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The study reported in this paper aimed at developing and validating a family-based 

mental empowerment program to enhance cognitive processes, psychological 

hardiness, and academic performance of slow learners. The present study was 

fundamental in nature. The statistical population included psychologists and 

exceptional children's education specialists, family education instructors, and 

parents of slow learners in Tehran. The sample population consisted of three 

professors in psychology and exceptional children's education from the University 

of Tehran, three family education instructors, and three mothers of slow learners, 

selected through purposive sampling. The validation process of the studied program 

was carried out in five steps (reviewing theoretical foundations, reviewing previous 

research and existing programs, developing program content, validating the 

content, and explaining the program validation). The Delphi method was used for 

program content development, triangulation and Lawshe's content validity index 

were employed for content validity determination, and the expert agreement 

percentage method was used for determining the program’s reliability. The overall 
content validity coefficient of the sessions stood at 85%, and the program’s 
reliability coefficient was 86%. The family-based mental empowerment program 

aimed at enhancing cognitive processes, psychological hardiness, and academic 

performance of slow learners demonstrated high validity and reliability. Therefore, 

this program can be used to improve the cognitive and academic status of slow 

learners. 
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Introduction 

The goal of current technologies in neuroscience is to measure neural activity 
simultaneously from a�large number of neurons (up to all neurons in the brain) for long periods 
of time. These technologies produce massive datasets, resulting bottlenecks and complexities 
in the neuroscience field. For example, one hour of neural recording, using a microelectrode 

array with 1000 electrodes (sites), with a typical sampling rate of 40 kHz, would approximately 

produce a 280 GB dataset. For longer recording sessions, the size of this dataset will increase 

dramatically. Two-photon imaging provides very big spatiotemporal datasets of small animal’s 
brains such as zebrafish or mouse in the order of 1 TB (Ahrens et al., 2013; Panier et al., 2013). 
Indeed, single-machine memory could not handle neural data at these scales. Also, simple 
processing on such a huge data with widely used platforms, e.g., MATLAB, is inconvenient 
and nontrivial (Panier et al., 2013). Furthermore, sharing�neural datasets across the community 
needs to have a standard data structure in order to satisfy both the data generators and the data 
consumers(Bouchard et al., 2016). In the new future, the neuroscience community will 
experience a culture shift in sharing and organizing data while using open-source tools 
(Bouchard et al., 2018; Bouchard et al., 2016; Freeman, 2015; Freeman et al., 2014; Panier et 
al., 2013).  Moving toward high-performance computing (HPC) frameworks leads to leveraging 
computational power, memory, and storage capabilities offered by their resources. It could 
significantly influence the neurophysiological community to overcome existing big data 
bottlenecks (Bouchard et al., 2016).  
HPC systems have had various applications in other aspects of neuroscience(Boubela et al., 

2015; Freeman et al., 2014; Makkie et al., 2019; Markram et al., 2015), but a few studies have 
stated the importance of using the HPC system for dealing with neuronal data (Bouchard et al., 
2018; Bouchard et al., 2016; Chen et al., 2017; Cunningham, 2014; Freeman, 2015; Landhuis, 
2017). HPC system provides an opportunity to perform simulation of cortical circuitry on a 
large scale (e.g., almost 31,000 neurons with 37 million synapses) (Markram et al., 2015) 
dataset, handling large-scale neuroimaging dataset (Boubela et al., 2015; Makkie et al., 2019) 
and processing massive two-photon imaging datasets (Freeman et al., 2014). These distributed 
frameworks were based on Spark cluster-computing framework. However, most of HPC based 
systems proposed in neuroscience have focused on the processing side and ignored problems 
like standardized formats and efficient I/O operations. They also did not propose any structure 
for neurophysiological datasets. In this article, we introduce a general and flexible distributed 
framework called BNDF (Big Neuronal Data Framework) (Fig. 1). BNDF is implemented in 
Scala, based on Apache Spark cluster-computing framework. The advent of the big data 
paradigm mainly started with the introduction of large distributed computing `clusters' and 
`MapReduce' programming model (Dean & Ghemawat, 2008). Today the widely used 
MapReduce engine is developed in the open-source Apache Hadoop ecosystem (Shvachko et 
al., 2010). Most of the statistical and machine learning modeling methods could be implemented 
using MapReduce, making it useful for neuronal data analysis. Hadoop distributed file system 

(HDFS) operates on disk. Since the MapReduce interacts with the HDFS, most iterative 
algorithms and computations could be slow which can be a bottleneck. The open-source 
distributed computing framework, Apache Spark , considers an abstraction called resilient 
distributed datasets (RDDs)(Zaharia et al., 2010). RDDs could be cached and distributed in the 
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memory across all nodes in the cluster, performing iterative operations much faster than Hadoop 
MapReduce (Zaharia et al., 2010).  
BNDF is general and flexible enough that it could cover a variety of methods and experiments. 
It also addresses both the data generators and the data consumer’s requirements. As for the data 
processing, BNDF could cover most of the widely used algorithms and models in the 
neuroscience community. We performed a spike sorting procedure on a big neural data as one 

of the widely used processing procedures in neuroscience. In an equitable computational 
resource state, we found five times smaller runtimes compare to commonly used platforms in 

the neuroscience community. 

Method 

Summary 

The detail of our work, examples and the source codes are available at our Gitlab, and 
documentation for quick start of BNDF are available here.  

Deployment  

For deployment of BNDF, there are various solutions available. They are varied from 
the one node standalone cluster to the most scalable, multi-node cluster with high availability. 
Deployment could be done using private clusters (custom clusters)�or using cloud services 
provided by the various companies. At the sharing level of the lab or universities, privately 
distributed clusters could be deployed. We developed a cluster for BNDF using docker 
containers. A detailed procedure for creating a BNDF cluster is available at BNDF cluster guide. 
BNDF could be deployed through public cloud service providers such as Amazon Webservices 
(AWS), Microsoft Azure, Google Cloud, and IBM Cloud. In addition to highly scalable 
structures and resources of the public clusters, data, and meta-data storage in BNDF could be 
shared between all experimenters and data analysts in the neuroscience community.  

We deployed BNDF on a private cluster with 10 nodes from the IPM Grid Center. Each node 
had 20 cores CPU and 50 GB of RAM. In the cluster, we provided Hadoop and Spark in stand-
alone mode with high availability enabled along with other BNDF's requirements described at 
BNDF cluster guide. Two nodes in the cluster are configured for Spark and Hadoop manager 
nodes, making processing handled by the other 8 nodes. We also configured BNDF alongside 
MATLAB on a single Linux machine with 80 cores CPU and 256 GB RAM. Spark version 3, 
Hadoop version 3.2.1, and MATLAB version R2020a are used for evaluating tests and 
benchmarks.  

Data Format 

In this study, we worked on an electrophysiological recording dataset that have been 
recorded from the inferior temporal cortex of nonhuman (Rezayat et al., 2021).  BNDF could 
be extended to support other recording techniques like EEG, MEG, fMRI, and imaging 
methods. Since most recording devices generate standard MAT binary files, we consider MAT 
files as raw input files, although it could be extended to support other input formats. Based on 

https://gitlab.com/neuroscience-lab/bndf
https://bndf.readthedocs.io/en/latest/
https://gitlab.com/neuroscience-lab/bndfcluster.git
https://gitlab.com/neuroscience-lab/bndfcluster.git
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constraints on MAT files defined in figure 2, data generators should follow this structure during 
raw file creation. 

Data Processing 

In BNDF, we developed spike sorting module, as an exemplar processing. BNDF Sorter 
module was built on top of sparks SQL, and MLib libraries. 

Spike Sorting procedure  

  BNDF Spike Sorter module is mainly based on the approach presented by (Quiroga et al., 
2004; Rey et al., 2015). More specifically it is a distributed version of it but with some slight 
differences. BNDF Sorter is developed in a way such that processing is divided into ordered 
pipelines as two sub-modules (Fig. 4A), described in detail as follows. 

Separating spikes from raw continuous signal X were done through spike detection by defining 
a threshold. The estimated value for the threshold doesn’t to be small or large to�avoid false 
positive or missing spikes respectively. We chose the threshold value in which considered as an 
optimal estimation (Quiroga et al., 2004; Rey et al., 2015) as 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑐 
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋|)

0.6745
        Equation 1 

Where c is a constant between 3 and 5 that we select c=3. We extracted the spike time {si;  i = 
1, ..., N}, where the raw signal passed from threshold in the spike detection. Here N is the total 
number of detected potential spikes. The spike waveforms were extracted from 30 samples 
before of spike time and 50 samples after that (sampling frequency 40 kHz). In this pipeline, 
we construct the spike matrix based on the windowed spike data evaluated in the previous 
pipeline. Therefore, we construct spark matrix S with dimension N × 81 as the PCA input in the 
next pipeline and, also apply the required transformation for transition data between SQL and 
MLib module. We used PCA for feature extraction and dimensionality reduction for extracting 
the features and generating input for the clustering method (Rey et al., 2015). Our PCA reduces 
the dimension of spike matrix S, from N × 81 to N × 6. We used Gaussian mixture model 
(GMM), as an effective clustering method, for spike detection (Harris et al., 2000; Rey et al., 
2015). In the literature, GMM is known as the soft clustering method, while other widely used 
methods like K-means are considered a hard-clustering method. Generally, GMM could be 
defined as follow (Hastie et al., 2001). 

𝑓(𝑥) = ∑ 𝜆𝑘𝜑(𝑥; 𝜇𝑘, 𝜮𝑘)
𝐾

𝑘=0
     Equation 2 

Where 𝜆𝑘 is mixture weight (∑ 𝜆𝑘 = 1𝐾
𝑘=0 ) and 𝜇𝑘 and  𝚺𝑘 are average and covariance matrix 

of the normal density function. The parameters were fit by maximum likelihood, using EM 
algorithm (Hastie et al., 2001). We measured the goodness of fit GMM method by Bayesian 
information criterion (BIC)(Hastie et al., 2001). Here we fit from 2 up 6 clusters and chose the 
GMM model with the minimum BIC value.  

Results 

Architecture and design 
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We developed the BNDF framework in an extendable way for processing 
electrophysiological neuronal datasets (Fig. 1). The BNDF concept generally is based on two 
main parts, “Data Ingestion” and “Data Processing”. Data Ingestion describes procedures 
related to importing recorded neuronal data from various recording devices and transforming 
the data into the structured format provided by the BNDF. Currently, BNDF uses Mat files as 
raw input data; however, the flexibility of BNDF design lets the user work with other file 
formats. The data Loader module is created for handling required operation in the data ingestion 
procedure; which we will describe in detail in the later parts. In the case of Data Processing, 
Spark's elegant and flexible APIs provides various ways of processing data. Most distributed 
data processing operations are based on Spark libraries, Spark SQL, Spark Streaming, MLib, 
and GraphX. These libraries are implemented on top of the Spark core. Spark SQL provides 
SQL-like operations and optimizes queries. Spark Streaming, as its name represents, provides 
streaming operations. MLib is designed specifically for optimized various machine learning 
and statistical modeling methods. GraphX library is used for large-scale graph processing. With 
a combination of the functionality provided by spark libraries, numerous neuroscientific 
processing could be done efficiently in a distributed manner. For example, with a combination 
of the Sparks MLib and GraphX libraries, an efficient model could be developed for functional 
connectivity analysis in huge neuronal ensembles. Spark modules are accessible with different 
language APIs, Scala, Java, Python, and R. Each API has different features, supports, and 
flexibilities. Since, Spark is written in Scala language, this API has the most support, efficiency, 
and flexible functionality. However, both Java and Scala shares JVM as a compiler and provide 
similar functionality. Other APIs are evolving, and Python is extended more in recent years. In 
the BNDF architecture, results can be retrieved directly, however, both Apache zeppelin and 
Thunder can provide an abstract layer for retrieving results from Spark.  

Figure 1. The architecture�of the BNDF. 

The functionality provided by the BNDF is divided into two parts, Data Ingestion (green box) 
and Data Processing (light blue box). In Data Ingestion, multiarray recorded the raw data of 
neural activity from the brain. Spark driver gets raw data as input and follows as two tracks. In 
the top track, a meta-data is extracted from raw files as nested JSON-structured and stored in 
the MongoDB database. In the bottom track, massive raw data is stored as an efficient columnar 
structure, in the HDFS. In Data Processing, the structured data in HDFS, and MongoDB were 
retrieved by Spark for processing with four modules, Spark SQL, Spark Streaming, MLib, and 
GraphX. Spark modules are accessible with different Language APIs, Scala, Java, Python, and 
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R and related icons were sorted from top to bottom based on features support and flexibilities. 
The results can be retrieved directly by modules provided by Spark. In the BNDF architecture, 
both Apache zeppelin and Thunder can provide an abstract layer for retrieving results from 
Spark. 

 

Framework structure 

In the BNDF, we proposed the idea of storing data in two separate standard structures. 
The first one is a nested JSON-structured meta-data stored in the MongoDB database. The 
second one is the flexible columnar data structure, Apache Parquet�(Melnik et al., 2010), stored 
on top of HDFS as a fast, horizontally-scalable, and storage-efficient massive data ingestion. 
These structures provided processing data efficiently without caching all of the data in memory. 
In this way, all processing operations could communicate directly with HDFS, avoid extra I/O 
time-wasting, and avoid unnecessary caching. Data Loader module provides capabilities for 
creating efficient structures for addressing both data generators and data consumer’s needs. We 
consider all the operations related to getting the input data and create a standard structure (Fig. 
2). The BNDF proposed a tree-like structure for input in which each node can be nested (parent) 
or not (child). We consider some constraints on the input file based on the output structure, 
meta-data, and raw-data. We consider two constraints for creating metadata; first, the matrices 
dimensions should be less than two (vector). Second, the length of the vectors should be equal 
to or less than 100. For raw-data we assume that the matrix dimension is (T * 1), which T is the 
maximum signal time index, and T is greater than 100. In the core of the Data Loader module, 
we developed the SchemaCreator package, which creates desired schemas for raw-data and 
meta-data (Fig. 2). The SchemaCreator generates two different schemas for raw data and 
metadata via two classes called metaDataSchemaCreator and channelDataSchemaCreator. The 
metaDataSchemaCreator class generates a dynamic multilevel nested JSON structure based on 
the raw file structure shown in Figure 2. All generated meta-data should have some common 
fields, but additional fields are not limited and could vary from different recording devices or 
experiments.   
The channelDataSchemaCreator class generates a schema for the raw channel data in a 
columnar structure. One important difference between these two structures is that JSON is 
nonhomogeneous (which fits well for metadata structure) and columnar structure is 
homogeneous data structures. The channelDataSchemaCreator generates raw channel data 
through the two other classes, rawDataSchemaCreator and eventDataSchemaCreator. MAT 
files generated by the experimenters could contain either channels, events information, or some 
similar conceptual structures. Either way, it contains various metadata information that needs 
to be extracted and stored. This procedure is controlled by the metaDataSchemaCreator class. 
Event files stores information about task and various stimuli data with time. The 
eventDataSchemaCreator generates a columnar structure based on input events MAT files. 
Technically, the rawDataSchemaCreator class operates similarly to the 
eventDataSchemaCreator class, but it considers only for massive neuronal data. The detailed 
algorithm of the SchemaCreation package and its so-called classes are available in 
Supplementary information. It is important to declare that the data and meta-data storage in the 



 

 

  

 High-Performance Computing Framework Based on Distributed Systems.. 

 

7 

BNDF could be reachable from all experimenters and data analysts and provides a unique set-
up for sharing data across the neuroscience community. 

Figure 2. The functionality of BNDF data loader. 

Raw MAT file tree structure and constraints were showed on the left box. Black arrows 
correspond to child nodes and red arrows correspond to parent nodes. Raw MAT file consists 
of Struct, Cell, Matrix, and Char types in the root level of the file. Struct field is capable of n-
level nesting. In the Middle, schema creator package constructs a schema for meta-data and 
raw-data using three subclasses, metaDataSchemaCreator (metadata box), 
eventDataSchemCreator (eventData box), and rawDataSchemCreator (rawData box) (methods 
for detail). (Right-hand side) Meta-data were formed as Nested JSON structure. Keys were 
shown black and values in green colors. Raw-data were formed as Parquet columnar structure. 

 

Setup and installation 

We deployed BNDF on a private cluster with 10 nodes. Each node had 20 cores CPU 
and 50 GB of RAM. In the cluster, we provided Hadoop and Spark in stand-alone mode with 
high availability enabled along with other BNDF's requirements described at cluster guide. Two 
nodes in the cluster are configured for Spark and Hadoop manager nodes, making processing 
handled by the other 8 nodes. We also configured BNDF alongside MATLAB on a single Linux 
machine with 80 cores CPU and 256 GB RAM. Spark version 3, Hadoop version 3.2.1, and 
MATLAB version R2020a are used for evaluating tests and benchmarks. Most of HPC systems 
proposed before focused on the processing-side and ignored problems like standardized 
formats, efficient load, and efficient writes. Here in BDNS, to overcome the mentioned 
problems, we developed two modules Data Loader and Spike Sorter. 

Analysis and implementation 

We used three datasets with different sizes, generated from the spiking activity of 
multiple channels. The first data set has 30 GB storage size, generated from spiking activity of 
2 channels. The second data set has 90 GB storage size, generated from the spiking activity of 
10 channels. The third and the last data set is the largest data set with 250 GB storage size which 
is generated from spiking activity of 18 channels. BNDF module, data loader, process these 
datasets, and store structured data in a storage-efficient format in HDFS. By storing data set as 

https://gitlab.com/neuroscience-lab/bndfcluster.git
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Parquet file with Snappy compression format, three data set storage reduces to 10, 30, and 50 
GB. The achievement of using Parquet file with Snappy compression format is decreased in 
size of structured dataset compare to raw file data. Decreasing in the storage size is roughly in 
order of 3.  However, this factor is increased non-monotonically with data size. Moreover, 
runtime of BNDF Data Loader module decreased by an increase in the number of nodes of the 
cluster (Fig. 3). As the distributed nature of BNDF, the scalability consequences faster data 
loading, saving, and various I/O operation. 

Figure 3. The Performance benchmark of BNDF. 

Benchmarks are evaluated with 2, 4, 6, and 8 nodes on three different dataset sizes in the cluster 
environment that each node had 20 cores of CPU and 200 GB RAM. (A) Runtime for all 
operations handled by the BNDF Data Loader module in the cluster environment. (B) Runtime 
for saving results in the BNDF setting. 

 

Large-scale data application  

We examined BNDF processing performance by implementing spike sorting module, 
mostly used preprocessing on neuronal datasets. We developed spike sorting module, called 
BNDF Sorter, in two sub-modules (Fig. 4A). These modules were built on top of sparks SQL, 
and MLib libraries, respectively (See Methods). The first sub-modules include thresholding 
(Thresh), windowing (Window), transforming (Trans) pipelines for detecting spikes, and 
cerates features for spike sorting. The second sub-module contains spike sorting using principal 
component analysis (PCA) for feature extraction, gaussian mixture model (GMM) for�
clustering, and bayesian information criteria (BIC) pipelines (Toosi et al., 2020). We applied 
Spike Sorter module on three datasets with the required initial value for each pipeline (See 
Methods). By collecting benchmark results, we observed that scalability has drastic 
improvement in both BNDF modules runtime and the aforementioned effect grows with data 
size (Fig. 4B). The runtime difference between 8 nodes and 2 nodes for three data set is 7.7, 
49.85, and 91.67 minutes respectively. By comparing distributed processing provided by the 
BNDF and MATLAB, our testing result clarifies that spike sorting procedure runtime could 
improve more than 5x. For example, for data set with 10 GB size, MATLAB runtime took 87.2 
minutes while BNDF runtime took 16.9 minutes (Fig. 4C). We observed that BNDF spike sorter 
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runtime, even for data set 90 GB (44.26 minutes) is lower than data set 30 GB processed by 
MATLAB (87.2 minutes total and 49.38 minutes exclude load time) (Fig. 4-C).  

Figure 4. BNDF pipeline for sorting. 

(A) BNDF sorter module. From left to right, raw data in the columnar structure have entered 
Module 1 operating under the Spark SQL library and includes Thresholding, Windowing, and 
transforming pipelines. Module 2 operates under the Spark MLib library and covers PCA, 
GMM, and BIC (optimizing number of clusters) pipelines. The resulting sorted dataset is 
retrieved at the end of the module, (B) Performance of the BNDF Sorter module. Benchmarks 
are evaluated with 2, 4, 6, and 8 nodes on three different dataset sizes, in the cluster environment 
that each node had 20 cores of CPU and 200 GB RAM, (C) Comparing MATLAB sorter and 
BNDF sorter performance benchmark. Runtime for BNDF sorter (on the cluster with 4 nodes) 
and MATLAB installed on a single machine Linux workstation with 80 cores of CPU and 200 
GB RAM. The total amount of resources for the BNDF cluster is equal to the single machine 
Linux workstation machine (both 80 cores of CPU and 200 GB RAM) which used for 
MATLAB. All pipeline operations described in A are written in MATLAB code with the same 
configurations for comparison. BNDF reads data as parquet files directly from HDFS, while 
for MATLAB, CSV files are generated. MATLAB version of spike detection reported for two 
scenarios, whole operation and only sorting procedure (loading data excluded). For two data 
set with 90, and 250 GB size MATLAB encounter out of memory (OOM) error. In the best-
case scenario�based on the runtime provided by BNDF in B, we could assume runtime for two 
datasets with 90, and 250 GB size are growth by an almost linear rate of 30 GB data set.  

Discussion and Conclusion 

In this article, we introduced BNDF, as a distributed and scalable framework. We 
proposed a standard data structure for neurophysiological datasets, in order to organize and 
share datasets more easily between data generators and data consumers in different labs or 
institutes. In the neuroscience community, BNDF is the one of distributed and scalable 
framework for neurophysiological datasets. It is possible to handle big data generated by 
various experiments, recording devices, or other existing sources of neuronal data generation. 
New improvements in multiarray recording generate massive neuronal data in near future, then, 
storing data in a standard and storage-efficient structure and processing data needs scalable, 
distributed, and flexible foundation, provided by HPC. By introducing BNDF in this article, we 
focused on how such an HPC framework could have a positive impact on such big datasets.  
We developed two primary modules in BNDF, Data Loader, and Spike Sorter. BNDF has 
advantages compared to other HPC based�frameworks. Firstly, BNDF focus on efficient and 
flexible storage of data and meta-data along with efficient data processing, while others just 
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focused on processing data (Freeman et al., 2014). Secondly, in BNDF, data can be read in a 
distributed manner and it is much faster than loading data locally and caching with Apache 
Spark (Dean & Ghemawat, 2008; Shvachko et al., 2010; Zaharia et al., 2010).Third, BNDF is 
developed in a general way with the capability of extension in the future, such that, other 
introduced HPC systems could be built and configure on top of BNDF. For example, Thunder 
(Freeman et al., 2014) could be used on top of BNDF, with a small modification. It generalizes 
Thunder in a compatible manner. Moreover, reading data from HDFS is not possible with 
Thunder (Freeman et al., 2014). All data would read locally and cached with spark before 
processing. In BNDF we avoid unnecessary caching and we implement distribute read from 
HDFS through our standard data structure created by the BNDF Data Loader module. 
BNDF also provides efficient large-scale data processing. Since spike sorting is a challenging 
and time-consuming process, we developed Spike Sorter to perform spike sorting on large-scale 
recording data. We determined that BNDF's Spike Sorter module operates faster with an 
increasing number of nodes. BNDF provides the possibility for processing algorithms like spike 
sorting on the massive neuronal data set, where it�was�not�possible�with�a�single machine 
platform like MATLAB. Also, due to the limitation of the available resource�and�cluster 
environments, we could only increase scalability�by�a factor of 2 up to 8 nodes, however, the 
impact of scalability is much higher when increasing nodes by a factor of 10.  BNDF is at its 
early stages and it is flexible in a way that we could extend, or add new modules (features) to 
it easily. BNDF has Spike Sorter module for processing data now, however it has a more 
sophisticated structure compare to other HPC-based framework (Freeman et al., 2014). 
Currently,�BNDF operates as spark-submit batch jobs and it is only available in Scala API, but 
in future works, we could extend BNDF API to higher-level languages like�Python, and R for 
ease of use. As for BNDF functionality, we could enhance its capability to run in a streaming 
manner and real-time processing data, in this way Spike Sorter module could operate as Online 
Spike Sorter. A variety of post-processing and coding (decoding) algorithms could be 
implemented in BNDF easily. For example, a complex, graphical functional connectivity 
method in the neuronal population level. 
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