOC 28.54 66.20 67.38 74.09 55.18 66.43 

BERT + ADB 71.93 73.31 78.83 83.50 25.51 40.73 

BERT + GEN 89.84 97.65 13.59 84.19 11.47 71.40 

BERT + VAE 89.58 96.85 79.38 86.83 79.03 79.68 

BERT + AET 92.03 98.27 84.65 86.33 79.02 85.46 

 

well-separated decision boundaries rather than 
relying on careful threshold tuning. The consistency 
of improvements across both binary and multi-class 
scenarios further demonstrates that the ensemble 
approach preserves valuable information for 
downstream intent classification while enhancing 
OOD detection capabilities. 

Averaging across all datasets and metrics, our 
adaptive ensemble framework achieves a 5.8% 
improvement in binary classification and a 46.9% 
improvement in multi-class classification over the 
BERT + GEN baseline. When compared to our 
previous VAE-based approach, the framework 
achieves an average improvement of 3.96% across 
all evaluation metrics, with particularly strong gains 
in challenging scenarios involving semantic 
similarity or resource constraints. These 
comprehensive improvements validate the 
effectiveness of our adaptive ensemble approach and 

demonstrate its practical value for real-world 
deployment scenarios. 

5. Conclusion and Future Work 

This paper presented an adaptive ensemble 
thresholding framework that addresses fundamental 
limitations in VAE-based OOD intent detection. Our 
key contributions include: (1) identification of signal 
degradation issues in standard normalization 
approaches and introduction of smart scaling 
strategies that preserve natural separation ratios, (2) 
development of an adaptive ensemble framework 
that optimally combines VAE reconstruction and 
classifier confidence signals based on dataset 
characteristics, and (3) systematic parameter 
optimization that eliminates manual threshold tuning 
while adapting to specific dataset properties. 

The experimental results demonstrate substantial 
improvements across multiple evaluation scenarios. 
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When compared to the recently introduced BERT + 
GEN baseline, our framework achieves significant 
gains: 7.4% average improvement in binary 
classification and 6.3% average improvement in 
multi-class classification. Multi-class results exclude 
ATIS Macro and Persian-ATIS Macro F1 
comparisons where the GEN baseline showed 
anomalously low performance (13.59% and 11.47% 
respectively). Compared to our previous VAE-based 
approach, the framework demonstrates an average 
performance gain of 3.96% across all evaluation 
metrics, with the ability to automatically discover 
optimal ensemble weights ranging from confidence-
heavy (α=0.1) for Persian to VAE-heavy (α=0.8) for 
multi-domain English. 

Our analysis reveals that reconstruction-based 
signals excel in cross-domain scenarios with clear 
boundaries, while confidence signals become crucial 
when dealing with limited training data or subtle 
semantic distinctions. The success of dataset-
adaptive scaling methods emphasizes that signal 
processing strategies must align with data 
characteristics rather than applying uniform 
transformations. 

Future work will explore several promising 
directions: (1) extending the framework to 
multilingual and code-mixed scenarios where signal 
reliability may vary dynamically, (2) investigating 
meta-learning approaches for rapid adaptation to 
new domains without extensive parameter search, 
(3) incorporating additional signals such as gradient-
based uncertainty measures or attention patterns, and 
(4) developing theoretical frameworks to predict 
optimal ensemble configurations based on dataset 
statistics. Additionally, deployment considerations 
such as computational efficiency and online 
adaptation mechanisms warrant further investigation 
for real-world applications. 
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