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Abstract  

Embedded options are virtually new instruments identical to options in many 

aspects except their non-tradable nature. Testing the efficiency of the Variance 

Gamma and Black-Scholes-Merton model on these instruments would provide 

a vision of transitioning from the classical model with its deficiency to more 

intricate models. Considering the complicated nature of the Variance Gamma 

stochastic process to price options, the Fast Fourier Transform (FFT) method is 
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used in conjunction with the Nelder-Mead Simplex method to calibrate models. 

This research uses the Fast Fourier Transform (FFT) to price four embedded 

options with the ticker symbols Hefars912, Heghadir912, Heksho208, and 

Hetrol911 under the two models. The result approves that the Variance Gamma 

process is more efficient than the Black-Scholes-Merton model in pricing 

embedded options. Consequently, the variance gamma process would generate 

fewer errors in pricing those options that can be used in a practical sense.  

Keywords: Embedded Options, Option Pricing, Stochastic Processes, Fast 
Fourier Transform, Variance Gamma process, Black-Scholes-
Merton model. 

Introduction                                                                          

Options are one of the fundamental tools of financial derivatives which can be 

utilized to hedge portfolio risk. It is evident that pricing options assume 

importance when the demand for these tools soared in recent years. The most 

famous option pricing model, Black-Scholes-Merton, proposed in 1973, is still 

the most ubiquitous model in financial markets. Indeed, it is the most 

convenient model because of its closed-form formula by which investors can 

easily calculate option prices. However, some slight defects in its assumptions 

make the model less precise regarding pricing. Firstly, it is assumed that the 

underlying asset follows the log-normal distribution while the asset shows a 

fat-tailed distribution in fundamental stock markets. The other unrealistic 

assumption in the BSM model is the invariability of volatility during the 

option's life. However, the volatility for the deep-in-the-money and out-of-the-

money prices shows an increase, which is known as a volatility smile. After 

this model, many attempts have been made to modify it and make the 

assumptions more realistic. For instance, the Heston model was proposed by 

Steven Heston in 1993 to modify the BSM model in terms of volatility. The 

model's most characteristic feature was that the underlying asset's volatility 

followed its own stochastic process. As a result, Heston proposed a model with 

five parameters instead of just one parameter in the BSM model. 

Moreover, in contrast to the BSM model, Heston introduced a method to 

allow the interest rate to be a stochastic process, which made the model 

appropriate to model bond options and foreign currency options (Steven et al., 

1993). In addition to the aforementioned points, another phenomenon is 

observed in fundamental financial markets, which should be noted in 

modeling; it is "jump" in reality, which was not considered in Brownian 

motion. In fact, jump assumes importance in modeling financial events such as 
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stock price, which has both continuity and jump nature. In this sense, an 

important question may be asked: "Does adding jump movement into our 

models make it more efficient?". This crucial question is answered in this 

paper. For this purpose, the Variance Gamma process was chosen to model 

embedded options to compare the “pure jump process” efficiency with 
Brownian motion, which has a continuous nature without a jump. The Variance 

Gamma process is defined as the Brownian motion process with a replaced 

time by gamma time (Weilong, Hirsa, 2019).  

Regarding embedded options, customized options have been made in 

recent years in order to fulfill the demand for hedging in financial markets. The 

options Market in Iran commenced in 2016 with only eight option chains. 

Currently, about 50 option chains are tradable with call-and-put options. 

However, there are other kinds of options, namely embedded options, which 

are not allowed to trade and are just for hedging the investment portfolio from 

declining. These derivatives have recently assumed great importance in Iran 

because they are used as corporate financing instruments. For instance, the 

embedded option with the ticker symbol Heksho, issued by Pakshoo Co., has 

been traded for 3 years. 

Literature Review 

In order to price options in financial markets in a practical sense, investors use 

the Black-Scholes-Merton model because of its non-stochastic nature in its 

formula; as a result, it facilitates option pricing. One of the most critical 

assumptions in deriving the Black-Scholes formula is that it does not contain 

jumps in its stochastic process, which leads to not considering large jumps in 

market prices. In addition, in the Black-Scholes formula, the only parameter 

that controls the distribution of the prices in a Brownian motion process is 

volatility, which leads to missing out control of kurtosis and skewness of 

distribution in price modeling of the underlying. However, the price jumps in 

conjunction with the fat-tailed distribution in financial markets. The variance 

Gamma model refines the two aforementioned flaws in the Black-Scholes 

formula in that it controls the variance, skewness, and kurtosis of distribution 

by three parameters; moreover, the Variance Gamma process is a pure jump 

process that includes price jumps happening in reality. The Variance Gamma 

process can be advantageous when pricing options since it allows for broader 

modeling of skewness and kurtosis than the Brownian motion does (Madan et 

al., 1990).  

Hirsa and Madan derived the partial integro-differential equation (PIDE) 
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for pricing American options under the Variance Gamma process. They 

developed a numerical algorithm to solve for values of American options under 

the variance gamma model. (Hirsa, B.Madan, 2001)  

Since the VG process is one of finite variation, it can be written as the 

difference of two increasing processes, the first of which accounts for the price 

increases, while the second explains the price decreases. In the case of the VG 

process, the two increasing processes that are differenced to obtain the VG 

process are themselves gamma processes (Madan et al., 1998):  

𝑋(𝑡; 𝜎, 𝜐, 𝜃) = 𝛾𝑝(𝑡, 𝜇𝑝, 𝜐𝑝) − 𝛾𝑛(𝑡; 𝜇𝑛, 𝜐𝑛)          (1)  

The VG process 𝑋(𝑡; 𝜎, 𝜐, 𝜃) is defined by:  

𝑋(𝑡; 𝜎, 𝜐, 𝜃) = 𝑏(𝛾(𝑡; 1, 𝜐); 𝜃, 𝜎)         (2) 

Which is obtained by evaluating Brownian motion (with constant drift and 

volatility) at a random time change given by a gamma process (Madan et al., 

1990).  

The characteristic function of the VG process is as follows:  

𝜙𝑋(𝑡)(𝑢) = ( 
1

1−𝑖𝜐𝜃𝑢+
𝜎2𝜐

2
𝑢2

)

𝑡

𝜐

        (3)  

The random process used by Black and Scholes to model the underlying 

stock price was Geometric Brownian motion. The characteristic function of 

that is as follows: 

𝜙(𝑢) =  𝑒
𝑖(𝐿𝑛𝑆0+(𝑟−𝑞−

𝜎2

2
)𝑇)𝑢−

𝜎2𝜐2

2
𝑇

           (4) 

Fast Fourier Transform (FFT) for option pricing 

We used the Fast Fourier Transform (FFT) method to price the put options 

using the characteristic VG process and Brownian motion functions.  

By transforming the log-normal space, we define the strike and underlying 

asset prices at maturity as K = e k and ST = e ST, respectively. Then we would 

have for the price of a European put option:  

𝔼𝑡[(𝐾 − 𝑆𝑇)+] =  ∫(𝐾 − 𝑆𝑇)𝑓(𝑆𝑇)𝑑𝑆𝑇 

𝐾

0
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=  ∫(𝑒𝑘 − 𝑒𝑠𝑇)𝑞(𝑠𝑇)𝑑𝑠𝑇

𝐾

−∞

 

=  ∫(𝑒𝑘 − 𝑒𝑠)𝑞(𝑠)𝑑𝑠𝑇

𝐾

−∞

 

=  𝑃𝑇(𝑘)           (5) 

We define control parameter α and then 𝑝𝑇(𝑘) as:  

𝑝𝑇(𝑘) =  𝑒𝛼𝑘𝑃𝑇(𝑘)           (6) 

By utilizing the Fourier transform, we have:  

𝜓𝑇(𝜐) =  ∫ 𝑒𝑖𝜐𝑘𝑝𝑇(𝑘)𝑑𝑘
∞

−∞
           (7) 

By substitution of 𝑝𝑇(𝑘) from (5) and (6) and solving the integral of 

inverse Fourier transform, we would have:  

𝜓𝑇(𝜐) =
1

(𝛼+𝑖𝜐)(𝛼+𝑖𝜐+1)
𝜙(𝜐 − (𝛼 + 1)𝑖)            (8) 

For every random process, we have the characteristic function of 𝜙(𝜐), and 

then by using the inverse Fourier transform, we can calculate the put option 

price:  

𝑃𝑇(𝑘) =  
𝑒−𝛼𝑘

𝜋
∫ 𝑒−𝑖𝜐𝑘𝜓𝑇(𝜐)𝑑𝜐

∞

0
          (9) 

Research Methodology 

This paper applied the VG and Black-Scholes model to four embedded options 

issued over two years in the Iran Fara Bourse Securities Exchange (IFB). Both 

embedded and plain vanilla options are traded in IFB. The Special feature of 

the embedded options, which differentiates them from plain vanilla options, is 

that they are not tradable during their life; besides that, the primary purpose of 

purchasing them is to protect the underlying asset from declining in a specific 

period. In contrast to vanilla put options, which have an option chain with 

different strike prices, embedded options have just one strike price. Moreover, 

in order to purchase the embedded option, you must have the underlying asset.  
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Choosing appropriate options to price 

In order to choose option contracts among others, we considered two factors to 

judge whether option prices are fair and comparable to the theory price from 

our models. Firstly, the volume of the trades in a specific trading day was 

maximum, among other options. Secondly, the number of trades on that day 

was maximum as well. These two conditions ensure that the options were 

trading between small-scale investors, which is an acceptable indicator to 

suggest that the price of those trades was fair. Between all embedded options, 

we chose four of them with the ticker symbols “Hefars912”, “Heksho208”, 
“Hetrol911”, and “Heghadir912”. Table 1 shows information about the four 
chosen embedded options. 

Table 1. Information on Embedded Options 

Embedded Option 

(Ticker Symbol) 
Company Name Strike Price 

Hefars912 
Persian Gulf Petrochemical Industries 

Co. 
14,750 

Heghadir912 Ghadir Investment Company 17,380 

Heksho208 Pakshoo Industrial Group 9,979 

Hetrol911 
Iranian Petrochemical Investment 

Group 
14,730 

Source: rahavard365.com 

In figures 1-4, we can see the price fluctuations of the four embedded 

options in terms of underlying asset price and time to maturity. It is obvious in 

the figures that there are some intervals in which the option price goes near 

almost zero. They are the days the options were traded between investors who 

compromised on 1 IRR option price. It is conventional in the market to reach 

an agreement on a fixed price without considering the theoretical and intrinsic 

value of the option. However, we tried to choose options with the least 

compromised prices in terms of their time interval, and this would not impose 

any restriction on our research except that it would increase the error function 

by just 5-7%. Because the 5-7% shift in error function would be done on both 

of our pricing models, it would not debunk our comparison and judgment about 

the models. As a result, we did not trim our data because of the compromised 

prices, and we kept the origin data at the expense of increasing the error 

function by the aforementioned percentage. 
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Figure 1. Price Fluctuations of “Hefars912” in terms of underlying asset price 
and time to maturity 

Figure 2  Price Fluctuations of “Heghadir912” in terms of underlying asset price 
and time to maturity 
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Figure 3. Price Fluctuations of “Hetrol911” in terms of underlying asset price 
and time to maturity 

 

Figure 4. Price Fluctuations of “Heksho208” in terms of underlying asset price 
and time to maturity 
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Calibration  

In this research, we utilized three error functions to calibrate our models with 

market prices and find the best parameters; in addition, using three error 

functions gives us the edge to have a broader point of view to compare the VG 

and Black-Scholes models. Moreover, we used the Nelder-Mead Simplex 

algorithm to minimize the error functions because of the non-smooth behavior 

of the error functions. Three error functions are as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ |𝐶𝑖

𝑀𝑜𝑑𝑒𝑙(0. 𝜙) − 𝐶𝑖
𝑀𝑎𝑟𝑘𝑒𝑡(0)|2𝑛

𝑖=1        (10) 

𝐴𝑃𝐸 =  
∑ |𝐶𝑖

𝑀𝑜𝑑𝑒𝑙(0.𝜙)−𝐶𝑖
𝑀𝑎𝑟𝑘𝑒𝑡(0)|𝑛

𝑖=1

∑ 𝐶𝑖
𝑀𝑎𝑟𝑘𝑒𝑡(0)𝑛

𝑖=1

        (11) 

𝐴𝐴𝐸 =  
1

𝑛
∑ |𝐶𝑖

𝑀𝑜𝑑𝑒𝑙(0. 𝜙) − 𝐶𝑖
𝑀𝑎𝑟𝑘𝑒𝑡(0)|𝑛

𝑖=1                  (12) 

Because of its time-consuming nature, we did not utilize the Brute-Force 

search through all surface error functions. To mention the expense of time 

process, optimizing just one error function through our Python code using the 

Brute-Force algorithm took 13 hours! Consequently, we sacrificed complete 

reliability because it would lengthen the optimization process. However, the 

Nelder-Mead algorithm has its own advantage if we choose the appropriate 

initial points, which were chosen with more scrutiny in the research. 

Results 

In this section, we have the results of the pricing models after the calibration 

process with their optimum parameters. In the Black-Scholes model, we have 

just one parameter, "s," whereas in the VG model, we have three parameters, σ, 

υ, and θ. In the tables below, we have the results of those parameters and their 

error measures for every error function. It is worth mentioning that the order of 

RMSE and AAE error functions are the same as the order of original market 

data, while APE is reported as a percentage error.  
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Black-Scholes model 

Table 2. Error and parameter measures of the Black-Scholes model for 

embedded options 

 Error Function Error Measure Parameter Measure 

Hefars912 

RMSE 417.6886236 0.051375 

APE 0.1714622 0.0151475 

AAE 357.67257329 0.015194 

Heghadir912 

RMSE 502.210961 0.0634 

APE 0.12829155 0.037625 

AAE 431.3775292 0.0375918 

Heksho208 

RMSE 117.52303089 0.006 

APE 0.13117901 0.006 

AAE 114.53567111 0.006 

Hetrol911 

RMSE 430.41682553 0.13494727 

APE 0.1739215 0.13172656 

AAE 379.59991467 0.13169922 

Source: Python 

Table 3. Error and parameter measures of Variance-Gamma model for 

embedded options 

 
Error 

Function 
Error Measure 

Parameter Measure 

σ υ θ 

Hefars912 

RMSE 379.48556568 0.03 -1 0.001 

APE 0.118820114 1.31499639 -1.3616335 1.90103423 

AAE 309.11430378 -1.34127728 -0.36891742 0.89972708 

Heghadir912 

RMSE 463.3343814 0.0154506 -5.03167047 -0.09824263 

APE 0.1207623 -0.11016 -0.71328875 -0.3272998 

AAE 406.05970225 -0.11058 -0.713270952 -0.32732291 

Heksho208 

RMSE 115.1154737 0.02209838 -1.2191 0.1465 

APE 0.12179541 0.02034583 -1.07853724 0.14597878 

AAE 106.34261675 0.09035 -1.08 0.143019 

Hetrol911 

RMSE 429.76484261 0.05524295 0.05159103 -0.6727051 

APE 0.17193363 0.01809469 2.38577114 -0.25025168 

AAE 375.607186 0.10357405 1.02174333 -0.26282209 

Source: Python 
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Comparing Variance-Gamma and Black-Scholes model 

Table 4. Error and parameter measures of Variance-Gamma model for 

embedded options 

 Error Function 
Error Measure for VG 

model 

Error Measure for BSM 

model 

Hefars912 

RMSE 379.48556568 417.6886236 

APE 0.118820114 0.141762275 

AAE 309.11430378 357.6725733 

Heghadir912 

RMSE 463.33438135 502.210961 

APE 0.120762297 0.12829155 

AAE 406.0597022 431.37752924 

Heksho208 

RMSE 115.1154737 117.5230312 

APE 0.1217954093 0.131179 

AAE 106.34261675 114.53567 

Hetrol911 

RMSE 429.7648426 430.4168255 

APE 0.17193363 0.173921471 

AAE 375.6071869 379.5999146 

Source: Python 

 

Figure 5. Comparing the VG model with market prices, "Hefars912." 
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Figure 6. Comparing the VG model with market prices, "Heghadir912." 

Source: Python 

Figure 7. Comparing the VG model with market prices, "Heksho208." 

Source: Python 
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Figure 8. Comparing the VG model with market prices, "Hetrol911." 

Source: Python 

Discussion and Conclusion  

Generally, for all four embedded options, the VG model produced fewer error 

measures for every error function. In conclusion, the VG model would be more 

precise in pricing embedded options, but it is more complicated to solve and 

find the option price. However, because of our powerful computational tools, 

we can substitute the Black-Scholes model for the VG model because of its 

precision. In order to compare our results, a virtually identical article was 

published on embedded options by Jenabi, O., & Dahmarde Ghaleno, N. 

(2019). We should have a consistent criterion to compare the results with that 

article; the APE error function is appropriate because of its percentage results. 

In the article of Jenabi, O., & Dahmarde Ghaleno, N. (2019), the APE error 

function was 59% to 93%, while in this paper, the APE is 11% to 18%. 

Nevertheless, we should consider the actual market price of those options in 

practice. In the research date of that article, the options were traded at an 

agreed price, which impacted the result of the article.  

In the following sections, the results of this research for VG model and 

BSM model were reported and compared: 
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Hefars912 

As shown in Table 10, the error measure of the VG model for "Hefars912" is 

less than the amount of the BSM model in the RMSE error function by 

approximately 37. While the APE error function is %11.9 for VG, it is %14.18 

for the BSM model. The error measure of AAE for VG is less than that of the 

BSM model. As a result, the VG model showed better performance in option 

pricing by producing fewer error measures.  

Heghadir912 

Table 11 provides us with the same result as "Hefars912". The error measures 

of RMSE for the VG and BSM models are 463.33 and 502.21, respectively. 

The spread between the two error measures of the APE function is far narrower 

than that of "Hefars912"; nevertheless, the VG model produced fewer error 

measures. The AAE function for the two models showed 25 differences in 

favor of the VG model.  

Heksho208 

In Table 12, while we can notice that the difference between VG and BSM 

models for the RMSE function is just 2.4, it is 8 for the AAE function. The one 

percent spread between the two models in the APE function still favors the VG 

model.  

Hetrol911 

Finally, it is evident that for every three error functions, the gap between the 

two models is narrower than the other options. However, the VG model is still 

better than BSM for all three error functions. 
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