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A B S T R A C T  

Interpretation of dental panoramic radiographs which encompass all teeth as well as portions of the jaw and 

facial bones is critically important for preventive care and for devising appropriate treatment plans based on 

clinical findings. However, a high clinical workload or the absence of a specialist may compromise the 

accurate interpretation of even fundamental conditions, such as the detection of abnormalities. In such cases, 

artificial intelligence techniques can serve as valuable tools to enhance diagnostic accuracy.  This research 

introduces a modified detection framework based on YOLOv11, incorporating two main architectural 

enhancements: the addition of a module designed to increase attention to specific regions, and improvements 

to the multi-scale blocks in the backbone of the network. The post-processing stage also employed methods 

capable of effectively distinguishing overlapping teeth.  Experimental results demonstrate an improvement of 

over 7 percent in the F1-score compared to the baseline YOLOv11 architecture. The proposed model 

demonstrates competitive performance compared to models with similar architectures and exhibits 

satisfactory generalization on an independent dataset that was not utilized during training. Furthermore, 

relying on the real-time processing capability inherent to the YOLO framework, the proposed method can 

serve as an effective deep learning engine for integration into web software platforms and tools, enabling 

rapid and accurate dental radiograph analysis in clinical and telemedicine environments. 

Keywords— Dental Abnormality Detection, YOLO, Panoramic Dental X-ray Images, Weighted Box Fusion. 
 

1. Introduction  

Medical image processing presents significant 
challenges due to ethical constraints and the sheer 
volume of imaging data. Artificial Intelligence (AI) 
has emerged as a transformative tool in this domain, 
enhancing diagnostic speed and accuracy, 
particularly in scenarios where direct clinician 
oversight is limited. Dental imaging encompasses 
two primary modalities: Intraoral and Extraoral X-
ray images, with panoramic radiographs serving as a 
cornerstone for detecting caries, structural 
anomalies, and alveolar bone loss. These images 
provide a comprehensive view of the dentition and 
adjacent maxillofacial structures, making them 
indispensable for preventive care and treatment 
planning [1]. With the rapid advancement of 
technology, Human-Computer Interaction (HCI) has 

assumed a pivotal role, enabling the use of non-
medical imaging for preliminary examinations. 
Nevertheless, despite the enhanced diagnostic 
capabilities provided by RGB imaging, it remains 
limited in accurately evaluating root morphology 
and detecting metallic artifacts, such as dental 
implants [2]. 

AI-driven techniques are not intended to replace 
clinical expertise but rather function as decision-
support systems that augment diagnostic precision 
and workflow efficiency. Their integration has 
catalyzed advancements across multiple dental 
specialties, including endodontics, oral radiology, 
orthodontics, and prosthodontics. Panoramic 
radiographs are routinely employed for diverse 
applications, ranging from osseous evaluation to 
implant planning and disease screening [3]. 
Although conventional image processing methods 
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have historically addressed quality enhancement, 
persistent challenges—such as motion artifacts and 
anatomical variability—have necessitated the 
adoption of deep learning approaches to improve 
interpretability [4]. 

Automated tooth classification and numbering 
represent foundational tasks in AI-assisted dental 
image analysis. While contemporary algorithms 
achieve clinically acceptable accuracy in these 
operations, limitations persist due to dataset scarcity, 
edentulous regions, and intraoral artifacts [5]. 
Semantic segmentation via U-Net architectures has 
further enabled precise segmentation of caries, root 
structures, and other anatomical components [6]. 
However, the heterogeneous nature of dental 
pathologies precludes the development of a 
universal diagnostic tool capable of addressing all 
conditions autonomously. Deep learning 
architectures are often characterized by high 
computational complexity in medical image 
analysis. Given the critical importance of fine-
grained details in dental panoramic radiographs, 
there is a pressing need for computationally 
efficient, lightweight models optimized for 
deployment in web-based platforms and software 
tools, which support real-time inference and 
seamless integration into clinical workflows. 

This study introduces a deep learning framework 
optimized for detecting cavity, filling, implants, and 
impacted teeth with high spatial fidelity. Our 
objectives prioritize both accuracy enhancement and 
cross-dataset generalizability, achieved through an 
architecture engineered for small-object detection 
and region-specific precision. Section 2 reviews the 
related work, while Section 3 details the model 
architecture and the conditions of the employed 
dataset, along with the evaluation metrics used for 
model assessment. Section 4 presents the 
experimental results, and Section 5 offers a 
comprehensive comparison of the proposed 
approach with existing models from multiple 
perspectives. Finally, Section 6 concludes the paper 
by discussing key challenges and outlining potential 
directions for future research. 

2. Related Work 

The rapid advancement of artificial intelligence 
and its integration into medical applications have 
opened new avenues for the development of deep 
learning algorithms aimed at enhancing diagnostic 
accuracy and streamlining treatment planning. The 
increasing availability of publicly accessible datasets 
has significantly accelerated research efforts in 
applying deep learning techniques to medical image 
interpretation. Recently, artificial intelligence has 
been recognized as a transformative tool across 
various domains within dentistry, revolutionizing 
diagnostic and analytical processes [3]. 

Convolutional Neural Networks (CNNs) constitute a 
foundational approach for feature extraction and 
have been extensively employed in diagnosing 
pathologies from clinical dental radiographs. These 
networks facilitate the classification of disease type 
and severity; however, their accuracy in detecting 
early-stage or mild conditions remains limited [7]. 

Another prominent method is region-based 
convolutional neural networks, such as RCNNs, 
which operate through a two-stage process involving 
region proposal and classification. Mask R-CNN, in 
particular, has shown promising results in dental 
applications, achieving an average precision of 
79.5% in identifying abnormal teeth, thereby 
enabling early detection of caries in dental X-ray 
images [8]. Beyond tooth detection, Mask R-CNN 
has also been utilized for identifying oral conditions 
such as cold sores [9]. Tooth segmentation has been 
further advanced through collaborative learning 
approaches integrated with Mask R-CNN, where 
main and edge images are processed simultaneously. 
This method extracts features from complementary 
images, with an attention mechanism determining 
the relative importance of each at different spatial 
locations, ultimately facilitating precise 
segmentation of teeth [10]. Mask R-CNN remains 
the predominant architecture for tooth and disease 
segmentation tasks [11]. 

Faster R-CNN is another widely adopted model 
for interpreting panoramic dental images. When 
combined with backbone networks such as 
GoogLeNet and AlexNet, Faster R-CNN has 
achieved an accuracy of 94.18% in detecting dental 
anomalies [12]. Tooth-type classification (incisors, 
molars, premolars, canines) serves as a critical 
preprocessing step in dental image analysis. Region-
based CNN (R-CNN) variants leverage anchor-
based detection and intersection-over-union (IoU) 
optimization to accelerate recognition, attaining 
more than 90% detection accuracy and 99% 
classification precision via bounding box regression  
[13]. Additionally, Faster RCNN has been employed 
to predict the number and location of carious lesions 
from periapical radiographs, attaining a precision of 
73.49%. The integration of common feature 
extraction backbones like ResNet-50, Xception, and 
VGG16 has further enhanced network performance 
compared to single-stage detectors such as YOLO 
[14]. The automated classification of teeth in 
periapical radiographs has gained significance in 
forensic odontology, particularly for postmortem 
identification. The psychological trauma associated 
with manual examination of human remains has 
further emphasized the need for automated 
interpretation systems. Recent advancements 
demonstrate that R-FCN architectures, employing 
cascade feature aggregation, substantially 
outperform conventional methods—achieving 
95.8% precision and 96.1% recall [15]. 
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Among single-stage detectors, YOLO (You Only 
Look Once) has emerged as a dominant CNN-based 
architecture for real-time object detection. Its end-
to-end design simultaneously predicts bounding box 
coordinates and class probabilities through a unified 
neural network, offering superior computational 
efficiency. This network demonstrates a high level 
of generalizability, and various versions have been 
introduced to date. Nevertheless, it exhibits 
limitations in accurately detecting objects that are 
either very small or in close proximity [16]. 
YOLOv3 has achieved approximately 80% accuracy 
in caries detection and tooth numbering when 
integrated with semantic segmentation techniques 
[17]. while YOLOv4 [18] demonstrates 99.31% 
accuracy in panoramic image analysis through 
feature pyramid networks (FPNs) and spatial 
attention modules. Subsequent versions exhibit 
progressive enhancements.  

YOLOv7 [19] integrates channel attention 
blocks to detect caries in bitewing radiographs 
(precision: 0.833, recall: 0.866), and YOLOv8 [20] 
achieves dual-domain competency—simultaneously 
processing bitewing and panoramic imagery with 
90% precision-recall balance. However, limited 
dataset availability remains a constraint for deep 
learning models, prompting the adoption of 
augmentation strategies (e.g., rotational transforms, 
multi-scale resampling) to enhance model 
robustness [18]. Recent innovations like the YEM-
SAFN framework introduce multi-scale feature 
fusion for dental pathology detection, addressing 
size variance challenges in panoramic datasets. By 
incorporating hierarchical cross-spatial attention 
(HCSA) mechanisms, this architecture surpasses 
YOLOv8s in lesion detection accuracy, 
demonstrating the evolving potential of attention-
guided detection in dental diagnostics [21]. Recent 
advancements in YOLO-based architectures have 
demonstrated significant potential for dental image 
analysis, particularly in the domain of lightweight 
segmentation frameworks. YOLO-DentSeg, an 
optimized variant of YOLOv8n-seg, integrates a 
Bidirectional Feature Pyramid Network (BiFPN) to 
improve multi-scale feature fusion, enabling precise 
localization of oral pathologies while maintaining 
computational efficiency suitable for clinical 
environments with limited resources. The model's 
ability to delineate diseased regions with 
competitive accuracy positions it as a viable solution 
for real-time diagnostic applications  [22].  

Concurrently, evaluations of YOLOv9, 
YOLOv10, and YOLOv11 on RGB dental images 
captured via mobile devices, reveal YOLOv11m as 
the top-performing variant for plaque cluster 
detection, owing to its advanced feature aggregation 
mechanisms. YOLOv9 employs Programmable 
Gradient Information (PGI) to counteract gradient 
dissipation in deep layers, preserving feature fidelity 

without sacrificing inference speed. YOLOv10 
introduces a dual-label inference paradigm that 
combines one-to-one and one-to-many label 
assignments, reducing reliance on non-maximum 
suppression (NMS) and enhancing performance in 
occluded scenarios. The YOLOv11 framework 
builds upon YOLOv8 through the integration of 
C2PSA blocks for cross-scale context modeling and 
C3K2 blocks with optimized convolutional kernels, 
which collectively improve spatial resolution for 
detecting minute structures such as early-stage caries 
[23]. 

 The spectrum of dental diseases is highly 
diverse, prompting the development of various 
models for their detection. Notably, the YOLOv3 
model has demonstrated an accuracy exceeding 99% 
when evaluated on a dataset of 1,200 panoramic 
images [24]. The Spatial Pyramid Pooling 
Framework (SPPF) module has been incorporated 
into the newly developed versions of the YOLO 
architecture facilitating the detection of objects at 
varying scales through convolutional layers of 
different sizes. This module effectively extracts both 
global and local features, and the integration of the 
SPPF layer into the final processing stage has 
resulted in enhanced performance in the detection of 
abnormal teeth. Despite the increasing complexity of 
the architecture, the real-time processing capability 
inherent to YOLO is preserved, making this design 
particularly suitable for deployment in web-based 
tools aimed at automatic dental disease diagnosis 
[25]. 

VGG-16 [26] is a 16-layer convolutional 
network, comprising 13 convolutional layers and 3 
fully connected layers, renowned for its robust 
feature extraction capabilities, albeit with a 
substantial number of parameters required for 
computations. In contrast, ResNet50 [27], which 
utilizes 50 layers, is designed for global feature 
extraction and is more lightweight than VGG-16. 
MobileNetV2 further exemplifies a lightweight 
architecture, employing spatial filtering and channel 
combination techniques for efficient convolution 
calculations, enabling rapid real-time feature 
extraction. 

Feature extraction from panoramic images is 
crucial in dental imaging. Given the advantages of 
various feature storage models, combining these 
models allows for multifaceted feature extraction 
approaches. Traditional methods such as Support 
Vector Machines (SVM), Multi-Layer Perceptron 
(MLP), and Random Forest have been employed for 
the detection of abnormal teeth. However, 
integrating feature extraction methods with the Swin 
Transformer architecture yields improved conditions 
and enhances model accuracy. Additionally, the 
application of bagging ensemble classifier methods 
for decision-making further boosts accuracy. The 
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optimal model identified is the combination of 
MobileNetV2 and Swin Transformer [28]. 

Various methods exist for integrating the 
bounding boxes generated by object detection 
networks. Non-Maximum Suppression (NMS) 
remains a foundational technique, eliminating 
redundant detections by retaining only the highest-
confidence box when the IoU between overlapping 
predictions exceeds a predefined threshold. Soft-
NMS mitigates these issues by decaying confidence 
scores of overlapping boxes proportionally to their 
IoU values, preserving occluded objects while 
penalizing low-confidence duplicates through a 
continuous suppression function. Weighted Box 
Fusion (WBF) offers a more sophisticated 
alternative by aggregating all candidate boxes 
through confidence-weighted averaging. This 
method computes fused box coordinates as the 
weighted mean of all overlapping predictions, with 
weights derived from their individual confidence 
scores. Figure 1 illustrates the operational 
differences between these methods, highlighting 
their unique handling of overlapping detections [29]. 

3. Material and Method 

The proposed AI engine is based on the 
YOLOv11 [30] architecture. To effectively and 
quickly detect dental conditions in panoramic 
images, we have modified certain parts of the 
backbone and neck architecture. YOLOv11 exhibits 
robust adaptability across diverse datasets, with 
enhanced capability for detecting subtle object 
features. This version incorporates the Spatial 
Pyramid Pooling – Fast (SPPF) module, which 
enables multi-scale feature extraction—a design 
principle also employed in YOLOv8  [31]. The 
module utilizes successive fixed-size max-pooling 
operations, reducing computational complexity 
relative to earlier architectures while improving 
inference speed. 

 Key to its operation is a convolutional layer 
preceding max-pooling, which reduces input 
dimensionality, followed by channel-wise 
concatenation of convolutional and pooled outputs. 
The integration of the SiLU activation function 
further optimizes performance for fine-grained 
object detection [32]. The incorporation of the 
Spatial Pyramid Pooling Framework (SPPF) layer 
has significantly enhanced the performance of the 
YOLOv11 architecture in the detection of abnormal 
teeth [25]. Consequently, we have refined this model 
into a more comprehensive version by integrating 
additional layer connections and implementing a 
more precise mechanism for feature extraction. 

Proper feature extraction from images is 
essential for improving the engine's performance. 
Figure 2 shows the proposed network architecture.  

 

Figure. 1. NMS/soft-NMS vs. WBF [23] 

The Spatial Pyramid Pooling Fast (SPPF) block aids 
in extracting detailed features. By compressing 
features after the pooling process in panoramic 
images, we enhance model performance. This 
compression happens in the backbone, before the 
last convolution block, which helps retain more 
details in the image. Feature extraction is advanced 
through the C3k2 module, which employs dual 
convolutional layers to capture intricate patterns 
with high flexibility. 

Meanwhile, the Cross-Stage Partial with Spatial 
Attention (C2PSA) module enhances region-specific 
focus via a bifurcated processing pipeline: initial 
feature extraction through convolution is followed 
by division into dual branches, each processed by 
PSA blocks to weight spatially significant features. 
These branches are subsequently merged via 
convolutional fusion, preserving anatomical context 
in panoramic imagery through explicit spatial 
relationship modeling [30]. In our model, this 
module is repeated in the neck section, taking input 
from the SPPF and sending it to the Upsampler. This 
version of the module has less spatial attention than 
the original C2PSA, resulting in reduction in the 
model’s time complexity. This block is called 
C2OSA, or two Convolutional Block with One 
Spatial Attention. Figure 3 depicts the architecture 
of this block . 

In dental radiography, the consolidation of object 
detection outputs requires specialized methodologies 
to address challenges such as tooth occlusion and 
anatomical proximity. Predictions from detection 
networks consist of bounding box coordinates, 
categorical labels (e.g., molar, incisor), and 
confidence scores quantifying prediction certainty. 
NMS remains a foundational technique, eliminating 
redundant detections by retaining only the highest-
confidence box when the IoU between overlapping 
predictions exceeds a predefined threshold [29]. 
However, NMS exhibits critical limitations in dental 
contexts: its performance is sensitive to IoU 
threshold selection, where overly stringent values 
may suppress valid detections of adjacent teeth, and 
it struggles to differentiate overlapping structures 
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Figure. 2. Proposed Model Architecture 
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Figure. 3. C2OSA (Customized C2PSA) 

due to its binary suppression logic.  To resolve this 
issue, we applied the WBF  [29] method for 
classification.  This approach improves the detection 
accuracy of densely packed teeth by utilizing spatial 
consensus among multiple detections, rather than 
eliminating lower-confidence candidates. 
Furthermore, it enhances the reliability of dental 
abnormality classification.   

During the training phase, images were 
processed at a resolution of 640×640 pixels over 100 
epochs, using a batch size of 16. Notably, no 
preprocessing techniques were applied to the 
training or validation datasets. To ensure robustness 
and generalizability, a 5-fold cross-validation 
strategy was employed to split the data. All training 
and inference tasks were conducted on a computer 
with 128 GB of system RAM  and dual RTX 3090 

GPUs, each equipped with 48GB of dedicated 
memory. 

3.1. Dataset 

For the training and evaluation of the model, a 
publicly accessible dataset of dental panoramic X-
ray images was employed [33]. This dataset was 
structured into three directories: validation, test, and 
training, encompassing a total of 1,269 panoramic 
images. In six instances, the same tooth was 
annotated with varying labels; these images were 
excluded from the dataset to improve the model's 
accuracy. Furthermore, all data were utilized in the 
5-fold cross-validation method, with no fixed 
partitioning of the data. 

The labels comprise four distinct categories: 
Implant, Fillings, Impacted Tooth, and Cavity. The 
remaining images within the dataset include 2,032, 
6,039, 495, and 630 instances of each respective 
class, thereby illustrating the class imbalance 
inherent in the dataset. Labeling medical images is 
crucial, as the model's accuracy is highly dependent 
on the quality of the training labels. Consequently, it 
is essential to report on the labeling methodology 
and the expertise of the individuals involved. 
However, no information regarding this has been 
published, and this research relied solely on a public 
database. 

Data augmentation was performed using copy-
paste techniques with random 25%, 20%, and 15% 
for horizontal flips, rotation, and resizing. Given the 
significance of tooth position and type in these 
images, the augmented images were placed in the 
original location of the tooth, potentially 
overlapping with adjacent teeth. It is noteworthy that 
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the overall structure of the image was maintained 
throughout this process, and data augmentation was 
performed on two classes: Impacted Tooth and 
Cavity. Figure 4 presents examples of dataset 
images. 

3.2. Evaluation metrics 

The evaluation of the proposed model was 
conducted using standard criteria commonly 
employed for assessing deep learning methods. The 
calcification issue can be approached from two 
analytical frameworks: binary classification, which 
entails distinguishing between diseased and healthy 
teeth, and multi-class classification, which aims to 
differentiate among various dental pathologies in 
relation to healthy teeth. In the binary framework, a 
True Positive (TP) denotes that the model has 
accurately classified a tooth as diseased. Conversely, 
in the multi-class context, a TP is recorded when the 
model not only identifies the presence of a disease 
but also correctly classifies its specific type. An 
increased TP count is indicative of enhanced model 
performance in accurately diagnosing dental 
conditions. 

Within the binary classification paradigm, a 
False Positive (FP) occurs when the model 
erroneously identifies a healthy tooth as diseased. 
Such misclassifications can lead to unnecessary 
clinical interventions, incurring both time and 
financial costs. In the multi-class setting, an FP is 
defined as the model identifying a tooth as diseased 
while incorrectly categorizing the specific disease 
type. Reducing the FP rate is crucial for minimizing 
the economic burden of misdiagnoses. A False 
Negative (FN) in the binary classification context is 
characterized by the model failing to recognize a 
diseased tooth, instead classifying it as healthy. This 
error is particularly critical as it conceals the disease 
from the clinician's attention. In the multi-class 
scenario, an FN arises when the model completely 
overlooks the disease, misclassifying it as healthy or 
neglecting to identify it altogether. 

In binary classification, a True Negative (TN) 
indicates that the model has accurately predicted a 
tooth to be healthy. In the multi-class context, TN 
similarly pertains to the correct identification of a 
healthy state. A high TN value suggests that the 
model does not exhibit a significant bias towards 
diagnosing diseases and is proficient in detecting 
healthy teeth. The metrics reported in the confusion 
matrix are interpreted from a binary approach.  The 
Precision metric, calculated using Equation (1), 
quantifies the proportion of teeth identified by the 
model as diseased that are indeed diseased, 
encompassing accurate diagnoses of disease types. 
The Recall metric evaluates the ratio of teeth 
classified as diseased by the model relative to the 
total number of teeth that are actually diseased or 
exhibit a specific disease type, as detailed in  Equation (2).   

 

Figure. 4. Samples of dataset images (randomly selected) 

It is essential to acknowledge the inherent trade-off 
between Precision and Recall. 

  (1) 

 

  (2) 

To assess the overall accuracy of the model, 
Equation (3) is employed especially when the data is 
imbalanced, the model might perform poorly on the 
smaller classes but still show high accuracy because 
it correctly classifies the majority class most of the 
time. To get a better understanding of the model’s 
true performance, the F1-score is often used; it is 
calculated as shown in Equation (4) and is the 
harmonic mean of precision and recall. The F1-score 
balances these two metrics, making it especially 
useful in medical datasets where correctly 
identifying cases with abnormalities (recall) and 
avoiding false alarms (precision) are both very 
important. Since medical data often involves uneven 
class distributions, the F1-score provides a more 
accurate picture of how well the model can detect 
abnormalities across all categories, not just the most 
common ones. 

 (3) 

 

  (4) 

4. Results 

The YOLOv11 architecture demonstrates 
enhanced detail detection through region-specific 
attention mechanisms, though its efficacy in 
panoramic X-ray imaging hinges on precise 
anatomical focus. Comparative analysis against the 
baseline YOLOv11 reveals superior performance in 
the proposed model, evidenced by balanced 
precision-recall metrics. As quantified in Table 1 (5-
fold cross-validation averages), the model’s outputs 
were validated via both Non-Maximum Suppression  
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Table 1.  Evaluation Metrics of the Proposed Model 

Model Precision Recall Accuracy 
F1-

score 

Proposed 

YOLO(NMS) 
0.832 0.795 0.839 0.813 

Proposed 

YOLO(WBF) 
0.862 0.825 0.843 0.883 

(NMS) and Weighted Boxes Fusion (WBF), with 
performance evaluated at an intersection-over-union 
(IoU) threshold more than 0.5. WBF proved 
particularly effective in dental applications, 
improving tooth localization accuracy while 
consolidating high-confidence predictions and 
retaining diagnostically relevant low-confidence 
boxes. 

Class-specific improvements from WBF are 
detailed in Table 2. Medical imaging necessitates 
careful IoU calibration, as misclassification costs 
differ markedly between false positives (e.g., 
classifying a healthy tooth as abnormal) versus false 
negatives (e.g., missing a diseased tooth). WBF’s 
weighted averaging reduced redundant detections 
compared to NMS, yielding more decisive 
predictions. However, performance disparities 
emerged due to dataset imbalances—notably, the 
Cavity class, underrepresented in training data, 
exhibited lower detection rates (F1-score: 0.815 vs. 
0.872 for Filling). The influence of data 
augmentation on NMS and WBF is consistent when 
considering its effects on the training process. 
Overall, the model demonstrates superior 
performance in the Filling class compared to the 
other classes. 

In this investigation, the F1-score metrics for 
cavity and impacted teeth are observed to be 8.3% 
and 3.6% lower, respectively, in the absence of data 
augmentation. While augmenting the data in 
panoramic radiographs enhances model 
performance, it does not entirely mitigate the class 
imbalance issue due to the intrinsic limitations 
associated with anatomical fidelity. As illustrated in 
Table 2, the model exhibits superior performance in 
classifying impacted teeth compared to cavities. 
Notably, the effect of data augmentation is more 
significant in the cavity class, as impacted teeth, 
primarily the third molars, are typically associated 
with higher detection accuracy owing to their 
distinct anatomical positioning. Cavity is the only 
class exhibiting a higher recall than precision. The 
model demonstrates a high sensitivity to identifying 
teeth within this class, even as the number of false 
positive alerts increases. Consequently, the model's 
accuracy in detecting cavities is lower compared to 
other classes. While data augmentation has 
enhanced performance in this regard, it has not 
entirely resolved the issue. 

Table 2. Evaluation Metrics Across Classes 

Model Class Precision Recall Accuracy 
F1-

score 

P
ro

p
o

se
d

 

Y
O

L
O

(N
M

S
) 

Implant 0.886 0.797 0.889 0.839 

Fillings 0.867 0.843 0.872 0.855 

Impacted 

Tooth 
0.812 0.763 0.821 0.786 

Cavity 0.765 0.777 0.775 0.771 

P
ro

p
o

se
d

 

Y
O

L
O

(W
B

F
) 

Implant 0.906 0.816 0.912 0.859 

Fillings 0.884 0.861 0.894 0.872 

Impacted 

Tooth 
0.847 0.801 0.882 0.823 

Cavity 0.807 0.823 0.832 0.815 

Model performance was assessed using the 
normalized confusion matrix, which enables a 
detailed analysis of class-wise discrimination. Figure 
5 illustrates the normalized confusion matrices 
corresponding to the NMS and WBF methods. As 
depicted, the WBF approach demonstrates improved 
detection performance across all classes. Notably, 
the model exhibits a tendency to misclassify 
instances of the Cavity class as the background or 
healthy. Conversely, in the Filling class, which has a 
larger sample size, the model occasionally 
misidentifies healthy teeth as fillings. Furthermore, 
due to visual similarities between dental fillings and 
implants, misclassification of implants as fillings is 
also observed (12%). To address class imbalance 
and enhance differentiation, class weighting 
adjustments were incorporated into the model. 
However, these modifications yielded limited 
performance gains, particularly due to the inherent 
challenge of distinguishing Cavity teeth from small 
implants or anatomical structures such as parts of the 
sinus visible in panoramic radiographs. 

Figure 6 illustrates the ROC curves of the model 
for both the NMS and WBF methods, with standard 
deviations calculated from a 5-fold cross-validation 
procedure. Notably, the Impacted tooth class 
exhibits the highest standard deviation, which can be 
attributed to its limited number of training 
samples—an issue exacerbated by data partitioning 
in cross-validation. Despite this, the WBF method 
demonstrates superior performance, with reduced 
variability across folds. This is likely due to its 
ability to more effectively integrate detection results 
by down-weighting low-confidence predictions and 
emphasizing high-confidence boxes, particularly in 
scenarios where the model is biased toward classes 
with larger sample sizes. 

Figure 7 compares the model outputs generated 
using NMS and WBF. To assess performance, a low 
IoU threshold of 0.2 was selected to highlight 
differences in the number and quality of predicted 
bounding boxes. As shown in part (a), WBF  provides 
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Figure. 5. Normalized Confusion Matrices 

 

Figure. 6. ROC Curves  

Figure. 7. Model Output 

improved detection of overlapping teeth compared 
to NMS. In this sample, NMS produced 9 bounding 
boxes for the root canal structures, whereas WBF 
yielded only 4, reflecting a more concise and 
accurate output. Part (b) of Figure 7 presents another 
example, where NMS generated 32 boxes, in 

contrast to only 8 boxes detected by WBF at the 
same IoU threshold. In this case, although the filled 
tooth on the lower left was missed by both methods, 
WBF more clearly separated the bounding boxes for 
the three central teeth, indicating better spatial 
resolution in overlapping regions. 
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5. Discussion 

YOLO models execute detection in a single step 
by extracting global features from the upper layers. 
These models are specifically designed for real-time 
processing, resulting in high-speed performance 
[16]. Additionally, the deeper layers extract local 
features, enabling the architecture to detect multi-
scale objects effectively. Consequently, the 
performance of the model can be compared with 
similar architectures to provide a comprehensive 
analytical review of its efficacy. 

5.1. Similar architectural frameworks 

The enhanced YOLOv11-based [30] framework 
demonstrates superior performance over the original 
architecture through three key modifications: (1) a 
spatially adaptive sensitivity mechanism that 
prioritizes diagnostically critical regions, (2) 
hierarchical multi-scale feature integration for 
improved decision boundaries across anatomical 
structures, and (3) optimized utilization of primary 
convolutional features. Quantitative evaluation 
reveals consistent improvements of 5.5% in 
precision, 0.6% in recall, and 7.1% in F1-score 
(Table 3), with the balanced F1- score metric 
confirming the model’s robustness against 
classification bias. 

The overall efficacy of YOLOv11 [30] exceeds 
that of YOLOv9 [34] and YOLOv10 [34] when 
assessed using the F1-score metric. Conversely, 
YOLOv8 [31] exhibits superior precision relative to 
YOLOv11. The evaluation of the models presented 
in the first four rows of Table 3 employs the original 
architecture along with the pre-trained weights. 
Significantly, the proposed method demonstrates 
enhanced performance compared to versions 8 
through 11 in terms of NMS. Regarding the WBF 
technique, precision enhancements of 5%, 10.8%, 
8%, and 5.5% are recorded for versions 8 through 
11, respectively. Additionally, for versions 8 to 10, 
akin to the proposed methodology, recall remains 
lower than precision, suggesting that these models 
are characterized by a reduced incidence of false 
positives. 

Comparative analysis with the YEM-SAFN [21] 
model—an extension of YOLOv8 incorporating 
target-specific network structures—demonstrates the 
competitive advantage of our proposed approach. 
The integration of the Hybrid Cross-Scale Attention 
(HCSA) module effectively addresses challenges 
associated with anatomical overlap artifacts. When 
applied under identical experimental conditions, this 
model yielded the results presented in Table 3. 
Notably, our framework outperformed both YEM-
SAFN and the baseline YOLOv11 in lesion 
detection tasks, while maintaining comparable 
computational complexity. The proposed 
methodology exhibits superior precision compared  

Table 3. Comparison of Evaluation Criteria for Models with 

Similar Architecture 

Model Precision Recall Accuracy F1-

score 
YOLOv8 [31] 0.812 0.751 0.795 0.780 

YOLOv9 [34] 0.754 0.729 0.771 0.741 

YOLOv10 [34] 0.782 0.764 0.795 0.771 

YOLOv11 [30] 0.807 0.819 0.828 0.812 

YEM-SAFN [21] 0.845 0.873 0.862 0.858 

YOLO-DentSeg [22] 0.753 0.784 0.860 0.768 

YOLO11+SPPF [25] 0.814 0.811 0.822 0.812 

Proposed 

YOLO(NMS) 
0.832 0.795 0.839 0.813 

Proposed 

YOLO(WBF) 
0.862 0.825 0.843 0.883 

to YEM-SAFN; however, the recall rate of the 
YEM-SAFN model is greater than that of the 
proposed approach. To facilitate a comprehensive 
comparison, the harmonic mean F1-score was 
employed, indicating enhanced overall performance 
for the proposed model. Furthermore, the proposed 
approach effectively reduces the incidence of false 
positives. 

Further validation against YOLO-DentSeg [22] 
—a modified YOLOv5s variant that employs a 
triple-attention mechanism and a Bidirectional 
Feature Pyramid Network (BiFPN)—highlights the 
strengths of our architecture in analyzing cervical 
regions. YOLO-DentSeg leverages the CIoU loss 
function to enhance localization accuracy and is 
specifically tailored for the detection of caries, 
impacted teeth, periapical periodontitis, and 
bifurcated root lesions. On the same condition, our 
model achieved a 10.9% improvement in mean 
detection precision over YOLO-DentSeg (Table 3), 
primarily due to more effective feature fusion and a 
reduction in spatial redundancy during high-
resolution image processing. 

5.2. Architectural diversity 

Two-stage methods, such as Faster R-CNN [35], 
require more time for detection compared to the 
YOLO family. While Faster R-CNN extracts 
significant local features using anchors, it 
demonstrates weaker performance than the proposed 
method, as indicated in Table 4. This is primarily 
due to the added block between the backbone and 
the neck in the proposed method, which mitigates 
the loss of critical features. DensNet-121 [36] excels 
in local feature extraction through dense connections 
between preceding and succeeding layers; however, 
it is slower and yields lower accuracy than the 
proposed method, which achieves 3.9% and 2.2% 
improvements in precision and recall, respectively. 
Feature extraction via VGG-16 [26] is more 
computationally intensive than the proposed model,  
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Table 4. Comparison of Evaluation Criteria for Models with 

Different Architecture 

Model Precision Recall Accuracy F1-

score 
Faster R-CNN [35] 0.734 0.765 0.783 0.749 

DensNet-121 [36] 0.823 0.803 0.827 0.812 

VGG16 [26] 0.843 0.817 0.853 0.829 

ResNet50 [27] 0.832 0.753 0.841 0.791 

ResNet50 + Swin [28] 0.921 0.911 0.934 0.915 

MobileNetV2 + Swin 

[28] 
0.908 0.896 0.921 0.901 

Proposed 

YOLO(NMS) 
0.832 0.795 0.839 0.813 

Proposed 

YOLO(WBF) 
0.862 0.825 0.843 0.883 

attributable to its higher parameter count. 
Nevertheless, using the perceptron, VGG-16 attains 
bounding box accuracy of 0.853, surpassing 
YOLOv11 with the original architecture, although it 
exhibits a 5.4% lower F1-score compared to the 
proposed architecture. 

ResNet50 [27], which employs a head 
perceptron for decision-making, performs weaker 
than both the VGG-16 method and the proposed 
approach. However, the combined models 
demonstrate superior performance relative to the 
proposed model. The Swin Transformer [36] 
exhibits strong capabilities in global feature 
extraction, and its integration with local feature 
extraction methods enhances performance. The 
simple head MLP, which combines features from 
ResNet50 and the Swin Transformer, achieves the 
highest precision and recall values of 0.921 and 
0.911, respectively. 

 Combining the Swin Transformer with 
MobileNetV2 results in a 1.8% improvement in F1-
score over the proposed model; however, this 
configuration underperforms compared to the 
combination with ResNet50 due to the reduced 
parameter count of MobileNetV2. The combined 
models are more complex and demanding in terms 
of execution time than the proposed method, making 
them impractical for medical applications. Despite 
this, the combined features of ResNet50 and the 
Swin Transformer yield a 3.2% better F1-score. The 
proposed model, with its real-time capabilities, 
presents significant advantages for use as a medical 
tool. 

5.3. Challenges and limitations 

A critical challenge in the application of artificial 
intelligence within the medical domain is the 
assurance of reliability. Deep learning models are 
inherently dependent on labeled datasets; thus, any 
biases present in the labeling process can propagate 
through to the model, leading to skewed outcomes. 

Moreover, the process of labeling in the medical 
field is contingent upon the expertise of 
practitioners, which introduces variability and 
inconsistency. The lack of standardized benchmarks 
that provide accurate information regarding labeling 
conditions significantly undermines the reliability of 
models designed for the detection of abnormal teeth 
in panoramic radiographs. Furthermore, the 
hyperparameters utilized in these models may differ 
across various datasets, complicating the training 
process for models tasked with analyzing distorted 
images. 

To assess model generalizability, we conducted 
experiments on the DENTEX [37] dataset, which 
contains 705 labeled images across four pathological 
classes: Lesion Caries, Deep Caries, Impacted, and 
Periapical. Although detailed metadata regarding 
image acquisition, annotation standards, and expert 
involvement is unavailable, the model demonstrated 
clinically acceptable performance. Specifically, for 
the Impacted class—the only category directly 
comparable between datasets—our model achieved 
a precision of 0.752, recall of 0.698, and F1-score of 
0.723 without additional fine-tuning. These results 
underscore the model’s robust transfer learning 
capability, particularly given the domain-specific 
training and the relatively limited number of 
corresponding samples in the dataset  before 
augmentation. 

A notable limitation in the detection of abnormal 
dental conditions in panoramic images is the 
disparate frequency of disease occurrence, which 
contributes to data imbalance. As a result, machine 
learning models tend to exhibit heightened 
sensitivity toward classes with greater 
representation, making it difficult to train effectively 
on less prevalent data. Employing weighting and 
data augmentation methods introduces further 
complications in panoramic images, as the overall 
anatomy of the mouth is critical, and the spatial 
arrangement of premolars and canines must remain 
consistent. 

6. Conclusion 

This study presents an optimized YOLOv11-
based framework for the detection of four critical 
dental anomalies—implants, fillings, impacted teeth, 
and cavities—in panoramic radiographs. The 
proposed architecture enhances state-of-the-art 
performance through three principal innovations: (1) 
a location-sensitive attention mechanism, (2) 
hierarchical multi-scale feature extraction, and (3) a 
bounding-box score-weighted post-processing 
technique that refines detection confidence. One of 
the advantages of the proposed method is its ability 
to respond quickly based on the original YOLO 
architecture, making it well-suited for integration 
into web software platforms and tools. Comparative 
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evaluations demonstrate consistent improvements of 
over 0.6% in recall and over 5.5% in precision 
relative to the baseline YOLOv11, while also 
outperforming specialized models such as YEM-
SAFN and YOLO-DentSeg in cross-dataset 
validation. Notably, the framework maintains strong 
generalization capabilities, achieving competitive 
accuracy on external datasets without retraining. 

To effectively address the issue of data 
imbalance in dental imaging, future research should 
concentrate on the development of methodologies 
that are intricately aligned with the anatomical 
complexities of the oral cavity, ensuring 
comprehensive representation of each dental 
phenotype across a diverse range of imaging 
modalities. Moreover, subsequent to the data 
augmentation process, the integration of advanced 
image quality enhancement algorithms, specifically 
tailored to the unique transformations applied during 
augmentation, has the potential to significantly 
improve diagnostic accuracy. Additionally, 
exploring the incorporation of transformer fusion 
techniques within the model architecture, while 
maintaining critical real-time processing 
capabilities, presents a promising avenue for further 
investigation. 
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