

The University of Tehran Press

 Journal of Cognitive Science Research

2025, 1(1), 1-12

Home Page: https://jcsr.ut.ac.ir/

High-Performance Computing Framework Based on Distributed Systems

for Large-Scale Neurophysiological Data

Mohsen Hadianpour 1 , Ehsan Rezayat 2,1 , Mohammad-Reza A. Dehaqani 3,1*

1. School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.

2. Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Tehran, Tehran, Iran.

3. Cognitive Systems Laboratory, Control, and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and
Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

*Corresponding Author: Assistant Professor, Cognitive Systems Laboratory, Control, and Intelligent Processing Center of

Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran,

Tehran, Iran. Email: dehaqani@ut.ac.ir

ARTICLE INFO ABSTRACT

Article type:
Research Article

The study reported in this paper aimed at developing and validating a family-based

mental empowerment program to enhance cognitive processes, psychological

hardiness, and academic performance of slow learners. The present study was

fundamental in nature. The statistical population included psychologists and

exceptional children's education specialists, family education instructors, and

parents of slow learners in Tehran. The sample population consisted of three

professors in psychology and exceptional children's education from the University

of Tehran, three family education instructors, and three mothers of slow learners,

selected through purposive sampling. The validation process of the studied program

was carried out in five steps (reviewing theoretical foundations, reviewing previous

research and existing programs, developing program content, validating the

content, and explaining the program validation). The Delphi method was used for

program content development, triangulation and Lawshe's content validity index

were employed for content validity determination, and the expert agreement

percentage method was used for determining the program’s reliability. The overall
content validity coefficient of the sessions stood at 85%, and the program’s
reliability coefficient was 86%. The family-based mental empowerment program

aimed at enhancing cognitive processes, psychological hardiness, and academic

performance of slow learners demonstrated high validity and reliability. Therefore,

this program can be used to improve the cognitive and academic status of slow

learners.

Article History:
Received: 01 Dec 2024

Revised: 02 Jan 2025

Accepted: 04 Jan 2025

Published: 14 Mar 2025

Keywords:
Large-scale neural data, High-

performance computing, Spike

sorting, Distributed computation

Cite this article: Hadianpour, M., Rezayat, E, & A. Dehaqani, MR. (2025). High-Performance Computing Framework Based on Distributed

Systems for Large-Scale Neurophysiological Data. Journal of Cognitive Science Research, 1(1), 1-12.
doi:10.22059/jcsr.2025.101142

© The Author(s). University of Tehran Press Publisher:

DOI: https://doi.org/10.22059/jcsr.2025.101142

https://jcsr.ut.ac.ir/
https://doi.org/10.22059/jcsr.2025.101142
https://orcid.org/0000-0001-6781-615X
https://orcid.org/0000-0003-3808-1283
https://orcid.org/0000-0001-8030-8416
https://creativecommons.org/licenses/by-nc/4.0/

 Cognitive Science Research, Volume 1, Issue 1, 2025

2

Introduction

The goal of current technologies in neuroscience is to measure neural activity
simultaneously from a�large number of neurons (up to all neurons in the brain) for long periods
of time. These technologies produce massive datasets, resulting bottlenecks and complexities
in the neuroscience field. For example, one hour of neural recording, using a microelectrode

array with 1000 electrodes (sites), with a typical sampling rate of 40 kHz, would approximately

produce a 280 GB dataset. For longer recording sessions, the size of this dataset will increase

dramatically. Two-photon imaging provides very big spatiotemporal datasets of small animal’s
brains such as zebrafish or mouse in the order of 1 TB (Ahrens et al., 2013; Panier et al., 2013).
Indeed, single-machine memory could not handle neural data at these scales. Also, simple
processing on such a huge data with widely used platforms, e.g., MATLAB, is inconvenient
and nontrivial (Panier et al., 2013). Furthermore, sharing�neural datasets across the community
needs to have a standard data structure in order to satisfy both the data generators and the data
consumers(Bouchard et al., 2016). In the new future, the neuroscience community will
experience a culture shift in sharing and organizing data while using open-source tools
(Bouchard et al., 2018; Bouchard et al., 2016; Freeman, 2015; Freeman et al., 2014; Panier et
al., 2013). Moving toward high-performance computing (HPC) frameworks leads to leveraging
computational power, memory, and storage capabilities offered by their resources. It could
significantly influence the neurophysiological community to overcome existing big data
bottlenecks (Bouchard et al., 2016).
HPC systems have had various applications in other aspects of neuroscience(Boubela et al.,

2015; Freeman et al., 2014; Makkie et al., 2019; Markram et al., 2015), but a few studies have
stated the importance of using the HPC system for dealing with neuronal data (Bouchard et al.,
2018; Bouchard et al., 2016; Chen et al., 2017; Cunningham, 2014; Freeman, 2015; Landhuis,
2017). HPC system provides an opportunity to perform simulation of cortical circuitry on a
large scale (e.g., almost 31,000 neurons with 37 million synapses) (Markram et al., 2015)
dataset, handling large-scale neuroimaging dataset (Boubela et al., 2015; Makkie et al., 2019)
and processing massive two-photon imaging datasets (Freeman et al., 2014). These distributed
frameworks were based on Spark cluster-computing framework. However, most of HPC based
systems proposed in neuroscience have focused on the processing side and ignored problems
like standardized formats and efficient I/O operations. They also did not propose any structure
for neurophysiological datasets. In this article, we introduce a general and flexible distributed
framework called BNDF (Big Neuronal Data Framework) (Fig. 1). BNDF is implemented in
Scala, based on Apache Spark cluster-computing framework. The advent of the big data
paradigm mainly started with the introduction of large distributed computing `clusters' and
`MapReduce' programming model (Dean & Ghemawat, 2008). Today the widely used
MapReduce engine is developed in the open-source Apache Hadoop ecosystem (Shvachko et
al., 2010). Most of the statistical and machine learning modeling methods could be implemented
using MapReduce, making it useful for neuronal data analysis. Hadoop distributed file system

(HDFS) operates on disk. Since the MapReduce interacts with the HDFS, most iterative
algorithms and computations could be slow which can be a bottleneck. The open-source
distributed computing framework, Apache Spark , considers an abstraction called resilient
distributed datasets (RDDs)(Zaharia et al., 2010). RDDs could be cached and distributed in the

 High-Performance Computing Framework Based on Distributed Systems..

3

memory across all nodes in the cluster, performing iterative operations much faster than Hadoop
MapReduce (Zaharia et al., 2010).
BNDF is general and flexible enough that it could cover a variety of methods and experiments.
It also addresses both the data generators and the data consumer’s requirements. As for the data
processing, BNDF could cover most of the widely used algorithms and models in the
neuroscience community. We performed a spike sorting procedure on a big neural data as one

of the widely used processing procedures in neuroscience. In an equitable computational
resource state, we found five times smaller runtimes compare to commonly used platforms in

the neuroscience community.

Method

Summary

The detail of our work, examples and the source codes are available at our Gitlab, and
documentation for quick start of BNDF are available here.

Deployment

For deployment of BNDF, there are various solutions available. They are varied from
the one node standalone cluster to the most scalable, multi-node cluster with high availability.
Deployment could be done using private clusters (custom clusters)�or using cloud services
provided by the various companies. At the sharing level of the lab or universities, privately
distributed clusters could be deployed. We developed a cluster for BNDF using docker
containers. A detailed procedure for creating a BNDF cluster is available at BNDF cluster guide.
BNDF could be deployed through public cloud service providers such as Amazon Webservices
(AWS), Microsoft Azure, Google Cloud, and IBM Cloud. In addition to highly scalable
structures and resources of the public clusters, data, and meta-data storage in BNDF could be
shared between all experimenters and data analysts in the neuroscience community.

We deployed BNDF on a private cluster with 10 nodes from the IPM Grid Center. Each node
had 20 cores CPU and 50 GB of RAM. In the cluster, we provided Hadoop and Spark in stand-
alone mode with high availability enabled along with other BNDF's requirements described at
BNDF cluster guide. Two nodes in the cluster are configured for Spark and Hadoop manager
nodes, making processing handled by the other 8 nodes. We also configured BNDF alongside
MATLAB on a single Linux machine with 80 cores CPU and 256 GB RAM. Spark version 3,
Hadoop version 3.2.1, and MATLAB version R2020a are used for evaluating tests and
benchmarks.

Data Format

In this study, we worked on an electrophysiological recording dataset that have been
recorded from the inferior temporal cortex of nonhuman (Rezayat et al., 2021). BNDF could
be extended to support other recording techniques like EEG, MEG, fMRI, and imaging
methods. Since most recording devices generate standard MAT binary files, we consider MAT
files as raw input files, although it could be extended to support other input formats. Based on

https://gitlab.com/neuroscience-lab/bndf
https://bndf.readthedocs.io/en/latest/
https://gitlab.com/neuroscience-lab/bndfcluster.git
https://gitlab.com/neuroscience-lab/bndfcluster.git

 Cognitive Science Research, Volume 1, Issue 1, 2025

4

constraints on MAT files defined in figure 2, data generators should follow this structure during
raw file creation.

Data Processing

In BNDF, we developed spike sorting module, as an exemplar processing. BNDF Sorter
module was built on top of sparks SQL, and MLib libraries.

Spike Sorting procedure

 BNDF Spike Sorter module is mainly based on the approach presented by (Quiroga et al.,
2004; Rey et al., 2015). More specifically it is a distributed version of it but with some slight
differences. BNDF Sorter is developed in a way such that processing is divided into ordered
pipelines as two sub-modules (Fig. 4A), described in detail as follows.

Separating spikes from raw continuous signal X were done through spike detection by defining
a threshold. The estimated value for the threshold doesn’t to be small or large to�avoid false
positive or missing spikes respectively. We chose the threshold value in which considered as an
optimal estimation (Quiroga et al., 2004; Rey et al., 2015) as

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑐
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋|)

0.6745
 Equation 1

Where c is a constant between 3 and 5 that we select c=3. We extracted the spike time {si; i =
1, ..., N}, where the raw signal passed from threshold in the spike detection. Here N is the total
number of detected potential spikes. The spike waveforms were extracted from 30 samples
before of spike time and 50 samples after that (sampling frequency 40 kHz). In this pipeline,
we construct the spike matrix based on the windowed spike data evaluated in the previous
pipeline. Therefore, we construct spark matrix S with dimension N × 81 as the PCA input in the
next pipeline and, also apply the required transformation for transition data between SQL and
MLib module. We used PCA for feature extraction and dimensionality reduction for extracting
the features and generating input for the clustering method (Rey et al., 2015). Our PCA reduces
the dimension of spike matrix S, from N × 81 to N × 6. We used Gaussian mixture model
(GMM), as an effective clustering method, for spike detection (Harris et al., 2000; Rey et al.,
2015). In the literature, GMM is known as the soft clustering method, while other widely used
methods like K-means are considered a hard-clustering method. Generally, GMM could be
defined as follow (Hastie et al., 2001).

𝑓(𝑥) = ∑ 𝜆𝑘𝜑(𝑥; 𝜇𝑘, 𝜮𝑘)
𝐾

𝑘=0
 Equation 2

Where 𝜆𝑘 is mixture weight (∑ 𝜆𝑘 = 1𝐾
𝑘=0) and 𝜇𝑘 and 𝚺𝑘 are average and covariance matrix

of the normal density function. The parameters were fit by maximum likelihood, using EM
algorithm (Hastie et al., 2001). We measured the goodness of fit GMM method by Bayesian
information criterion (BIC)(Hastie et al., 2001). Here we fit from 2 up 6 clusters and chose the
GMM model with the minimum BIC value.

Results

Architecture and design

 High-Performance Computing Framework Based on Distributed Systems..

5

We developed the BNDF framework in an extendable way for processing
electrophysiological neuronal datasets (Fig. 1). The BNDF concept generally is based on two
main parts, “Data Ingestion” and “Data Processing”. Data Ingestion describes procedures
related to importing recorded neuronal data from various recording devices and transforming
the data into the structured format provided by the BNDF. Currently, BNDF uses Mat files as
raw input data; however, the flexibility of BNDF design lets the user work with other file
formats. The data Loader module is created for handling required operation in the data ingestion
procedure; which we will describe in detail in the later parts. In the case of Data Processing,
Spark's elegant and flexible APIs provides various ways of processing data. Most distributed
data processing operations are based on Spark libraries, Spark SQL, Spark Streaming, MLib,
and GraphX. These libraries are implemented on top of the Spark core. Spark SQL provides
SQL-like operations and optimizes queries. Spark Streaming, as its name represents, provides
streaming operations. MLib is designed specifically for optimized various machine learning
and statistical modeling methods. GraphX library is used for large-scale graph processing. With
a combination of the functionality provided by spark libraries, numerous neuroscientific
processing could be done efficiently in a distributed manner. For example, with a combination
of the Sparks MLib and GraphX libraries, an efficient model could be developed for functional
connectivity analysis in huge neuronal ensembles. Spark modules are accessible with different
language APIs, Scala, Java, Python, and R. Each API has different features, supports, and
flexibilities. Since, Spark is written in Scala language, this API has the most support, efficiency,
and flexible functionality. However, both Java and Scala shares JVM as a compiler and provide
similar functionality. Other APIs are evolving, and Python is extended more in recent years. In
the BNDF architecture, results can be retrieved directly, however, both Apache zeppelin and
Thunder can provide an abstract layer for retrieving results from Spark.

Figure 1. The architecture�of the BNDF.

The functionality provided by the BNDF is divided into two parts, Data Ingestion (green box)
and Data Processing (light blue box). In Data Ingestion, multiarray recorded the raw data of
neural activity from the brain. Spark driver gets raw data as input and follows as two tracks. In
the top track, a meta-data is extracted from raw files as nested JSON-structured and stored in
the MongoDB database. In the bottom track, massive raw data is stored as an efficient columnar
structure, in the HDFS. In Data Processing, the structured data in HDFS, and MongoDB were
retrieved by Spark for processing with four modules, Spark SQL, Spark Streaming, MLib, and
GraphX. Spark modules are accessible with different Language APIs, Scala, Java, Python, and

 Cognitive Science Research, Volume 1, Issue 1, 2025

6

R and related icons were sorted from top to bottom based on features support and flexibilities.
The results can be retrieved directly by modules provided by Spark. In the BNDF architecture,
both Apache zeppelin and Thunder can provide an abstract layer for retrieving results from
Spark.

Framework structure

In the BNDF, we proposed the idea of storing data in two separate standard structures.
The first one is a nested JSON-structured meta-data stored in the MongoDB database. The
second one is the flexible columnar data structure, Apache Parquet�(Melnik et al., 2010), stored
on top of HDFS as a fast, horizontally-scalable, and storage-efficient massive data ingestion.
These structures provided processing data efficiently without caching all of the data in memory.
In this way, all processing operations could communicate directly with HDFS, avoid extra I/O
time-wasting, and avoid unnecessary caching. Data Loader module provides capabilities for
creating efficient structures for addressing both data generators and data consumer’s needs. We
consider all the operations related to getting the input data and create a standard structure (Fig.
2). The BNDF proposed a tree-like structure for input in which each node can be nested (parent)
or not (child). We consider some constraints on the input file based on the output structure,
meta-data, and raw-data. We consider two constraints for creating metadata; first, the matrices
dimensions should be less than two (vector). Second, the length of the vectors should be equal
to or less than 100. For raw-data we assume that the matrix dimension is (T * 1), which T is the
maximum signal time index, and T is greater than 100. In the core of the Data Loader module,
we developed the SchemaCreator package, which creates desired schemas for raw-data and
meta-data (Fig. 2). The SchemaCreator generates two different schemas for raw data and
metadata via two classes called metaDataSchemaCreator and channelDataSchemaCreator. The
metaDataSchemaCreator class generates a dynamic multilevel nested JSON structure based on
the raw file structure shown in Figure 2. All generated meta-data should have some common
fields, but additional fields are not limited and could vary from different recording devices or
experiments.
The channelDataSchemaCreator class generates a schema for the raw channel data in a
columnar structure. One important difference between these two structures is that JSON is
nonhomogeneous (which fits well for metadata structure) and columnar structure is
homogeneous data structures. The channelDataSchemaCreator generates raw channel data
through the two other classes, rawDataSchemaCreator and eventDataSchemaCreator. MAT
files generated by the experimenters could contain either channels, events information, or some
similar conceptual structures. Either way, it contains various metadata information that needs
to be extracted and stored. This procedure is controlled by the metaDataSchemaCreator class.
Event files stores information about task and various stimuli data with time. The
eventDataSchemaCreator generates a columnar structure based on input events MAT files.
Technically, the rawDataSchemaCreator class operates similarly to the
eventDataSchemaCreator class, but it considers only for massive neuronal data. The detailed
algorithm of the SchemaCreation package and its so-called classes are available in
Supplementary information. It is important to declare that the data and meta-data storage in the

 High-Performance Computing Framework Based on Distributed Systems..

7

BNDF could be reachable from all experimenters and data analysts and provides a unique set-
up for sharing data across the neuroscience community.

Figure 2. The functionality of BNDF data loader.

Raw MAT file tree structure and constraints were showed on the left box. Black arrows
correspond to child nodes and red arrows correspond to parent nodes. Raw MAT file consists
of Struct, Cell, Matrix, and Char types in the root level of the file. Struct field is capable of n-
level nesting. In the Middle, schema creator package constructs a schema for meta-data and
raw-data using three subclasses, metaDataSchemaCreator (metadata box),
eventDataSchemCreator (eventData box), and rawDataSchemCreator (rawData box) (methods
for detail). (Right-hand side) Meta-data were formed as Nested JSON structure. Keys were
shown black and values in green colors. Raw-data were formed as Parquet columnar structure.

Setup and installation

We deployed BNDF on a private cluster with 10 nodes. Each node had 20 cores CPU
and 50 GB of RAM. In the cluster, we provided Hadoop and Spark in stand-alone mode with
high availability enabled along with other BNDF's requirements described at cluster guide. Two
nodes in the cluster are configured for Spark and Hadoop manager nodes, making processing
handled by the other 8 nodes. We also configured BNDF alongside MATLAB on a single Linux
machine with 80 cores CPU and 256 GB RAM. Spark version 3, Hadoop version 3.2.1, and
MATLAB version R2020a are used for evaluating tests and benchmarks. Most of HPC systems
proposed before focused on the processing-side and ignored problems like standardized
formats, efficient load, and efficient writes. Here in BDNS, to overcome the mentioned
problems, we developed two modules Data Loader and Spike Sorter.

Analysis and implementation

We used three datasets with different sizes, generated from the spiking activity of
multiple channels. The first data set has 30 GB storage size, generated from spiking activity of
2 channels. The second data set has 90 GB storage size, generated from the spiking activity of
10 channels. The third and the last data set is the largest data set with 250 GB storage size which
is generated from spiking activity of 18 channels. BNDF module, data loader, process these
datasets, and store structured data in a storage-efficient format in HDFS. By storing data set as

https://gitlab.com/neuroscience-lab/bndfcluster.git

 Cognitive Science Research, Volume 1, Issue 1, 2025

8

Parquet file with Snappy compression format, three data set storage reduces to 10, 30, and 50
GB. The achievement of using Parquet file with Snappy compression format is decreased in
size of structured dataset compare to raw file data. Decreasing in the storage size is roughly in
order of 3. However, this factor is increased non-monotonically with data size. Moreover,
runtime of BNDF Data Loader module decreased by an increase in the number of nodes of the
cluster (Fig. 3). As the distributed nature of BNDF, the scalability consequences faster data
loading, saving, and various I/O operation.

Figure 3. The Performance benchmark of BNDF.

Benchmarks are evaluated with 2, 4, 6, and 8 nodes on three different dataset sizes in the cluster
environment that each node had 20 cores of CPU and 200 GB RAM. (A) Runtime for all
operations handled by the BNDF Data Loader module in the cluster environment. (B) Runtime
for saving results in the BNDF setting.

Large-scale data application

We examined BNDF processing performance by implementing spike sorting module,
mostly used preprocessing on neuronal datasets. We developed spike sorting module, called
BNDF Sorter, in two sub-modules (Fig. 4A). These modules were built on top of sparks SQL,
and MLib libraries, respectively (See Methods). The first sub-modules include thresholding
(Thresh), windowing (Window), transforming (Trans) pipelines for detecting spikes, and
cerates features for spike sorting. The second sub-module contains spike sorting using principal
component analysis (PCA) for feature extraction, gaussian mixture model (GMM) for�
clustering, and bayesian information criteria (BIC) pipelines (Toosi et al., 2020). We applied
Spike Sorter module on three datasets with the required initial value for each pipeline (See
Methods). By collecting benchmark results, we observed that scalability has drastic
improvement in both BNDF modules runtime and the aforementioned effect grows with data
size (Fig. 4B). The runtime difference between 8 nodes and 2 nodes for three data set is 7.7,
49.85, and 91.67 minutes respectively. By comparing distributed processing provided by the
BNDF and MATLAB, our testing result clarifies that spike sorting procedure runtime could
improve more than 5x. For example, for data set with 10 GB size, MATLAB runtime took 87.2
minutes while BNDF runtime took 16.9 minutes (Fig. 4C). We observed that BNDF spike sorter

 High-Performance Computing Framework Based on Distributed Systems..

9

runtime, even for data set 90 GB (44.26 minutes) is lower than data set 30 GB processed by
MATLAB (87.2 minutes total and 49.38 minutes exclude load time) (Fig. 4-C).

Figure 4. BNDF pipeline for sorting.

(A) BNDF sorter module. From left to right, raw data in the columnar structure have entered
Module 1 operating under the Spark SQL library and includes Thresholding, Windowing, and
transforming pipelines. Module 2 operates under the Spark MLib library and covers PCA,
GMM, and BIC (optimizing number of clusters) pipelines. The resulting sorted dataset is
retrieved at the end of the module, (B) Performance of the BNDF Sorter module. Benchmarks
are evaluated with 2, 4, 6, and 8 nodes on three different dataset sizes, in the cluster environment
that each node had 20 cores of CPU and 200 GB RAM, (C) Comparing MATLAB sorter and
BNDF sorter performance benchmark. Runtime for BNDF sorter (on the cluster with 4 nodes)
and MATLAB installed on a single machine Linux workstation with 80 cores of CPU and 200
GB RAM. The total amount of resources for the BNDF cluster is equal to the single machine
Linux workstation machine (both 80 cores of CPU and 200 GB RAM) which used for
MATLAB. All pipeline operations described in A are written in MATLAB code with the same
configurations for comparison. BNDF reads data as parquet files directly from HDFS, while
for MATLAB, CSV files are generated. MATLAB version of spike detection reported for two
scenarios, whole operation and only sorting procedure (loading data excluded). For two data
set with 90, and 250 GB size MATLAB encounter out of memory (OOM) error. In the best-
case scenario�based on the runtime provided by BNDF in B, we could assume runtime for two
datasets with 90, and 250 GB size are growth by an almost linear rate of 30 GB data set.

Discussion and Conclusion

In this article, we introduced BNDF, as a distributed and scalable framework. We
proposed a standard data structure for neurophysiological datasets, in order to organize and
share datasets more easily between data generators and data consumers in different labs or
institutes. In the neuroscience community, BNDF is the one of distributed and scalable
framework for neurophysiological datasets. It is possible to handle big data generated by
various experiments, recording devices, or other existing sources of neuronal data generation.
New improvements in multiarray recording generate massive neuronal data in near future, then,
storing data in a standard and storage-efficient structure and processing data needs scalable,
distributed, and flexible foundation, provided by HPC. By introducing BNDF in this article, we
focused on how such an HPC framework could have a positive impact on such big datasets.
We developed two primary modules in BNDF, Data Loader, and Spike Sorter. BNDF has
advantages compared to other HPC based�frameworks. Firstly, BNDF focus on efficient and
flexible storage of data and meta-data along with efficient data processing, while others just

 Cognitive Science Research, Volume 1, Issue 1, 2025

10

focused on processing data (Freeman et al., 2014). Secondly, in BNDF, data can be read in a
distributed manner and it is much faster than loading data locally and caching with Apache
Spark (Dean & Ghemawat, 2008; Shvachko et al., 2010; Zaharia et al., 2010).Third, BNDF is
developed in a general way with the capability of extension in the future, such that, other
introduced HPC systems could be built and configure on top of BNDF. For example, Thunder
(Freeman et al., 2014) could be used on top of BNDF, with a small modification. It generalizes
Thunder in a compatible manner. Moreover, reading data from HDFS is not possible with
Thunder (Freeman et al., 2014). All data would read locally and cached with spark before
processing. In BNDF we avoid unnecessary caching and we implement distribute read from
HDFS through our standard data structure created by the BNDF Data Loader module.
BNDF also provides efficient large-scale data processing. Since spike sorting is a challenging
and time-consuming process, we developed Spike Sorter to perform spike sorting on large-scale
recording data. We determined that BNDF's Spike Sorter module operates faster with an
increasing number of nodes. BNDF provides the possibility for processing algorithms like spike
sorting on the massive neuronal data set, where it�was�not�possible�with�a�single machine
platform like MATLAB. Also, due to the limitation of the available resource�and�cluster
environments, we could only increase scalability�by�a factor of 2 up to 8 nodes, however, the
impact of scalability is much higher when increasing nodes by a factor of 10. BNDF is at its
early stages and it is flexible in a way that we could extend, or add new modules (features) to
it easily. BNDF has Spike Sorter module for processing data now, however it has a more
sophisticated structure compare to other HPC-based framework (Freeman et al., 2014).
Currently,�BNDF operates as spark-submit batch jobs and it is only available in Scala API, but
in future works, we could extend BNDF API to higher-level languages like�Python, and R for
ease of use. As for BNDF functionality, we could enhance its capability to run in a streaming
manner and real-time processing data, in this way Spike Sorter module could operate as Online
Spike Sorter. A variety of post-processing and coding (decoding) algorithms could be
implemented in BNDF easily. For example, a complex, graphical functional connectivity
method in the neuronal population level.
Declarations

Author Contributions

 M. H., E. R. and M.R. A.D. conceived of the project. M. H. developed the analysis library

and analyzed the data. E.R. and M.R. A.D. collected the neuronal data. M. H., E. R. and

M.R. A.D. wrote the manuscript.

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from

the corresponding author on reasonable request.

Acknowledgements

We thank R. Toosi for help developing MATLAB code for spike sorting procedure and

discussion, and A. Shahamati and M. Zarei for the proof reading of manuscript. We also

thank members of the IPM Turin Cloud Services (turin.ipm.ir) for delivering the compute

file:///K:/Ongoing%20papers/Papers/High-Performance%20Computing%20in%20Neuroscience/Scientific%20Report/turin.ipm.ir

 High-Performance Computing Framework Based on Distributed Systems..

11

power to conduct the experiments. This work was supported by the School of cognitive

science of IPM.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this

research.

References

Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M., & Keller, P. J. (2013). Whole-brain functional imaging at

cellular resolution using light-sheet microscopy. Nature Methods, 10(5), 413-420.

https://doi.org/10.1038/nmeth.2434

Boubela, R. N., Kalcher, K., Huf, W., Našel, C., & Moser, E. (2015). Big Data Approaches for the Analysis of
Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State

fMRI Data from the Human Connectome Project. Front Neurosci, 9, 492.

https://doi.org/10.3389/fnins.2015.00492

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D. D., Frank, L. M.,

Kasthuri, N., Koch, C., Rübel, O., Simon, H. D., Sommer, F. T., & Prabhat. (2018). International

Neuroscience Initiatives through the Lens of High-Performance Computing. Computer, 51(4), 50-59.

https://doi.org/10.1109/MC.2018.2141039

Bouchard, Kristofer E., Aimone, James B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, David D.,

Frank, Loren M., Kasthuri, N., Koch, C., Ruebel, O., Simon, Horst D., Sommer, Friedrich T., & Prabhat.

(2016). High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and

Dissemination. Neuron, 92(3), 628-631. https://doi.org/https://doi.org/10.1016/j.neuron.2016.10.035

Chen, Y., Wang, Z.-y., Yuan, G., & Huang, L. (2017). An overview of online based platforms for sharing and

analyzing electrophysiology data from big data perspective. WIREs Data Mining and Knowledge

Discovery, 7(4), e1206. https://doi.org/https://doi.org/10.1002/widm.1206

Cunningham, J. P. (2014). Analyzing neural data at huge scale. Nature Methods, 11(9), 911-912.

https://doi.org/10.1038/nmeth.3071

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1),

107–113. https://doi.org/10.1145/1327452.1327492

Freeman, J. (2015). Open source tools for large-scale neuroscience. Curr Opin Neurobiol, 32, 156-163.

https://doi.org/10.1016/j.conb.2015.04.002

Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y., Sofroniew, N. J., Bennett, D. V., Rosen, J., Yang, C.-T.,

Looger, L. L., & Ahrens, M. B. (2014). Mapping brain activity at scale with cluster computing. Nature

Methods, 11(9), 941-950. https://doi.org/10.1038/nmeth.3041

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsáki, G. (2000). Accuracy of tetrode spike separation

as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol, 84(1), 401-

414. https://doi.org/10.1152/jn.2000.84.1.401

Hastie, T., Friedman, J., & Tibshirani, R. (2001). Model Assessment and Selection. In T. Hastie, J. Friedman, &

R. Tibshirani (Eds.), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (pp.

193-224). Springer New York. https://doi.org/10.1007/978-0-387-21606-5_7

Landhuis, E. (2017). Neuroscience: Big brain, big data. Nature, 541(7638), 559-561.

https://doi.org/10.1038/541559a

Makkie, M., Li, X., Quinn, S., Lin, B., Ye, J., Mon, G., & Liu, T. (2019). A Distributed Computing Platform for

fMRI Big Data Analytics. IEEE Trans Big Data, 5(2), 109-119.

https://doi.org/10.1109/tbdata.2018.2811508

Markram, H., Muller, E., Ramaswamy, S., Reimann, Michael W., Abdellah, M., Sanchez, Carlos A., Ailamaki,

A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, Guy Antoine A., Berger, Thomas K., Bilgili,

A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J.-D., Delalondre, F., Delattre, V., . . .

Schürmann, F. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163(2), 456-

492. https://doi.org/10.1016/j.cell.2015.09.029

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., & Vassilakis, T. (2010). Dremel:

interactive analysis of web-scale datasets. Proc. VLDB Endow., 3(1–2), 330–339.

https://doi.org/10.14778/1920841.1920886

Panier, T., Romano, S. A., Olive, R., Pietri, T., Sumbre, G., Candelier, R., & Debrégeas, G. (2013). Fast functional

imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy.

Front Neural Circuits, 7, 65. https://doi.org/10.3389/fncir.2013.00065

https://doi.org/10.1038/nmeth.2434
https://doi.org/10.3389/fnins.2015.00492
https://doi.org/10.1109/MC.2018.2141039
https://doi.org/https:/doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/https:/doi.org/10.1002/widm.1206
https://doi.org/10.1038/nmeth.3071
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1016/j.conb.2015.04.002
https://doi.org/10.1038/nmeth.3041
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1007/978-0-387-21606-5_7
https://doi.org/10.1038/541559a
https://doi.org/10.1109/tbdata.2018.2811508
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.14778/1920841.1920886
https://doi.org/10.3389/fncir.2013.00065

 Cognitive Science Research, Volume 1, Issue 1, 2025

12

Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and

superparamagnetic clustering. Neural Comput, 16(8), 1661-1687.

https://doi.org/10.1162/089976604774201631

Rey, H. G., Pedreira, C., & Quian Quiroga, R. (2015). Past, present and future of spike sorting techniques. Brain

Research Bulletin, 119, 106-117. https://doi.org/https://doi.org/10.1016/j.brainresbull.2015.04.007

Rezayat, E., Dehaqani, M.-R. A., Clark, K., Bahmani, Z., Moore, T., & Noudoost, B. (2021). Frontotemporal

coordination predicts working memory performance and its local neural signatures. Nature

Communications, 12(1), 1103. https://doi.org/10.1038/s41467-021-21151-1

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, 3-7 May 2010). The Hadoop Distributed File System.

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),

Toosi, R., Akhaee, M. A., & Dehaqani, M.-R. A. (2020). An Adaptive Detection for Automatic Spike Sorting

Based on Mixture of Skew-t distributions. bioRxiv, 2020.2006.2012.147736.

https://doi.org/10.1101/2020.06.12.147736

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with

working sets. 2nd USENIX workshop on hot topics in cloud computing (HotCloud 10),

https://doi.org/10.1162/089976604774201631
https://doi.org/https:/doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1038/s41467-021-21151-1
https://doi.org/10.1101/2020.06.12.147736

