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ABSTRACT

Interpretation of dental panoramic radiographs which encompass all teeth as well as portions of the jaw and
facial bones is critically important for preventive care and for devising appropriate treatment plans based on
clinical findings. However, a high clinical workload or the absence of a specialist may compromise the
accurate interpretation of even fundamental conditions, such as the detection of abnormalities. In such cases,
artificial intelligence techniques can serve as valuable tools to enhance diagnostic accuracy. This research
introduces a modified detection framework based on YOLOv11, incorporating two main architectural
enhancements: the addition of a module designed to increase attention to specific regions, and improvements
to the multi-scale blocks in the backbone of the network. The post-processing stage also employed methods
capable of effectively distinguishing overlapping teeth. Experimental results demonstrate an improvement of
over 7 percent in the Fl-score compared to the baseline YOLOv11 architecture. The proposed model
demonstrates competitive performance compared to models with similar architectures and exhibits
satisfactory generalization on an independent dataset that was not utilized during training. Furthermore,
relying on the real-time processing capability inherent to the YOLO framework, the proposed method can
serve as an effective deep learning engine for integration into web software platforms and tools, enabling
rapid and accurate dental radiograph analysis in clinical and telemedicine environments.
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assumed a pivotal role, enabling the use of non-
medical imaging for preliminary examinations.
Nevertheless, despite the enhanced diagnostic

1. Introduction
Medical image processing presents significant

challenges due to ethical constraints and the sheer
volume of imaging data. Artificial Intelligence (Al)
has emerged as a transformative tool in this domain,
enhancing  diagnostic speed and accuracy,
particularly in scenarios where direct clinician
oversight is limited. Dental imaging encompasses
two primary modalities: Intraoral and Extraoral X-
ray images, with panoramic radiographs serving as a
cornerstone  for  detecting caries, structural
anomalies, and alveolar bone loss. These images
provide a comprehensive view of the dentition and
adjacent maxillofacial structures, making them
indispensable for preventive care and treatment
planning [1]. With the rapid advancement of
technology, Human-Computer Interaction (HCI) has
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capabilities provided by RGB imaging, it remains
limited in accurately evaluating root morphology
and detecting metallic artifacts, such as dental
implants [2].

Al-driven techniques are not intended to replace
clinical expertise but rather function as decision-
support systems that augment diagnostic precision
and workflow efficiency. Their integration has
catalyzed advancements across multiple dental
specialties, including endodontics, oral radiology,
orthodontics, and  prosthodontics.  Panoramic
radiographs are routinely employed for diverse
applications, ranging from osseous evaluation to
implant planning and disease screening [3].
Although conventional image processing methods
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have historically addressed quality enhancement,
persistent challenges—such as motion artifacts and
anatomical  variability—have necessitated the
adoption of deep learning approaches to improve
interpretability [4].

Automated tooth classification and numbering
represent foundational tasks in Al-assisted dental
image analysis. While contemporary algorithms
achieve clinically acceptable accuracy in these
operations, limitations persist due to dataset scarcity,
edentulous regions, and intraoral artifacts [5].
Semantic segmentation via U-Net architectures has
further enabled precise segmentation of caries, root
structures, and other anatomical components [6].
However, the heterogeneous nature of dental
pathologies precludes the development of a
universal diagnostic tool capable of addressing all
conditions autonomously. Deep learning
architectures are often characterized by high
computational complexity in medical image
analysis. Given the critical importance of fine-
grained details in dental panoramic radiographs,
there is a pressing need for computationally
efficient, lightweight models optimized for
deployment in web-based platforms and software
tools, which support real-time inference and
seamless integration into clinical workflows.

This study introduces a deep learning framework
optimized for detecting cavity, filling, implants, and
impacted teeth with high spatial fidelity. Our
objectives prioritize both accuracy enhancement and
cross-dataset generalizability, achieved through an
architecture engineered for small-object detection
and region-specific precision. Section 2 reviews the
related work, while Section 3 details the model
architecture and the conditions of the employed
dataset, along with the evaluation metrics used for
model assessment. Section 4 presents the
experimental results, and Section 5 offers a
comprehensive comparison of the proposed
approach with existing models from multiple
perspectives. Finally, Section 6 concludes the paper
by discussing key challenges and outlining potential
directions for future research.

2. Related Work

The rapid advancement of artificial intelligence
and its integration into medical applications have
opened new avenues for the development of deep
learning algorithms aimed at enhancing diagnostic
accuracy and streamlining treatment planning. The
increasing availability of publicly accessible datasets
has significantly accelerated research efforts in
applying deep learning techniques to medical image
interpretation. Recently, artificial intelligence has
been recognized as a transformative tool across
various domains within dentistry, revolutionizing
diagnostic and  analytical ~ processes  [3].
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Convolutional Neural Networks (CNNSs) constitute a
foundational approach for feature extraction and
have been extensively employed in diagnosing
pathologies from clinical dental radiographs. These
networks facilitate the classification of disease type
and severity; however, their accuracy in detecting
early-stage or mild conditions remains limited [7].

Another prominent method is region-based
convolutional neural networks, such as RCNNs,
which operate through a two-stage process involving
region proposal and classification. Mask R-CNN, in
particular, has shown promising results in dental
applications, achieving an average precision of
79.5% in identifying abnormal teeth, thereby
enabling early detection of caries in dental X-ray
images [8]. Beyond tooth detection, Mask R-CNN
has also been utilized for identifying oral conditions
such as cold sores [9]. Tooth segmentation has been
further advanced through collaborative learning
approaches integrated with Mask R-CNN, where
main and edge images are processed simultaneously.
This method extracts features from complementary
images, with an attention mechanism determining
the relative importance of each at different spatial
locations, ultimately facilitating precise
segmentation of teeth [10]. Mask R-CNN remains
the predominant architecture for tooth and disease
segmentation tasks [11].

Faster R-CNN is another widely adopted model
for interpreting panoramic dental images. When
combined with backbone networks such as
GoogLeNet and AlexNet, Faster R-CNN has
achieved an accuracy of 94.18% in detecting dental
anomalies [12]. Tooth-type classification (incisors,
molars, premolars, canines) serves as a critical
preprocessing step in dental image analysis. Region-
based CNN (R-CNN) variants leverage anchor-
based detection and intersection-over-union (loU)
optimization to accelerate recognition, attaining
more than 90% detection accuracy and 99%
classification precision via bounding box regression
[13]. Additionally, Faster RCNN has been employed
to predict the number and location of carious lesions
from periapical radiographs, attaining a precision of
73.49%. The integration of common feature
extraction backbones like ResNet-50, Xception, and
VGG16 has further enhanced network performance
compared to single-stage detectors such as YOLO
[14]. The automated classification of teeth in
periapical radiographs has gained significance in
forensic odontology, particularly for postmortem
identification. The psychological trauma associated
with manual examination of human remains has
further emphasized the need for automated
interpretation  systems.  Recent advancements
demonstrate that R-FCN architectures, employing
cascade  feature  aggregation,  substantially
outperform  conventional ~ methods—achieving
95.8% precision and 96.1% recall [15].
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Among single-stage detectors, YOLO (YYou Only
Look Once) has emerged as a dominant CNN-based
architecture for real-time object detection. Its end-
to-end design simultaneously predicts bounding box
coordinates and class probabilities through a unified
neural network, offering superior computational
efficiency. This network demonstrates a high level
of generalizability, and various versions have been
introduced to date. Nevertheless, it exhibits
limitations in accurately detecting objects that are
either very small or in close proximity [16].
YOLOV3 has achieved approximately 80% accuracy
in caries detection and tooth numbering when
integrated with semantic segmentation techniques
[17]. while YOLOv4 [18] demonstrates 99.31%
accuracy in panoramic image analysis through
feature pyramid networks (FPNs) and spatial
attention modules. Subsequent versions exhibit
progressive enhancements.

YOLOv7 [19] integrates channel attention
blocks to detect caries in bitewing radiographs
(precision: 0.833, recall: 0.866), and YOLOVS [20]
achieves dual-domain competency—simultaneously
processing bitewing and panoramic imagery with
90% precision-recall balance. However, limited
dataset availability remains a constraint for deep
learning models, prompting the adoption of
augmentation strategies (e.g., rotational transforms,
multi-scale  resampling) to enhance model
robustness [18]. Recent innovations like the YEM-
SAFN framework introduce multi-scale feature
fusion for dental pathology detection, addressing
size variance challenges in panoramic datasets. By
incorporating hierarchical cross-spatial attention
(HCSA) mechanisms, this architecture surpasses
YOLOv8s in  lesion  detection  accuracy,
demonstrating the evolving potential of attention-
guided detection in dental diagnostics [21]. Recent
advancements in YOLO-based architectures have
demonstrated significant potential for dental image
analysis, particularly in the domain of lightweight
segmentation frameworks. YOLO-DentSeg, an
optimized variant of YOLOv8n-seg, integrates a
Bidirectional Feature Pyramid Network (BiFPN) to
improve multi-scale feature fusion, enabling precise
localization of oral pathologies while maintaining
computational efficiency suitable for clinical
environments with limited resources. The model's
ability to delineate diseased regions with
competitive accuracy positions it as a viable solution
for real-time diagnostic applications [22].

Concurrently,  evaluations of  YOLOV9,
YOLOvV10, and YOLOv11 on RGB dental images
captured via mobile devices, reveal YOLOv11m as
the top-performing variant for plaque cluster
detection, owing to its advanced feature aggregation
mechanisms. YOLOvV9 employs Programmable
Gradient Information (PGI) to counteract gradient
dissipation in deep layers, preserving feature fidelity

without sacrificing inference speed. YOLOv10
introduces a dual-label inference paradigm that
combines one-to-one and one-to-many label
assignments, reducing reliance on non-maximum
suppression (NMS) and enhancing performance in
occluded scenarios. The YOLOv1l framework
builds upon YOLOvVS8 through the integration of
C2PSA blocks for cross-scale context modeling and
C3K2 blocks with optimized convolutional kernels,
which collectively improve spatial resolution for
detecting minute structures such as early-stage caries
[23].

The spectrum of dental diseases is highly
diverse, prompting the development of various
models for their detection. Notably, the YOLOv3
model has demonstrated an accuracy exceeding 99%
when evaluated on a dataset of 1,200 panoramic
images [24]. The Spatial Pyramid Pooling
Framework (SPPF) module has been incorporated
into the newly developed versions of the YOLO
architecture facilitating the detection of objects at
varying scales through convolutional layers of
different sizes. This module effectively extracts both
global and local features, and the integration of the
SPPF layer into the final processing stage has
resulted in enhanced performance in the detection of
abnormal teeth. Despite the increasing complexity of
the architecture, the real-time processing capability
inherent to YOLO is preserved, making this design
particularly suitable for deployment in web-based
tools aimed at automatic dental disease diagnosis
[25].

VGG-16 [26] is a 16-layer convolutional
network, comprising 13 convolutional layers and 3
fully connected layers, renowned for its robust
feature extraction capabilities, albeit with a
substantial number of parameters required for
computations. In contrast, ResNet50 [27], which
utilizes 50 layers, is designed for global feature
extraction and is more lightweight than VGG-16.
MobileNetV2 further exemplifies a lightweight
architecture, employing spatial filtering and channel
combination techniques for efficient convolution
calculations, enabling rapid real-time feature
extraction.

Feature extraction from panoramic images is
crucial in dental imaging. Given the advantages of
various feature storage models, combining these
models allows for multifaceted feature extraction
approaches. Traditional methods such as Support
Vector Machines (SVM), Multi-Layer Perceptron
(MLP), and Random Forest have been employed for
the detection of abnormal teeth. However,
integrating feature extraction methods with the Swin
Transformer architecture yields improved conditions
and enhances model accuracy. Additionally, the
application of bagging ensemble classifier methods
for decision-making further boosts accuracy. The



optimal model identified is the combination of
MobileNetV2 and Swin Transformer [28].

Various methods exist for integrating the
bounding boxes generated by object detection
networks. Non-Maximum  Suppression (NMS)
remains a foundational technique, eliminating
redundant detections by retaining only the highest-
confidence box when the loU between overlapping
predictions exceeds a predefined threshold. Soft-
NMS mitigates these issues by decaying confidence
scores of overlapping boxes proportionally to their
loU values, preserving occluded objects while
penalizing low-confidence duplicates through a
continuous suppression function. Weighted Box
Fusion (WBF) offers a more sophisticated
alternative by aggregating all candidate boxes
through  confidence-weighted averaging. This
method computes fused box coordinates as the
weighted mean of all overlapping predictions, with
weights derived from their individual confidence
scores. Figure 1 illustrates the operational
differences between these methods, highlighting
their unique handling of overlapping detections [29].

3. Material and Method

The proposed Al engine is based on the
YOLOv1l [30] architecture. To effectively and
quickly detect dental conditions in panoramic
images, we have modified certain parts of the
backbone and neck architecture. YOLOvV11 exhibits
robust adaptability across diverse datasets, with
enhanced capability for detecting subtle object
features. This version incorporates the Spatial
Pyramid Pooling — Fast (SPPF) module, which
enables multi-scale feature extraction—a design
principle also employed in YOLOvV8 [31]. The
module utilizes successive fixed-size max-pooling
operations, reducing computational complexity
relative to earlier architectures while improving
inference speed.

Key to its operation is a convolutional layer
preceding max-pooling, which reduces input
dimensionality,  followed by  channel-wise
concatenation of convolutional and pooled outputs.
The integration of the SiLU activation function
further optimizes performance for fine-grained
object detection [32]. The incorporation of the
Spatial Pyramid Pooling Framework (SPPF) layer
has significantly enhanced the performance of the
YOLOV11 architecture in the detection of abnormal
teeth [25]. Consequently, we have refined this model
into a more comprehensive version by integrating
additional layer connections and implementing a
more precise mechanism for feature extraction.

Proper feature extraction from images is
essential for improving the engine's performance.
Figure 2 shows the proposed network architecture.
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Figure. 1. NMS/soft-NMS vs. WBF [23]

The Spatial Pyramid Pooling Fast (SPPF) block aids
in extracting detailed features. By compressing
features after the pooling process in panoramic
images, we enhance model performance. This
compression happens in the backbone, before the
last convolution block, which helps retain more
details in the image. Feature extraction is advanced
through the C3k2 module, which employs dual
convolutional layers to capture intricate patterns
with high flexibility.

Meanwhile, the Cross-Stage Partial with Spatial
Attention (C2PSA) module enhances region-specific
focus via a bifurcated processing pipeline: initial
feature extraction through convolution is followed
by division into dual branches, each processed by
PSA blocks to weight spatially significant features.
These branches are subsequently merged via
convolutional fusion, preserving anatomical context
in panoramic imagery through explicit spatial
relationship modeling [30]. In our model, this
module is repeated in the neck section, taking input
from the SPPF and sending it to the Upsampler. This
version of the module has less spatial attention than
the original C2PSA, resulting in reduction in the
model’s time complexity. This block is called
C20SA, or two Convolutional Block with One
Spatial Attention. Figure 3 depicts the architecture
of this block.

In dental radiography, the consolidation of object
detection outputs requires specialized methodologies
to address challenges such as tooth occlusion and
anatomical proximity. Predictions from detection
networks consist of bounding box coordinates,
categorical labels (e.g., molar, incisor), and
confidence scores quantifying prediction certainty.
NMS remains a foundational technique, eliminating
redundant detections by retaining only the highest-
confidence box when the loU between overlapping
predictions exceeds a predefined threshold [29].
However, NMS exhibits critical limitations in dental
contexts: its performance is sensitive to loU
threshold selection, where overly stringent values
may suppress valid detections of adjacent teeth, and
it struggles to differentiate overlapping structures
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due to its binary suppression logic. To resolve this
issue, we applied the WBF [29] method for
classification. This approach improves the detection
accuracy of densely packed teeth by utilizing spatial
consensus among multiple detections, rather than
eliminating lower-confidence candidates.
Furthermore, it enhances the reliability of dental
abnormality classification.

During the training phase, images were
processed at a resolution of 640x640 pixels over 100
epochs, using a batch size of 16. Notably, no
preprocessing techniques were applied to the
training or validation datasets. To ensure robustness
and generalizability, a 5-fold cross-validation
strategy was employed to split the data. All training
and inference tasks were conducted on a computer
with 128 GB of system RAM and dual RTX 3090

GPUs, each equipped with 48GB of dedicated
memory.

3.1. Dataset

For the training and evaluation of the model, a
publicly accessible dataset of dental panoramic X-
ray images was employed [33]. This dataset was
structured into three directories: validation, test, and
training, encompassing a total of 1,269 panoramic
images. In six instances, the same tooth was
annotated with varying labels; these images were
excluded from the dataset to improve the model's
accuracy. Furthermore, all data were utilized in the
5-fold cross-validation method, with no fixed
partitioning of the data.

The labels comprise four distinct categories:
Implant, Fillings, Impacted Tooth, and Cavity. The
remaining images within the dataset include 2,032,
6,039, 495, and 630 instances of each respective
class, thereby illustrating the class imbalance
inherent in the dataset. Labeling medical images is
crucial, as the model's accuracy is highly dependent
on the quality of the training labels. Consequently, it
is essential to report on the labeling methodology
and the expertise of the individuals involved.
However, no information regarding this has been
published, and this research relied solely on a public
database.

Data augmentation was performed using copy-
paste techniques with random 25%, 20%, and 15%
for horizontal flips, rotation, and resizing. Given the
significance of tooth position and type in these
images, the augmented images were placed in the
original location of the tooth, potentially
overlapping with adjacent teeth. It is noteworthy that



the overall structure of the image was maintained
throughout this process, and data augmentation was
performed on two classes: Impacted Tooth and
Cavity. Figure 4 presents examples of dataset
images.

3.2. Evaluation metrics

The evaluation of the proposed model was
conducted using standard criteria commonly
employed for assessing deep learning methods. The
calcification issue can be approached from two
analytical frameworks: binary classification, which
entails distinguishing between diseased and healthy
teeth, and multi-class classification, which aims to
differentiate among various dental pathologies in
relation to healthy teeth. In the binary framework, a
True Positive (TP) denotes that the model has
accurately classified a tooth as diseased. Conversely,
in the multi-class context, a TP is recorded when the
model not only identifies the presence of a disease
but also correctly classifies its specific type. An
increased TP count is indicative of enhanced model
performance in accurately diagnosing dental
conditions.

Within the binary classification paradigm, a
False Positive (FP) occurs when the model
erroneously identifies a healthy tooth as diseased.
Such misclassifications can lead to unnecessary
clinical interventions, incurring both time and
financial costs. In the multi-class setting, an FP is
defined as the model identifying a tooth as diseased
while incorrectly categorizing the specific disease
type. Reducing the FP rate is crucial for minimizing
the economic burden of misdiagnoses. A False
Negative (FN) in the binary classification context is
characterized by the model failing to recognize a
diseased tooth, instead classifying it as healthy. This
error is particularly critical as it conceals the disease
from the clinician's attention. In the multi-class
scenario, an FN arises when the model completely
overlooks the disease, misclassifying it as healthy or
neglecting to identify it altogether.

In binary classification, a True Negative (TN)
indicates that the model has accurately predicted a
tooth to be healthy. In the multi-class context, TN
similarly pertains to the correct identification of a
healthy state. A high TN value suggests that the
model does not exhibit a significant bias towards
diagnosing diseases and is proficient in detecting
healthy teeth. The metrics reported in the confusion
matrix are interpreted from a binary approach. The
Precision metric, calculated using Equation (1),
quantifies the proportion of teeth identified by the
model as diseased that are indeed diseased,
encompassing accurate diagnoses of disease types.
The Recall metric evaluates the ratio of teeth
classified as diseased by the model relative to the
total number of teeth that are actually diseased or
exhibit a specific disease type, as detailed in Equation (2).
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Figure. 4. Samples of dataset images (randomly selected)

It is essential to acknowledge the inherent trade-off
between Precision and Recall.

breeion — TP

recision = TP + FP (l)
Recall = —

TP AN @)

To assess the overall accuracy of the model,
Equation (3) is employed especially when the data is
imbalanced, the model might perform poorly on the
smaller classes but still show high accuracy because
it correctly classifies the majority class most of the
time. To get a better understanding of the model’s
true performance, the Fl-score is often used; it is
calculated as shown in Equation (4) and is the
harmonic mean of precision and recall. The F1-score
balances these two metrics, making it especially
useful in medical datasets where correctly
identifying cases with abnormalities (recall) and
avoiding false alarms (precision) are both very
important. Since medical data often involves uneven
class distributions, the F1-score provides a more
accurate picture of how well the model can detect
abnormalities across all categories, not just the most
COmMMmOn ones.

A B TP +TN
U = TP FN + TN + FP 3)
Fl=2 Precision x Recall
=2 —
Precision + Recall 4)
4. Results

The YOLOv1l architecture demonstrates
enhanced detail detection through region-specific
attention mechanisms, though its efficacy in
panoramic X-ray imaging hinges on precise
anatomical focus. Comparative analysis against the
baseline YOLOV11 reveals superior performance in
the proposed model, evidenced by balanced
precision-recall metrics. As quantified in Table 1 (5-
fold cross-validation averages), the model’s outputs
were validated via both Non-Maximum Suppression
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Table 1. Evaluation Metrics of the Proposed Model

Table 2. Evaluation Metrics Across Classes

(NMS) and Weighted Boxes Fusion (WBF), with
performance evaluated at an intersection-over-union
(loU) threshold more than 0.5. WBF proved
particularly  effective in dental applications,
improving tooth localization accuracy while
consolidating  high-confidence predictions and
retaining diagnostically relevant low-confidence
boxes.

Class-specific improvements from WBF are
detailed in Table 2. Medical imaging necessitates
careful loU calibration, as misclassification costs
differ markedly between false positives (e.g.,
classifying a healthy tooth as abnormal) versus false
negatives (e.g., missing a diseased tooth). WBE’s
weighted averaging reduced redundant detections
compared to NMS, vyielding more decisive
predictions. However, performance disparities
emerged due to dataset imbalances—notably, the
Cavity class, underrepresented in training data,
exhibited lower detection rates (F1-score: 0.815 vs.
0.872 for Filling). The influence of data
augmentation on NMS and WBF is consistent when
considering its effects on the training process.
Overall, the model demonstrates superior
performance in the Filling class compared to the
other classes.

In this investigation, the F1-score metrics for
cavity and impacted teeth are observed to be 8.3%
and 3.6% lower, respectively, in the absence of data
augmentation. While augmenting the data in
panoramic radiographs enhances model
performance, it does not entirely mitigate the class
imbalance issue due to the intrinsic limitations
associated with anatomical fidelity. As illustrated in
Table 2, the model exhibits superior performance in
classifying impacted teeth compared to cavities.
Notably, the effect of data augmentation is more
significant in the cavity class, as impacted teeth,
primarily the third molars, are typically associated
with higher detection accuracy owing to their
distinct anatomical positioning. Cavity is the only
class exhibiting a higher recall than precision. The
model demonstrates a high sensitivity to identifying
teeth within this class, even as the number of false
positive alerts increases. Consequently, the model's
accuracy in detecting cavities is lower compared to
other classes. While data augmentation has
enhanced performance in this regard, it has not
entirely resolved the issue.

Model Precision | Recall | Accuracy F1- Model Class Precision | Recall | Accuracy F1-
score score
Proposed Implant 0.886 0.797 0.889 0.839
0.832 0.795 0.839 0.813 -
YOLO(NMS) 2| Fillings 0.867 0.843 0872 | 0.855
(<5}
Proposed 8 Z [Impacted
YOLO(WEF) 0.862 0.825 0.843 0.883 g S p 0.812 0.763 0.821 0.786
a g Tooth

Cavity 0.765 0.777 0.775 0.771

Implant 0.906 0.816 0.912 0.859

3 E Fillings 0.884 0.861 0.894 0.872
é 5 Impacted
s 9 0.847 0.801 0.882 0.823
o o Tooth

>

Cavity 0.807 0.823 0.832 0.815

Model performance was assessed using the
normalized confusion matrix, which enables a
detailed analysis of class-wise discrimination. Figure
5 illustrates the normalized confusion matrices
corresponding to the NMS and WBF methods. As
depicted, the WBF approach demonstrates improved
detection performance across all classes. Notably,
the model exhibits a tendency to misclassify
instances of the Cavity class as the background or
healthy. Conversely, in the Filling class, which has a
larger sample size, the model occasionally
misidentifies healthy teeth as fillings. Furthermore,
due to visual similarities between dental fillings and
implants, misclassification of implants as fillings is
also observed (12%). To address class imbalance
and enhance differentiation, class weighting
adjustments were incorporated into the model.
However, these modifications yielded limited
performance gains, particularly due to the inherent
challenge of distinguishing Cavity teeth from small
implants or anatomical structures such as parts of the
sinus visible in panoramic radiographs.

Figure 6 illustrates the ROC curves of the model
for both the NMS and WBF methods, with standard
deviations calculated from a 5-fold cross-validation
procedure. Notably, the Impacted tooth class
exhibits the highest standard deviation, which can be
attributed to its limited number of training
samples—an issue exacerbated by data partitioning
in cross-validation. Despite this, the WBF method
demonstrates superior performance, with reduced
variability across folds. This is likely due to its
ability to more effectively integrate detection results
by down-weighting low-confidence predictions and
emphasizing high-confidence boxes, particularly in
scenarios where the model is biased toward classes
with larger sample sizes.

Figure 7 compares the model outputs generated
using NMS and WBF. To assess performance, a low
loU threshold of 0.2 was selected to highlight
differences in the number and quality of predicted
bounding boxes. As shown in part (a), WBF provides
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Figure. 5. Normalized Confusion Matrices

Figure. 6. ROC Curves

Figure. 7. Model Output

improved detection of overlapping teeth compared
to NMS. In this sample, NMS produced 9 bounding
boxes for the root canal structures, whereas WBF
yielded only 4, reflecting a more concise and
accurate output. Part (b) of Figure 7 presents another
example, where NMS generated 32 boxes, in

contrast to only 8 boxes detected by WBF at the
same loU threshold. In this case, although the filled
tooth on the lower left was missed by both methods,
WBF more clearly separated the bounding boxes for
the three central teeth, indicating better spatial
resolution in overlapping regions.
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5. Discussion

YOLO models execute detection in a single step
by extracting global features from the upper layers.
These models are specifically designed for real-time
processing, resulting in high-speed performance
[16]. Additionally, the deeper layers extract local
features, enabling the architecture to detect multi-
scale objects effectively. Consequently, the
performance of the model can be compared with
similar architectures to provide a comprehensive
analytical review of its efficacy.

5.1. Similar architectural frameworks

The enhanced YOLOv11-based [30] framework
demonstrates superior performance over the original
architecture through three key modifications: (1) a
spatially adaptive sensitivity mechanism that
prioritizes diagnostically critical regions, (2)
hierarchical multi-scale feature integration for
improved decision boundaries across anatomical
structures, and (3) optimized utilization of primary
convolutional features. Quantitative evaluation
reveals consistent improvements of 5.5% in
precision, 0.6% in recall, and 7.1% in F1-score
(Table 3), with the balanced F1- score metric
confirming the model’s robustness against
classification bias.

The overall efficacy of YOLOv11 [30] exceeds
that of YOLOV9 [34] and YOLOvV10 [34] when
assessed using the F1-score metric. Conversely,
YOLOV8 [31] exhibits superior precision relative to
YOLOv11. The evaluation of the models presented
in the first four rows of Table 3 employs the original
architecture along with the pre-trained weights.
Significantly, the proposed method demonstrates
enhanced performance compared to versions 8
through 11 in terms of NMS. Regarding the WBF
technique, precision enhancements of 5%, 10.8%,
8%, and 5.5% are recorded for versions 8 through
11, respectively. Additionally, for versions 8 to 10,
akin to the proposed methodology, recall remains
lower than precision, suggesting that these models
are characterized by a reduced incidence of false
positives.

Comparative analysis with the YEM-SAFN [21]
model—an extension of YOLOV8 incorporating
target-specific network structures—demonstrates the
competitive advantage of our proposed approach.
The integration of the Hybrid Cross-Scale Attention
(HCSA) module effectively addresses challenges
associated with anatomical overlap artifacts. When
applied under identical experimental conditions, this
model yielded the results presented in Table 3.
Notably, our framework outperformed both YEM-
SAFN and the baseline YOLOv1l in lesion
detection tasks, while maintaining comparable
computational complexity. The proposed
methodology exhibits superior precision compared

Table 3. Comparison of Evaluation Criteria for Models with
Similar Architecture

Model Precision | Recall | Accuracy | F1-
score

YOLOVS [31] 0.812 0.751 0.795 0.780
YOLOV9 [34] 0.754 0.729 0.771 0.741
YOLOV10 [34] 0.782 0.764 0.795 0.771
YOLOvV11 [30] 0.807 0.819 0.828 0.812
YEM-SAFN [21] 0.845 0.873 0.862 0.858

YOLO-DentSeg [22] 0.753 0.784 0.860 0.768

YOLO11+SPPF [25] 0.814 0.811 0.822 0.812

Proposed
0.832 0.795 0.839 0.813
YOLO(NMS)
Proposed
0.862 0.825 0.843 0.883
YOLO(WBF)

to YEM-SAFN; however, the recall rate of the
YEM-SAFN model is greater than that of the
proposed approach. To facilitate a comprehensive
comparison, the harmonic mean F1-score was
employed, indicating enhanced overall performance
for the proposed model. Furthermore, the proposed
approach effectively reduces the incidence of false
positives.

Further validation against YOLO-DentSeg [22]
—a modified YOLOv5s variant that employs a
triple-attention mechanism and a Bidirectional
Feature Pyramid Network (BiFPN)—highlights the
strengths of our architecture in analyzing cervical
regions. YOLO-DentSeg leverages the CloU loss
function to enhance localization accuracy and is
specifically tailored for the detection of caries,
impacted teeth, periapical periodontitis, and
bifurcated root lesions. On the same condition, our
model achieved a 10.9% improvement in mean
detection precision over YOLO-DentSeg (Table 3),
primarily due to more effective feature fusion and a
reduction in spatial redundancy during high-
resolution image processing.

5.2. Architectural diversity

Two-stage methods, such as Faster R-CNN [35],
require more time for detection compared to the
YOLO family. While Faster R-CNN extracts
significant local features using anchors, it
demonstrates weaker performance than the proposed
method, as indicated in Table 4. This is primarily
due to the added block between the backbone and
the neck in the proposed method, which mitigates
the loss of critical features. DensNet-121 [36] excels
in local feature extraction through dense connections
between preceding and succeeding layers; however,
it is slower and vyields lower accuracy than the
proposed method, which achieves 3.9% and 2.2%
improvements in precision and recall, respectively.
Feature extraction via VGG-16 [26] is more
computationally intensive than the proposed model,




Table 4. Comparison of Evaluation Criteria for Models with
Different Architecture

Model Precision | Recall | Accuracy | F1-
score
Faster R-CNN [35] 0.734 0.765 0.783 0.749
DensNet-121 [36] 0.823 0.803 0.827 0.812
VGG16 [26] 0.843 0.817 0.853 0.829
ResNet50 [27] 0.832 0.753 0.841 0.791

ResNet50 + Swin [28] 0.921 0.911 0.934 0.915

MobileNetV2 + Swin
[28]

0.908 0.896 0.921 0.901

Proposed
0.832 0.795 0.839 0.813
YOLO(NMS)
Proposed
0.862 0.825 0.843 0.883
YOLO(WBF)

attributable to its higher parameter count.
Nevertheless, using the perceptron, VGG-16 attains
bounding box accuracy of 0.853, surpassing
YOLOv11 with the original architecture, although it
exhibits a 5.4% lower Fl-score compared to the
proposed architecture.

ResNets0 [27], which employs a head
perceptron for decision-making, performs weaker
than both the VGG-16 method and the proposed
approach. However, the combined models
demonstrate superior performance relative to the
proposed model. The Swin Transformer [36]
exhibits strong capabilities in global feature
extraction, and its integration with local feature
extraction methods enhances performance. The
simple head MLP, which combines features from
ResNet50 and the Swin Transformer, achieves the
highest precision and recall values of 0.921 and
0.911, respectively.

Combining the Swin Transformer with
MobileNetV2 results in a 1.8% improvement in F1-
score over the proposed model; however, this
configuration underperforms compared to the
combination with ResNet50 due to the reduced
parameter count of MobileNetV2. The combined
models are more complex and demanding in terms
of execution time than the proposed method, making
them impractical for medical applications. Despite
this, the combined features of ResNet50 and the
Swin Transformer yield a 3.2% better F1-score. The
proposed model, with its real-time capabilities,
presents significant advantages for use as a medical
tool.

5.3. Challenges and limitations

A critical challenge in the application of artificial
intelligence within the medical domain is the
assurance of reliability. Deep learning models are
inherently dependent on labeled datasets; thus, any
biases present in the labeling process can propagate
through to the model, leading to skewed outcomes.
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Moreover, the process of labeling in the medical
field is contingent upon the expertise of
practitioners, which introduces variability and
inconsistency. The lack of standardized benchmarks
that provide accurate information regarding labeling
conditions significantly undermines the reliability of
models designed for the detection of abnormal teeth
in panoramic radiographs. Furthermore, the
hyperparameters utilized in these models may differ
across various datasets, complicating the training
process for models tasked with analyzing distorted
images.

To assess model generalizability, we conducted
experiments on the DENTEX [37] dataset, which
contains 705 labeled images across four pathological
classes: Lesion Caries, Deep Caries, Impacted, and
Periapical. Although detailed metadata regarding
image acquisition, annotation standards, and expert
involvement is unavailable, the model demonstrated
clinically acceptable performance. Specifically, for
the Impacted class—the only category directly
comparable between datasets—our model achieved
a precision of 0.752, recall of 0.698, and F1-score of
0.723 without additional fine-tuning. These results
underscore the model’s robust transfer learning
capability, particularly given the domain-specific
training and the relatively limited number of
corresponding samples in the dataset before
augmentation.

A notable limitation in the detection of abnormal
dental conditions in panoramic images is the
disparate frequency of disease occurrence, which
contributes to data imbalance. As a result, machine
learning models tend to exhibit heightened
sensitivity ~ toward  classes  with  greater
representation, making it difficult to train effectively
on less prevalent data. Employing weighting and
data augmentation methods introduces further
complications in panoramic images, as the overall
anatomy of the mouth is critical, and the spatial
arrangement of premolars and canines must remain
consistent.

6. Conclusion

This study presents an optimized YOLOv11-
based framework for the detection of four critical
dental anomalies—implants, fillings, impacted teeth,
and cavities—in panoramic radiographs. The
proposed architecture enhances state-of-the-art
performance through three principal innovations: (1)
a location-sensitive attention mechanism, (2)
hierarchical multi-scale feature extraction, and (3) a
bounding-box  score-weighted  post-processing
technique that refines detection confidence. One of
the advantages of the proposed method is its ability
to respond quickly based on the original YOLO
architecture, making it well-suited for integration
into web software platforms and tools. Comparative
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evaluations demonstrate consistent improvements of
over 0.6% in recall and over 5.5% in precision
relative to the baseline YOLOv1l1, while also
outperforming specialized models such as YEM-
SAFN and YOLO-DentSeg in cross-dataset
validation. Notably, the framework maintains strong
generalization capabilities, achieving competitive
accuracy on external datasets without retraining.

To effectively address the issue of data
imbalance in dental imaging, future research should
concentrate on the development of methodologies
that are intricately aligned with the anatomical
complexities of the oral cavity, ensuring
comprehensive representation of each dental
phenotype across a diverse range of imaging
modalities. Moreover, subsequent to the data
augmentation process, the integration of advanced
image quality enhancement algorithms, specifically
tailored to the unique transformations applied during
augmentation, has the potential to significantly
improve  diagnostic  accuracy.  Additionally,
exploring the incorporation of transformer fusion
techniques within the model architecture, while
maintaining critical real-time processing
capabilities, presents a promising avenue for further
investigation.
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