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A B S T R A C T  

Software-Defined Network (SDN) introduces centralized network control via the OpenFlow protocol, enhancing 

network management, traffic routing, and security policy enforcement. However, SDN's centralized nature also 

introduces vulnerabilities, particularly to cyberattacks targeting the controller and communication channels. 

This study presents a resilience assessment methodology for SDN under cyberattack conditions, leveraging 

Markov process theory to model system states and transitions. Three SDN architectures were evaluated under 

various attack scenarios, revealing that traditional configurations lack sufficient resilience against synchronous 

attacks and controller breaches. To address these vulnerabilities, we propose an enhanced SDN protection 

framework integrating controller redundancy, automatic reconfiguration mechanisms, and anomaly detection 

using Long Short-Term Memory (LSTM) networks. The methodology was validated through simulations in the 

EVE-NG environment, demonstrating improved SDN stability under cyber threats. These findings provide a 

foundation for designing more resilient SDN infrastructures, ensuring network continuity and security against 

evolving cyber threats.  
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1. Introduction 

The Software-Defined Networking (SDN) has 
emerged as a transformative paradigm in network 
management, offering centralized control, dynamic 
programmability, and improved network agility. By 
decoupling the control plane from the data plane, 
SDN enables flexible and automated network 
configurations through a logically centralized 
controller [1]. The OpenFlow protocol, a widely 
adopted SDN standard, facilitates communication 
between network devices and the controller, 
enhancing operational efficiency.   

However, the centralized nature of SDN 
introduces significant security challenges. The SDN 
controller, being a single point of failure, is 
vulnerable to various cyberattacks, such as Denial-of-
Service (DoS), topology poisoning, malicious rule 
injection, and controller hijacking [2]. A successful 
attack on the controller can compromise the entire 
network, leading to traffic manipulation, service 
disruptions, and unauthorized data access. Traditional 

security mechanisms, such as firewalls and intrusion 
detection systems (IDS), are insufficient in mitigating 
these risks due to their reactive nature and limited 
adaptability [3]. 

Despite advancements in SDN security, existing 
approaches face several critical challenges: (i) Single 
Point of Failure: Centralized SDN architectures are 
highly susceptible to targeted attacks on the 
controller, which can paralyze the entire network. (ii) 
Lack of Proactive Resilience Models: Most security 
solutions focus on reactive defenses, failing to 
quantify SDN resilience against evolving attack 
patterns. (iii) Limited Adaptability of Existing 
Defense Mechanisms: Traditional security measures 
do not dynamically adjust to real-time attack 
conditions, leading to delayed response and 
mitigation. (iv) Absence of AI-Driven Anomaly 
Detection: Existing SDN security frameworks lack 
machine learning-based threat prediction, making 
them ineffective against zero-day attacks and 
sophisticated cyber threats [4, 5].  
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These challenges highlight the need for a 
proactive and adaptive security framework that can 
dynamically assess SDN resilience, detect anomalies 
in real-time, and mitigate attacks efficiently. 

To address the aforementioned challenges, this 
study aims to: (1) Develop a Markov-based 
Analytical Model for quantifying SDN resilience 
under cyberattack conditions. (2) Implement an 
LSTM-based Anomaly Detection System for real-
time attack prediction and mitigation. (3) Evaluate 
the Effectiveness of Controller Redundancy 
Mechanisms to enhance fault tolerance and prevent 
service disruptions. (4) Assess the Performance of 
Proactive Traffic Filtering Mechanisms (e.g., Open 
vSwitch Agents) in mitigating malicious traffic. (5) 
Empirically Validate the Proposed Security 
Framework through simulation-based attack 
modeling in an EVE-NG virtual environment. 

This research not only provides a quantitative 
assessment of SDN security but also offers practical 
solutions to enhance network resilience against 
evolving cyber threats. 

The key contributions of this paper include: 
Markov-Based Resilience Model: A probabilistic 
framework for assessing SDN stability under various 
attack scenarios, capturing transitions between 
different network states. AI-Driven Attack Detection: 
Implementation of a Long Short-Term Memory 
(LSTM)-based anomaly detection system, achieving 
98.1% accuracy in cyberattack detection. Proactive 
Controller Failover Mechanism: A multi-controller 
setup with automated failover, reducing controller 
recovery time from 6.3s to 3.1s, thereby enhancing 
SDN robustness. Efficient Traffic Isolation with 
Software Router Agents: Deployment of Open 
vSwitch (OvS) agents to proactively filter malicious 
flows, blocking 95% of attack traffic with minimal 
latency overhead. Empirical Validation through 
Simulation: A comprehensive EVE-NG-based 
simulation evaluating SDN resilience across three 
architectures (single-controller, dual-controller, and 
hybrid AI-enhanced SDN). 

The rest of the paper is organized as follows: 
Section 2 provides a comprehensive review of 
existing SDN security approaches, highlighting 
research gaps. Section 3 details the Markov-based 
resilience model, attack scenarios, and the proposed 
AI-driven security framework. Section 4 presents the 
experimental setup, simulation results, and 
performance evaluation. Section 5 discusses the 
conclusions, limitations, and future research 
directions. 

2. Related Works 

Software-Defined Networking (SDN) has gained 
significant attention due to its centralized control, 
flexibility, and programmability. However, the 

inherent vulnerabilities of SDN, particularly its 
reliance on a logically centralized controller, have 
made it an attractive target for cyberattacks [6]. This 
section reviews existing research on SDN resilience 
and security, categorizing prior works into three 
major approaches: route optimization for resilience, 
structural resilience mechanisms, and heuristic-based 
security models. It also highlights the research gaps 
that motivate the development of a Markov-based 
resilience model combined with AI-driven threat 
detection. 

2.1. Route Optimization for SDN Resilience 

One of the key challenges in SDN security is 
ensuring efficient routing in the presence of 
cyberattacks. Several studies have focused on 
optimizing routing algorithms to minimize network 
disruption during attack scenarios. Traditional 
shortest-path algorithms, such as Dijkstra’s 
algorithm, have been improved by incorporating 
attack-aware constraints. For example, researchers 
have proposed weighted graph models that assign 
dynamic security weights to different paths in the 
network, allowing SDN controllers to select routes 
that minimize exposure to potential threats. Studies 
[7–9] have explored variations of the Dijkstra 
algorithm to enhance SDN resilience, particularly by 
incorporating link failure probabilities and attack 
likelihoods. These methods improve network 
robustness against denial-of-service (DoS) attacks, 
but they do not provide proactive attack detection or 
real-time mitigation. 

To address the challenge of collision-prone 
routing, alternative optimization techniques have 
been explored. The Clark-Wright heuristic method, 
initially developed for vehicle routing problems [10], 
has been adapted to SDN to optimize flow allocation 
under attack conditions. This approach merges 
multiple traffic flows into fewer paths, reducing 
congestion while ensuring that routing decisions are 
dynamically adjusted based on network conditions. 
Although these methods improve network efficiency, 
they lack a formal stochastic model for quantifying 
SDN resilience. Most existing approaches focus on 
deterministic routing optimization without 
accounting for the probabilistic nature of 
cyberattacks, which can occur at random intervals 
and with varying intensities [8, 9]. 

Another class of solutions involves game-
theoretic models that formulate network security as 
an adversarial game between attackers and defenders 
[11 ,12]. These models attempt to predict attacker 
behavior and optimize routing policies accordingly. 
While game theory provides a mathematically 
rigorous approach, it often relies on simplistic 
assumptions about attacker strategies and does not 
adapt well to real-time network conditions. 
Moreover, these models generally require high 
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computational complexity, making them less 
practical for large-scale SDN deployments. 

2.2. Structural Resilience Approaches 

A fundamental limitation of traditional SDN 
architectures is their reliance on a single controller, 
which becomes a single point of failure [13]. 
Structural resilience approaches aim to improve SDN 
security by introducing controller redundancy, fault-
tolerant topologies, and adaptive failover 
mechanisms. Several studies have proposed multi-
controller SDN architectures where multiple 
controllers operate in a distributed manner, reducing 
the impact of targeted attacks [13, 14]. 

One widely studied approach is the 1+1 controller 
redundancy model, where an active controller is 
paired with a hot-standby backup controller. When 
the primary controller is compromised, the backup 
controller takes over with minimal downtime. 
However, studies have shown that controller 
synchronization delays can lead to temporary 
network instability, particularly in high-traffic 
environments. Research efforts [14–16] have 
explored more advanced multi-controller topologies, 
such as load-balanced controllers that distribute 
traffic dynamically across multiple instances. These 
architectures improve network resilience but 
introduce complex synchronization challenges, 
requiring efficient east-west communication between 
controllers. 

In addition to controller redundancy, researchers 
have investigated alternative network topologies to 
enhance SDN fault tolerance. The FatTree topology, 
commonly used in data centers, has been adapted to 
SDN environments due to its inherent path 
redundancy and load-balancing capabilities [15]. 
Other studies have proposed hybrid topologies, such 
as multi-level architectures combining star and dual-
ring topologies, which offer a balance between fault 
tolerance and scalability [16, 17]. Despite these 
advancements, one major limitation remains: 
structural redundancy alone does not prevent 
cyberattacks. Attackers can still exploit northbound 
API vulnerabilities, insert malicious flow rules, or 
execute DDoS attacks against multiple controllers 
simultaneously. 

Another limitation of existing structural resilience 
approaches is their high implementation cost. Many 
redundancy-based solutions require additional 
hardware, sophisticated synchronization protocols, 
and increased computational resources, making them 
impractical for resource-constrained SDN 
deployments, such as IoT and edge networks. 
Furthermore, most studies do not quantify SDN 
resilience mathematically, making it difficult to 
compare the effectiveness of different resilience 
strategies under real-world attack scenarios. 

2.3. Heuristic-Based Security Models 

A third category of research focuses on heuristic-
based security models, which combine machine 
learning, anomaly detection, and stochastic modeling 
to enhance SDN resilience [18-20]. These models 
aim to predict and mitigate cyberattacks before they 
cause significant damage. One of the most promising 
approaches in this category is the use of neural 
networks for intrusion detection. Studies have 
explored various deep learning techniques, including 
Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and Long Short-Term 
Memory (LSTM) networks, to detect abnormal 
traffic patterns in SDN environments. 

LSTM networks, in particular, have gained 
attention due to their ability to capture long-term 
dependencies in network traffic data. Research [19] 
has shown that LSTM-based anomaly detection can 
identify cyberattacks with high accuracy, 
significantly reducing false positives compared to 
traditional rule-based intrusion detection systems. 
However, most existing studies focus on offline 
attack detection, where models are trained on 
historical datasets and deployed in a passive 
monitoring role. This limits their ability to respond 
dynamically to real-time threats. 

Another important area of research is stochastic 
modeling for SDN resilience assessment. Several 
works [20,21] have applied Markov chains and 
probabilistic models to analyze network stability 
under cyberattack conditions. These models provide 
a mathematical foundation for quantifying SDN 
resilience, allowing researchers to calculate the 
probability of network failure over time. However, 
most existing stochastic models assume static attack 
probabilities, whereas real-world attacks are often 
adaptive and evolve dynamically. Our work extends 
these models by introducing a time-dependent 
Markov model that incorporates real-time attack 
detection and automated mitigation mechanisms. 

In addition to heuristic models, researchers have 
explored hybrid security frameworks that combine 
machine learning with traditional SDN security 
techniques. For example, some studies have proposed 
hybrid IDS systems that integrate signature-based 
detection with anomaly detection to improve attack 
detection rates [22, 23]. Others have developed 
adaptive security policies that dynamically adjust 
network configurations based on threat intelligence 
data. While these approaches show promise, they 
often require high computational resources, making 
them challenging to deploy in low-latency 
environments. 

2.4. Research Gaps and Novel Contributions 

Despite significant advancements in SDN 
security, several key research gaps remain 
unaddressed. Most existing approaches focus on 
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either structural resilience or attack detection, but 
very few integrate quantitative resilience assessment 
with real-time anomaly detection. There is a need for 
a unified framework that combines probabilistic 
modeling, AI-based threat detection, and automated 
mitigation strategies. 

This paper addresses these gaps by proposing a 
Markov-based resilience model that quantifies SDN 
stability under cyberattack conditions. Unlike 
traditional models, our approach dynamically updates 
attack probabilities based on real-time threat 
intelligence, ensuring a more accurate assessment of 
network resilience. Additionally, we introduce an 
LSTM-based anomaly detection system that provides 
real-time cyberattack prediction and automated 
response, significantly enhancing SDN security. 

Furthermore, we empirically validate our 
approach through simulations in the EVE-NG virtual 
environment [24], evaluating the impact of various 
cyberattacks on three different SDN architectures. 
Our results demonstrate that combining Markov 
modeling with AI-driven security mechanisms leads 
to a 60% improvement in network resilience, 
significantly reducing downtime and mitigating the 
impact of cyber threats. 

By bridging the gap between theoretical resilience 
modeling and practical AI-driven security solutions, 
this research provides a comprehensive and 
deployable framework for securing SDN 
environments. 

3. Methodology 

This section presents our proposed three-phase 
methodology for assessing and enhancing the 
resilience of Software-Defined Networking (SDN) 
under cyberattack conditions. The methodology 
includes: (i) stochastic modeling using a continuous-
time Markov process, (ii) simulation-based validation 
of cyberattack scenarios, and (iii) the design of a 
protection system integrating AI-driven detection and 
proactive mitigation mechanisms.  

3.1. Phase I: Markov Model for SDN Resilience 

A comprehensive review of the existing literature 
concerning the resilience of computer networks under 
computer attacks (CA) reveals a set of critical 
requirements for effective resilience assessment 
methodologies. Specifically, these investigations 
emphasize the following key points: 

Importance of Stochastic Analytical Modeling: 
Stochastic analytical modeling, particularly 
approaches grounded in Markov process theory, is of 
paramount importance for the rigorous justification 
and validation of security measures deployed within 
contemporary information security systems [25]. 
These methodologies enable the quantification of 
network behavior under uncertainty, providing 

insights into the probabilistic nature of attack 
outcomes. 

Computational Efficiency of Stochastic Models: 
To facilitate practical application, stochastic models 
must exhibit computational efficiency, enabling the 
calculation of distribution functions for key random 
variables of interest (e.g., network availability, packet 
loss rate) with minimal computational overhead. 
Excessive computational complexity hinders the 
scalability and applicability of these models to large-
scale network environments. 

Flexibility and Generalizability in Attack 
Modeling: Resilience assessment methodologies 
should possess the requisite flexibility and 
generalizability to accurately model a broad spectrum 
of potential attack vectors and adapt to the evolving 
threat landscape. Models that are overly specific or 
narrowly focused may fail to capture the complexities 
of real-world attack scenarios [26]. 

However, the existing resilience assessment 
approaches identified in the literature often exhibit 
limitations in fully addressing the aforementioned 
requirements. In particular, many methods lack the 
necessary computational efficiency or fail to 
adequately capture the dynamic and stochastic nature 
of network attacks. Therefore, this paper proposes a 
novel SDN resilience assessment methodology 
predicated on Markov process theory, which 
demonstrably mitigates these shortcomings. 

To rigorously evaluate network resilience, it is 
imperative to define clear and quantifiable failure 
criteria, specifically, the conditions under which the 
network ceases to perform its designated functions in 
accordance with its defined service-level objectives 
(SLOs). 

Within the context of the network's transport 
component, network failure is defined to occur under 
the following conditions: 

Transport Network Controller Failure or 
Compromise: Failure of the central transport network 
controller or unauthorized takeover of the controller 
by a malicious actor, resulting in compromised 
network management and control. 

Failure of Critical Routers: Failure of one or 
more routers essential for maintaining the integrity 
and functionality of the network's transport 
infrastructure. 

Topology Spoofing Attacks: Insertion of rogue 
routers into the transport network via topology 
spoofing, leading to the creation of "black holes" and 
the disruption of network traffic flows. The malicious 
router becomes an attractor for network packets. 

Communication Link Failures: Loss of 
connectivity along one or more communication 
channels between network nodes, resulting in 
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degraded network performance or complete service 
disruption. 

Building upon these failure criteria, this research 
assesses the resilience of an SDN architecture 
incorporating redundant network elements. The 
network state is modeled as a Markov process with 
discrete states evolving in continuous time. The 
sojourn time (the time spent in each state) is assumed 
to follow an exponential distribution, a common and 
analytically tractable assumption in network 
reliability modeling [23, 25]. This allows us to model 
transitions between operational states (e.g., fully 
operational, degraded, failed) based on probabilistic 
rates. 

We model SDN resilience as a continuous-time 
Markov chain (CTMC), where the network 
transitions between different operational states 
depending on cyberattack events and recovery 
mechanisms.  

To apply this model, we first define the distinct 
operational states the SDN system can occupy under 
potential cyberattacks. We define five discrete states 
(S1 to S5) representing SDN behavior under 
cyberattacks, as detailed in Table 1.  

As shown in Table 1, S1: Stable Operation – 
Normal SDN operation without failure. S2: 
Reconnaissance Detected – Network scanning 
activities are observed. S3: Active Attack Execution 
– SDN is under cyberattack (e.g., DDoS, MITM). S4: 
Controller Compromised – Successful attacker 
access to the SDN controller. S5: Detection and 
Recovery – Anomalous behavior is detected, and 
countermeasures are triggered. 

This probabilistic model enables quantitative 
assessment of SDN stability and vulnerability over 
time. The system transitions between these defined 
states depending on cyberattack events and recovery 
mechanisms. A graphical representation of these 
discrete states and the conditional transition 
probabilities (event flows, λij) is provided in the 
CTMC state transition graph shown in Figure 1. 

Note that the graph does not consider the 
transition from state S2 to state S5. In our opinion, the 
transition from state S2 to state S5 does not have a 
significant impact on the resilience of the SDN. This 
is because reconnaissance is a continuous process and 
does not pose a direct threat to the network's 
functioning that requires recovery and elimination of 
the consequences of a successful cyberattack. In other 
words, when constructing the model, we focused 
specifically on the ability to counteract cyberattacks, 
rather than on counterintelligence.  

 Transition Probabilities and Resilience 

Calculation 

In our opinion, the choice of this number and 
composition of states is sufficient for the stated 
research objective, although the possibility of further 
detailing the states is not excluded. We consider this 
issue a direction for future research. 

Let us define the initial data for the problem: 

1. The graph of aggregated stable states of the 
SDN under cyberattack conditions: G(S, V). 

2. The set of states S of the SDN under 
cyberattack conditions: 

  𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5} 

 

Figure. 1. SDN state and transition graph

Table 1. Description of Conditional Discrete States of a Distributed Corporate SDN Under Cyberattack Conditions 

State 

Designation 
Conditional Discrete State Description of Conditional Discrete State 

S1 
Stable SDN operation (normal 

state) 
Stable, resilient operation without failures. 

S2 
Network scanning by an attacker 

(reconnaissance phase) 

Operation under conditions of technical computer reconnaissance (an 

intruder gathering information about a future cyberattack target). 

S3 Active cyberattack execution Operation under conditions of conducting cyberattacks against the SDN. 

S4 
Successful attack (controller 

compromise) 

Operation after a successful attack (successful connection to the attacked 

network, gaining access to the attacked controller). 

S5 Detection and recovery from attack 
Detection of anomalies in the network, identification of the cyberattack, 

and elimination of the consequences of the successful attack. 
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3. The set of event flows V during changes in 
the SDN states under cyberattack conditions: 

    𝑉 = {𝜆12, 𝜆21, 𝜆23, … , 𝜆𝑖𝑗} 

4. Characteristics of stable aggregated states of 
the SDN under cyberattacks. An example of 
such a characteristic is the information transit 

time. It tends towards infinity for state 𝑆1 and 

during a DDoS attack for state 𝑆4. 

5. Values of event flow intensities under 
cyberattacks, which are obtained as follows: 
Each considered cyberattack is modeled 
step-by-step on a simulation computer model 
built in the EVE-NG virtual environment to 
obtain temporal characteristics of its stages. 
Then, using mathematical calculations based 
on the topological transformation method for 
stochastic networks [23], the desired values 
of event intensities are obtained. 

6. The vector of initial state probabilities of the 

system: 𝑝𝑖(0) = {1, 0, 0, 0, 0, 0, 0}. 

7. The normalization condition is given by 
Equation(1): 

                 ∑ 𝑝𝑖(𝑡) = 14
𝑖=0                          (1) 

The moments of probabilistic transitions of the 
SDN from one state to another, when a protection 
strategy is employed, are uncertain, random, and 
occur under the influence of event flows that are 

characterized by intensities 𝜆𝑖𝑗. These intensities are 

an important characteristic of the event flows and 
represent the average number of events occurring per 
unit time. Numerical values of the intensities will be 
set in accordance with the simulation model. When 
solving a system of linear differential equations with 
constant coefficients (a homogeneous Markov 
process), we transition to continuous time, t → 0. 
Based on the labeled graph G, we form a system of 

differential equations with unknown functions 𝑝𝑖(𝑡), 
which define the probability of the system being in 

state 𝑆𝑖. We follow the rule that in the right-hand side 

of each differential equation for 𝑝𝑖(𝑡), the product 

𝜆𝑖𝑗𝑝𝑗(𝑡) is added with a "plus" sign, and the product 

𝜆𝑖𝑗𝑝𝑖(𝑡) is subtracted with a "minus" sign. The 

vector of initial state probabilities of the system, 

𝑝𝑖(0), is necessary for the accurate solution of this 
system(Equation (2)). 

 

We define state transition probabilities based on 
empirical attack scenarios and system defenses. Let 
Pᵢⱼ represent the probability of transition from state Sᵢ 
to Sⱼ. The probability of SDN maintaining stable 
operation over time (resilience metric) is given by 
Equation(3): 

    𝑝res(𝑡) = 1 − 𝑝4(𝑡)              (3) 

where P₄(t) represents the probability of SDN 
reaching the compromised state (S₄). To solve for 
P₄(t), we construct a set of linear differential 
equations based on transition rates (λᵢⱼ) and compute 
steady-state probabilities. 

3.2. Phase II: Attack Scenario Modeling and 

Simulation Setup 

We evaluate SDN resilience under five major 
cyberattack scenarios. These scenarios were carefully 
selected to reflect real-world threats faced by SDN 
deployments, and they are directly associated with 
the system states (S1–S5) in our Markov model. Each 
attack targets a different aspect of the SDN control or 
data plane, and their technical mechanisms are 
outlined below: 

DDoS Attack on the Controller (S3 → S4): This 
attack overwhelms the OpenFlow communication 
channel between switches and the controller using a 
high volume of fabricated requests. The controller's 
processing capacity is exhausted, leading to dropped 
legitimate packets and degraded control 
functionality. In our model, this transitions the system 
from an active attack state (S3) to a compromised 
state (S4). Overloading OpenFlow channels with 
excessive requests. 

Topology Poisoning (S2 → S3): In this attack, an 
adversary injects rogue switches or manipulates 
LLDP messages to create false link advertisements. 
This disrupts the controller’s view of the network 
topology, resulting in black holes or routing loops. 
This attack is preceded by reconnaissance (S2) and 
triggers a move to active interference (S3). Injecting 
rogue switches into the network. 

Malicious Rule Insertion (S3 → S4): Exploiting 
vulnerabilities in northbound APIs, an attacker can 
inject unauthorized or malicious flow rules into the 
SDN. This can reroute traffic to adversarial nodes or 
create traffic duplication. The transition to S4 
indicates successful rule compromise and system 
behavior alteration.  

Man-in-the-Middle (MITM) Attacks (S2 → S3): 
Through ARP spoofing or DNS poisoning, attackers 
position themselves between the controller and 
switches, intercepting or modifying control 
messages. This is typically preceded by network 
scanning (S2) and progresses to execution (S3) once 
control traffic is accessed. Intercepting control 
messages between the controller and switches. 

(2) 
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Controller Hijacking (S3 → S4): An adversary 
gains unauthorized access to the SDN controller via 
credential compromise or remote code execution 
vulnerabilities. This attack leads directly to the 
controller's takeover and compromises the network's 
integrity and availability. Gaining unauthorized 
access to the SDN controller. 

To provide clearer linkage between the modeled 
Markov states and real-world cyberattacks, we 
present Table 2, which maps each of the five attack 
types evaluated in this study to the relevant states and 
transitions within our Markov framework. This 
mapping ensures that the probabilistic transitions in 
the model are grounded in realistic attack behaviors 
and their operational impact on SDN infrastructures. 

 Experimental Setup in EVE-NG 

To empirically validate our Markov model and 
evaluate the resilience of different SDN 
configurations under attack, we utilized the EVE-NG 
(Emulated Virtual Environment - Next Generation) 
platform [24]. EVE-NG provides a flexible 
environment for building and simulating complex 
network scenarios using virtualized network devices. 

We deployed and tested three distinct SDN 
architectures (detailed in Section 4.1.1: Baseline 
Single-Controller, Redundant Dual-Controller, and 
Proposed Hybrid AI-enhanced SDN) within this 
virtual environment. The simulated network was 
constructed based on a Tree Topology. This specific 
topology consisted of: 

• 5 OpenFlow-enabled Switches: Implemented 
using Open vSwitch (OvS) instances.  

• 14 Virtual End Hosts: These simulated 
network clients and servers, generating 
background traffic and acting as targets or 
sources for simulated attacks. They were 
distributed across the leaf switches. 

• SDN  Controllers: The number and configuration 

 of controllers varied per architecture: 

o Baseline Model: 1 controller. 

o Redundant Control Plane Model: 2 
controllers (specific handover logic 
applied). 

o Proposed Hybrid Model: 2 controllers 
(primary/hot-standby configuration 
integrated with AI detection). 

This Tree Topology and the specified scale were 
selected because they represent a common and 
fundamental structure found in various network 
environments, such as campus or small-to-medium 
enterprise networks. This configuration is sufficiently 
complex to demonstrate the vulnerabilities associated 
with centralized control and the benefits of 
redundancy and intelligent detection, while 
remaining tractable for controlled experimentation 
and clear analysis of attack impacts and mitigation 
effectiveness.  

Each of the five cyberattack scenarios was 
executed on these architectures for 30 minutes, and 

the resilience probability (𝑝res(𝑡)), as defined in 
Equation (3), was recorded. This probability indicates 
the likelihood of the SDN maintaining stable 
operation during the attack and reflects transitions 
among the defined Markov states S1 to S5.   

3.3. Phase III:  Proposed SDN Protection System 

To mitigate attacks and enhance SDN resilience, 
we design an adaptive SDN security system 
consisting of three core mechanisms:  

1. LSTM-Based Anomaly Detection System 
(for real-time attack detection). 

2. Controller Redundancy and Automated 
Failover Mechanism (for fault tolerance). 

3. Software Router Agents (for proactive 
traffic filtering). 

Table 2. Relation between markov states and cyberattacks  

Attack Type Markov States Involved Typical Transition Sequence Explanation 

DDoS Attack on 
Controller 

S1 → S2 → S3 → S5 
Normal → Reconnaissance → 
Attack → Recovery 

Attackers send massive traffic to exhaust 
controller resources; detected by anomaly 
system. 

Topology Poisoning 
S1 → S2 → S3 → S4 
→ S5 

Normal → Scanning → Attack 
→ Compromise → Recovery 

Rogue devices injected, mislead the 
controller; may result in partial control 
hijack. 

Malicious Rule 
Injection 

S1 → S3 → S4 → S5 
Normal → Attack → 
Compromise → Recovery 

Exploits northbound APIs to alter flow rules, 
bypassing detection if not mitigated. 

MITM Attack S1 → S2 → S3 → S5 
Normal → Monitoring → 
Attack → Detection 

Eavesdropping or message manipulation 
between controller and switches. 

Controller 
Hijacking 

S1 → S2 → S3 → S4 
→ S5 

Normal → Reconnaissance → 
Attack → Full Compromise → 
Recovery 

Full unauthorized access to controller 
through credential theft or software 
vulnerability exploitation. 
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 LSTM-Based Anomaly Detection 

To provide real-time attack detection capabilities, 
we implement a Long Short-Term Memory (LSTM) 
neural network, chosen for its proficiency in 
capturing temporal dependencies within sequential 
data, which is characteristic of network traffic 
patterns and state changes.  

Dataset Generation and Preprocessing: The 
dataset for training and evaluating the LSTM model 
was synthetically generated within our EVE-NG 
simulation environment. This involved running 
simulations under both normal operating conditions 
and the specific attack scenarios outlined in Section 
3.2 (DDoS, Topology Poisoning, Malicious Rule 
Insertion, MITM, Controller Hijacking). This 
approach ensured the training data directly reflects 
the behaviors and attack patterns pertinent to the SDN 
architectures and scenarios investigated in this study.  

During simulations, we collected time-series data 
related to controller and switch activities. Raw data 
points included:  

• OpenFlow message rates (Packet-In, Flow-
Mod, Packet-Out per second). 

• Flow table entry counts and modification 
frequency per switch. 

• Controller CPU and memory utilization. 

• Frequency of topology discovery protocol 
messages (e.g., LLDP). 

This raw data underwent the following 
preprocessing steps: 

1. Feature Extraction: We selected and 
engineered key features indicative of 
anomalous behavior, such as the rate of new 
flow arrivals (Packet-In messages), rate of 
flow rule modifications (Flow-Mod 
messages), variance in inter-packet arrival 
times for control messages, and detection of 
unexpected topology change events. 

2. Time Series Formulation: The data was 
segmented into fixed-length sequences 
using a sliding window approach.  

3. Normalization: All feature values within 
each sequence were normalized using Min-
Max scaling to the range [0, 1]. This step is 
crucial for stabilizing the LSTM training 
process. 

4. Labeling: Each generated sequence was 
labeled as 'Normal' (0) or 'Attack' (1) based 
on whether a simulated attack was active 
during the time interval covered by the 
sequence. 

Monitoring: The trained LSTM model 
continuously monitors the preprocessed feature 

sequences derived from real-time network state 
information. Specifically, it focuses on identifying 
deviations from learned normal patterns in: 

• Flow table updates: Detecting abnormally 
high rates or suspicious modifications 
indicative of malicious rule injections. 

• Control message frequency: Identifying 
surges typical of DDoS attacks targeting the 
controller or unusual communication 
patterns. 

• Topology changes: Recognizing 
unauthorized device insertions or link 
modifications characteristic of topology 
poisoning. 

If the LSTM model classifies an incoming 
sequence as anomalous (i.e., predicts 'Attack' with 
high confidence), it triggers an alert, initiating the 
automated mitigation mechanisms described later, 
such as controller failover or traffic filtering via OvS 
agents. 

 Controller Redundancy and Automated 

Failover 

A secondary controller remains in hot-standby 
mode and takes over upon failure of the primary 
controller. A secure synchronization protocol ensures 
consistency with minimal downtime. To prevent 
controller compromise, we deploy a multi-controller 
system where: 

• The primary controller manages network 
operations. 

• A secondary controller is in hot-standby 
mode. 

• If an attack disrupts the primary controller, 
failover triggers automatic controller 
switching. 

This mechanism is implemented via a 
synchronization service between controllers. 

 Software Router Agents for Proactive Filtering 

We deploy Open vSwitch (OvS) agents on SDN 
software routers. These agents: 

• Monitor network traffic for anomalies. 

• Isolate malicious flows in real-time. 

• Trigger failover events if controller 
compromise is detected. 

The OvS agents interact with the LSTM anomaly 
detection system to enhance security. 

3.4.  Implementation Flowchart 

The flowchart of the proposed methodology for 
assessing the resilience of a distributed SDN under 
cyberattack conditions is shown in Figure 2. 

The methodology enables the calculation of the 
resilience level of a corporate SDN when 
determining. the most relevant attacks for it. The 
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Figure. 2. The flowchart of the proposed methodology 

results and the conclusions based on them allow for 
obtaining an adequate assessment of the SDN's 
resilience under the modeled conditions against 
cyberattacks characteristic of that specific network. A 
step-by-step breakdown of the flowchart as a follow:  

1. Start: The process begins. 

2. Input Network Initial Data: The initial 
parameters and configurations of the SDN 
are defined. This includes the network 
topology, device capabilities, routing 
protocols, security policies, and any other 
relevant information needed to model the 
network's behavior. 

3. Select and Simulate Cyberattack: A 
specific cyberattack scenario to be assessed 
is chosen. This could be a DDoS attack, a 

controller compromise, a routing table 
poisoning attack, or any other relevant 
threat. This attack will serve as the basis for 
the analysis. 

4. Formulate Classifiers S: Define the 
different states the system can be in (S1, S2, 
S3, S4, S5) depending on the chosen 
cyberattack. 

5. Determine Event Flows Λ from the model 
for the CA: Based on the selected 
cyberattack, you determine event flows and 
rate parameters (λ) for the transitions in the 
Markov model of SDN behavior under the 
considered cyberattack. 

6. Solve the formed system of linear 
differential equation: Solve the resulting 
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system of linear differential equations 
obtained from the Markov model. 

7. Obtain SDN Resilience Values for the 
Selected CA: Using the Markov model, the 
probability of each state is known, hence the 

SDN resilience value 𝑝res_Calculted for the 

current configuration can be obtained for the 
selected cyberattack. 

8. 𝒑𝐫𝐞𝐬_𝐂𝐚𝐥𝐜𝐮𝐥𝐭𝐞𝐝 > 𝒑𝐫𝐞𝐬_𝐓𝐚𝐫𝐠𝐞𝐭? This step is 

a decision point. 

• Yes: If the calculated resilience value 

(𝒑𝐫𝐞𝐬_𝐂𝐚𝐥𝐜𝐮𝐥𝐭𝐞𝐝) is greater than the target 

resilience value (𝒑𝐫𝐞𝐬_𝐓𝐚𝐫𝐠𝐞𝐭), it means the 

current network configuration meets the 
resilience requirements for the selected 
cyberattack. The process moves to step 9. 

• No: If the calculated resilience value 

(𝒑𝐫𝐞𝐬_𝐂𝐚𝐥𝐜𝐮𝐥𝐭𝐞𝐝) is less than the target 

resilience value (𝒑𝐫𝐞𝐬_𝐓𝐚𝐫𝐠𝐞𝐭), it means the 

network does not meet the desired resilience 
for the selected cyberattack. The process 
returns to the "Change Initial Data" step. 

9. Change Initial Data (Implement 
Measures to Increase Resilience): If the 
network does not meet the target resilience 
value, the initial data needs to be modified 
to improve resilience. This could involve 
implementing security countermeasures, 
changing network topology, or improving 
controller redundancy. After implementing 
these changes, the process returns to step 1 
to re-evaluate the resilience. 

10. Obtain Output Data for SDN Resilience: 
If the calculated resilience value meets the 
target, this step collects the detailed output 
data regarding the SDN resilience 
characteristics under the tested conditions. 

11. Output Network Resilience for the 
Selected CA: Reports the resulting 
resilience of the network against the selected 
cyberattack. The result shows the 
effectiveness of the current configuration to 
resist the selected attack. 

12. End: The process is complete. 

4. Experimental Results and Analysis 

This section presents the experimental evaluation 
of SDN resilience under cyberattack conditions. We 

assess the probability of network stability (𝑝res(𝑡)) 
using the Markov-based resilience model and 
validate our results through EVE-NG-based 
simulations. The performance of our proposed 
security framework (LSTM-based anomaly 

detection, automated controller failover, and software 
router agents) is also analyzed.  

4.1.  Simulation Environment 

 SDN Architectures under Test 

To assess SDN resilience under cyberattack 
conditions, three network structures were designed 
and implemented: 

1. An SDN structure consisting of three 
elements with a single controller. (Baseline 
Model) 

2. An SDN structure based on two controllers 
with handover of management functions 
according to a given algorithm under 
cyberattack conditions. (Redundant Control 
Plane) 

3. An SDN structure with two controllers, 
where one controller is the primary one and 
performs the management functions, and the 
second controller is in hot standby mode. 
(Proposed Model) 

  Computational Environment 

All simulations were carried out using the EVE-
NG Community Edition (v2.0.3-112) hosted on a 
dedicated virtualized server with the following 
specifications: 

• Processor: ntel(R) Core(TM) i5-3210M 

• RAM: 6 GB DDR3 

• Storage: 1 TB SSD 

• Virtualization Platform: VMware ESXi 
7.0 

• Guest OS for VMs: Ubuntu 20.04 LTS 

The LSTM module and OvS software agents were 
deployed in separate containers using Docker and 
configured as follows: 

• LSTM Container: 1 vCPUs, 2 GB RAM, 
optimized using TensorFlow Lite 

• OvS Agent Container: 1 vCPUs, 1 GB 
RAM 

The EVE-NG network topology included isolated 
logical bridges to separate the control plane and data 
plane.  

 Attack Scenarios 

Each cyberattack was simulated for 30 minutes 
with system metrics collected at 1-minute intervals. 
These metrics were used to evaluate transition 
probabilities and calculate resilience values using the 
Markov-based analytical model. Table 3 shows type 
of cyberattacks were simulated: 

Each attack was conducted for 30 minutes, and 
network stability was measured at 1-minute intervals. 
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Table 3. Type of Cyberattacks 

Attack Type Description 

DDoS Attack on 
Controller 

Overloads OpenFlow channels to 
exhaust resources. 

Topology Poisoning Injects rogue switches to manipulate 
routing. 

Malicious Rule 
Injection 

Exploits northbound APIs to alter 
flow rules. 

Man-in-the-Middle 
(MITM) Attack 

Intercepts control traffic between 
controller and switches. 

Controller Hijacking Gains unauthorized access to SDN 
controller. 

4.2.  Resilience Probability Analysis 

The calculation results are presented as graphs 

(Figures. 3–5). Expression (3) (𝑝res(𝑡) = 1 −
𝑝4(𝑡)) was used to calculate the SDN resilience 
metric. A threshold value of 0.2 defines an indicative 
value, in our view, for the probability of stable 
network operation. If the resilience metric values are 
below the threshold, the network ceases to be 
resilient.  

The analysis of the results showed that the 
considered SDN structures, under the impact of 
cyberattacks of the "synchronous attack" and 
"controller breach or failure" types, do not meet the 
resilience requirements. 

To ensure the stable operation of the SDN under 
cyberattack conditions, it is necessary to develop an 
algorithm for monitoring the state of the controllers 
and their automatic reconfiguration, as after 18 
minutes of successful cyberattack implementation, 
the probability of stable network operation begins to 
approach zero. 

Thus, based on the conducted research on the 
application of SDN, as well as its resilience to 
cyberattacks, general requirements for a 
counteraction system have been formulated. The 
main approach to achieving the required level of SDN 
resilience could be the development of controller 
redundancy algorithms, as well as algorithms for 
redundancy and switching of software-defined 
switches. 

4.3. Effectiveness of Proposed Security Measures 

We evaluate the effectiveness of the three core 
security mechanisms in the proposed model. 

 LSTM-Based Anomaly Detection Performance 

The performance of the LSTM-based anomaly 
detection system is crucial for the overall 
effectiveness of the proposed security framework. 
The model was trained using the synthetically 
generated dataset described in Section 3.3.1 and 
evaluated on a separate test set comprising both 
normal and attack traffic sequences from the EVE-
NG simulations. 

While overall detection accuracy provides a 
general indication of performance, metrics such as 
Precision, Recall, and F1-Score offer a more nuanced 
assessment, particularly important in security 
scenarios where the cost of false negatives (missed 
attacks) and false positives (false alarms) differs. 

• Precision measures the proportion of 
correctly identified attacks among all 
instances flagged as attacks. High precision 
indicates fewer false alarms. 

• Recall (or Sensitivity) measures the 
proportion of actual attacks that were 
correctly identified. High recall indicates 
fewer missed attacks. 

• F1-Score provides the harmonic mean of 
Precision and Recall, offering a single 
metric to evaluate the balance between 
them. 

The evaluation yielded the following 
performance results: 

• Overall Detection Accuracy: 98.1% 

• Overall False Positive Rate 
(FPR): 2.3% (meaning only 2.3% of normal 
sequences were incorrectly flagged as 
attacks) 

• Average Detection Time: < 0.5 
seconds (time taken to classify a sequence 
after observing the full time window) 

• Table 4 presents a breakdown of 
performance metrics across the different 
attack types simulated.  

• These results confirm that the LSTM-based 
detection system provides accurate and 
timely attack identification without 
imposing a significant performance burden 
on the SDN environment. 

• As shown in the Table 4, the LSTM model 
consistently achieved high Precision (avg. 
97.8%), Recall (avg. 98.1%), and F1-Score 
(avg. 97.9%) across the diverse attack 
vectors. This demonstrates the model's 
strong capability not only to accurately 
detect attacks (high accuracy and recall) but 
also to do so with minimal false alarms (high 
precision), leading to a well-balanced 
performance (high F1-Score). The low 
detection latency (< 0.5 seconds) further 
enables timely triggering of mitigation 
actions. The LSTM model, therefore, 
effectively detects all evaluated attack types 
with high confidence and minimal 
operational disruption due to false positives.  
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Figure. 3. Dependence of SDN stable operation probability on the time of cyberattack implementation for structure 1. 

 

Figure. 4. Dependence of SDN stable operation probability on the time of cyberattack implementation for structure 2. 

 

Figure. 5. Dependence of SDN stable operation probability on the time of cyberattack implementation for structure 3. 

 Controller Failover Response Time 

Measure how quickly the backup controller takes 
over when the primary controller fails. The proposed 
AI-enhanced SDN cuts failover time in half, reducing 
downtime significantly. Table 5 shows controller 
failover response time for three architectures models.  

 Malicious Traffic Isolation 

We evaluated how well software router agents 
block malicious flows during an attack. The software 
router agents effectively block malicious flows with 
negligible performance impact. Traffic efficiency has 
been resulted in Table 6.  
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Table 4. LSTM-Based Attack Detection Accuracy and 

Performance Overhead 

Attack 
Type 

Detection 
Accuracy 

(%) 

False 
Positive 

Rate 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

DDoS 
Attack 

97.5% 2.1% 97.8% 97.5% 97.6% 

Topology 
Poisoning 

98.2% 2.5% 97.5% 98.2% 97.8% 

Malicious 
Rule 

Injection 
99.1% 1.9% 98.5% 99.1% 98.8% 

MITM 
Attack 

97.8% 2.6% 97.2% 97.8% 97.5% 

Controller 
Hijacking 

98.1% 2.3% 97.9% 98.1% 98.0% 

Average 98.1% 2.3% 97.8% 98.1% 97.9% 

Table 5. Controller Failover Response Time 

Architecture 
Failover Time 

(seconds) 
Stability 

Improvement (%) 

Single-Controller 
SDN 

N/A 
0%  

(No redundancy) 

Dual-Controller 
SDN 

6.3s +30% 

Hybrid SDN with 
AI 

3.1s +60% 

Table 6. Traffic Filtering Efficiency 

Attack Type 
Traffic Blocked 

(%) 
Latency Overhead 

(ms) 

DDoS Attack 94.7% +1.2ms 

Topology 
Poisoning 

96.3% +1.8ms 

Malicious Rule 
Injection 

99.4% +2.1ms 

MITM Attack 97.1% +1.5ms 

4.4.  Comparative Analysis 

To assess the practical advantages of our 
proposed model, we conducted a comparative 
evaluation across three different SDN architectures 
under identical cyberattack conditions: 

1. Single-Controller SDN (Baseline): 
Traditional OpenFlow architecture with no 
redundancy or intelligent detection. 

2. Dual-Controller SDN (Redundant): 
Improved fault tolerance through hot-
standby controller. 

3. Hybrid SDN (Proposed Model): Enhanced 
with LSTM-based real-time anomaly 
detection, automated controller failover, and 
traffic filtering. 

Table 7 summarizes key performance metrics 
including resilience probability after 30 minutes of 
attack, anomaly detection accuracy, failover response 
time, and traffic filtering effectiveness. 

As shown in Table 7, the hybrid model 
outperforms both traditional and redundant architectures, 

Table 7. Overall Performance Comparison 

Metric 
Single-
Controller 

Dual-
Controller 

Hybrid 
SDN 
(Proposed) 

Resilience 
(P_res after 
30 min) 

18% 47% 82% 

Attack 
Detection 
Accuracy 

N/A N/A 98.1% 

Failover 
Time 

N/A 6.3s 3.1s 

Traffic 
Filtering 
Efficiency 

N/A N/A 96.7% 

particularly in terms of real-time attack detection and 
response. These findings demonstrate the practical 
effectiveness of integrating AI-based security 
mechanisms within SDN environments. 

We acknowledge that a broader comparison with 
other state-of-the-art SDN security methods from the 
literature (e.g., rule-based IDS or CNN/RNN models) 
would provide additional insight. However, due to 
space limitations and to maintain the clarity and focus 
of the current paper, we have chosen to limit our 
comparative scope to architectural configurations 
only. A more extensive benchmarking with external 
models and datasets is planned as part of our future 
work. 

4.5. Deployment Challenges 

While the proposed framework demonstrates 
strong simulation-based performance, practical 
deployment may face the following challenges: 

• Computational Resource Constraints: 
Although optimized using TensorFlow Lite, 
the LSTM module and OvS filtering agents 
still introduce computational overhead, 
which may not be suitable for low-resource 
environments such as edge or IoT-based 
SDNs. 

• Model Generalization: The LSTM model 
was trained using synthetic data specific to 
our simulated environment. Its effectiveness 
in heterogeneous real-world networks with 
different traffic profiles or unseen attack 
types may require extensive retraining or 
adaptive learning. 

• Integration Complexity: Integrating 
anomaly detection with existing SDN 
controllers (e.g., ONOS, Ryu, or 
OpenDaylight) requires careful engineering, 
especially when modifying real-time control 
loops and failover mechanisms. 

To address these challenges, future work will 
explore federated learning for privacy-preserving 
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model training, lightweight neural architectures for 
edge deployment, and modular plugins for SDN 
controller integration. 

5. Conclusion & Future Work 

Software-Defined Networking (SDN) has 
transformed network management through 
centralized control and programmability, but it also 
introduces security challenges. In this paper, we 
presented a Markov-based analytical model to assess 
SDN resilience under cyberattacks and proposed a 
comprehensive AI-driven protection system. The 
Markov model provides a robust framework for 
quantifying SDN resilience under various 
cyberattacks, revealing that traditional single-
controller SDN architectures are highly vulnerable, 
with resilience dropping to 18% within 30 minutes of 
a DDoS attack. Our study demonstrates that 
integrating AI-based anomaly detection and 
redundant control mechanisms can substantially 
increase SDN resilience, making it suitable for 
critical infrastructure and enterprise environments. 
While the proposed model offers significant 
resilience improvements, it has some limitations: 
Scalability Concerns, Limited Attack Scope, and 
Resource Overheads. To further enhance SDN 
security, future research could explore: Implementing 
reinforcement learning for dynamic security policy 
adaptation based on real-time threat intelligence, 
Using blockchain technology for secure, 
decentralized controller coordination, ensuring 
tamper-proof rule management and trusted 
communication. 
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