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Portfolio Optimization with Systemic Risk Approach 

Abstract  

Portfolio optimization has always been the main concern of investors. What 

differentiates different optimization models from each other is the risk 

measure. The main contribution of this paper is to provide a portfolio 

optimization model that considers systemic risk so that it can help investors 

make optimal investment decisions as a general model. For this purpose, two 

models are presented. In the first model, systemic and systematic risk were 

considered simultaneously, and in the second model, only systemic risk was 

considered. In the two mentioned models, delta conditional value at risk 

(∆CoVaR) and the Markowitz model are used respectively to measure�systemic 
risk and a benchmark model. Also, the criteria used to compare the 

performance of the reviewed models include the ratio of reward-to-risk, along 

with the Sortino ratio and the Omega ratio. The problem of optimization and 

examination of the results was carried out on a selected sample, 38 companies 

listed in the Tehran Stock Exchange (TSE) from 2013 to 2023. The results of 

empirical analysis of out-of-sample data (during a period of 1198 days) show 

that based on all three mentioned criteria, the first proposed model shows the 

best performance among the three models. In addition, the performance of the 

second model is ranked second. In short, it can be said that considering 

systemic risk in portfolio optimization leads to better performance than the 

Markowitz model. 

Keywords: Delta Conditional Value at Risk (∆CoVaR), Sharpe Ratio, Modern 
Portfolio Theory (MPT), Post-Modern Portfolio Theory (PMPT), 
Efficient Frontier. 

Introduction                                                                          

Selecting the optimal portfolio is one of the most important concerns that has 

always occupied the minds of investors, especially capital market participants. 

What distinguishes different portfolio optimization models from each other is 

the risk measure. Launching the modern portfolio theory (MPT) is considered a 

big step in the field of investment. In this theory, a logical relationship between 

the distribution of return rate and investment risk was established. The type of 

risk in question is systematic risk and its main measures are standard deviation 

and variance. However, in post-modern portfolio theory (PMPT), the type of 

risk included is systematic risk but with downside risk metrics.  

As opposed to a firm's individual risk of failure, which can be contained 

without harming the entire financial system, systemic risk is the risk of 

collapse of the entire financial system or market. The financial crisis of 2007-
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2009 clearly revealed the importance and necessity of a better understanding of 

systemic risk for the financial industry, policymakers, and market participants. 

Since the financial crisis, numerous attempts have been made to identify and 

measure the systemic risk of financial institutions (see, for example, Adrian 

and Brunnermeier (2011), Brownlees and Engle (2012), Acharya et al. (2017)). 

In this respect, the following question arises: How can a given systemic risk 

measure be used to construct portfolios that perform relatively well when 

systemic risk materializes? 

In this paper, we develop a framework for the optimal portfolio choice 

based on exogenously given systemic risk measures. 

Research shows that the possible effects of systemic risk, even with a small 

probability of occurrence, can significantly reduce the benefits of 

diversification and portfolio formation. Prevention of damages caused by the 

existence of correlation and complexity of communication networks between 

companies requires the identification of systemic risk and its inclusion in the 

selection of assets in the investment portfolio. ''You know something is 

happening here, but you do not know what it is.''. This Bob Dylan's phrase 

summarizes the promise of financial indicators discussed in the post-2008 

financial crisis (Civitarese, 2016). 

Failure to consider systemic risk in decisions can cause losses due to the 

bankruptcy of a capitalized company that has been damaged only because of 

the connection and interdependence in the market and as a result of the failure 

of a company or a group of companies. Moreover, it is possible that the 

vulnerable company, directly or indirectly, is not exposed to the failure factor 

created for other companies. In order to eliminate this effect as much as 

possible, by determining the appropriate measure for systemic risk and 

minimizing mutual effects, an investment portfolio can be formed that 

minimizes the vulnerability and risk of the portfolio. There has yet to be a 

consensus regarding the concept of financial stability and systemic risk. The 

materialization of systemic risk during the recent global financial crisis 

demonstrated that the financial safety net and financial institutions significantly 

underestimated it. Systemic risk is much more than just the composition of 

individual types of risks affecting financial institutions. While credit risk, 

liquidity risk, operational risk, etc., can be directly attributed to a given 

institution, systemic risk can only be attributed indirectly (Smaga, 2014). 

The capital market of Iran, especially the companies listed in the Tehran 

Stock Exchange, is not exempted from these conditions due to its financial 

relations, ownership, and operational intertwining.  
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The present research from the theoretical aspect, through a special study on 

how to consider this aspect of risk, in addition to the general classification of 

the pioneers of the matter (separation of risk into two main systematic and 

unsystematic groups), the problem of portfolio optimization (especially in the 

formation stock portfolio), will contribute to the existing knowledge and 

literature related to choosing the optimal portfolio. However, can the 

consideration of systemic risk in portfolio optimization always lead to better 

performance results than the Markowitz model? 

After the introduction, the literature of the research has been reviewed. 

Then, the methodology of the research and the method of data analysis will be 

discussed. Also, the operational definition of the variables, the scope of the 

research, and the objective function of solving the optimization problem are 

presented in each of the models. Then, the main question and hypothesis of the 

research, which shows the purpose of the research, is stated. In the end, 

research findings, discussion, and conclusions are presented. 

Why ΔCoVaR?  
Systemic risk measurement and evaluation is a difficult and complex process, 

and it is important to monitor and identify places that could lead to systemic 

risk. Analysis showed that from 2009–to January 2018, not only did the 

quantity of research in the systemic risk measurement area increase but new 

methods were also used to measure systemic risk. The most common systemic 

risk measurements are the Delta conditional value-at-risk (ΔCoVaR) and the 
conditional value-at-risk (Dič et al., 2018). In this study, they analyzed 95 
publications to determine the methods used to measure systemic risk. A meta-

analysis of scientific articles performed based on the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) method and using a 

network approach presents the main interconnection of the methods used to 

measure systemic risk. 

Figure 1 shows that the most common systemic risk measurements are the 

Delta conditional value-at-risk (ΔCoVaR) and the conditional value-at-risk 

(CoVaR) methods. Another widely used method to assess systemic risk is the 

Marginal Expected Shortfall (MES). It is worth mentioning that more than a 

fifth of the articles included in our study used the CoVaR method and about 

one-third the ΔCoVaR systemic risk measurement method. The MES method 
has also been used in more than a fifth of all analyzed articles. So, in the 

present article, the ΔCoVaR systemic risk measurement method is used2 
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Figure 1. Frequency of methods used to measure systemic risk in analyzed 

publications 

Literature Review 

Restrictions related to investors' rational behavior and their pure interest just in 

maximization of economic utility were put under question by behavioral 

finance that reflects the investors' trend to obtain emotional comfort prior to 

optimal financial efficiency. The prospect theory (Kahneman, Tversky, 1979) 

presents a new face for the investor. 

The investor is not just rational as the previous financial literature assumes 

he should be, but he is also a human person with emotions and preconceptions. 

The humanized investor is a person with different reactions to losses and gains 

resulting from his investment, depending on the individual assumption of risks 

(Şova et al., 2018). Financial behavior presents the investor as a person who is 
reluctant to lose but not to gain over the minimum expected return. Previously, 

it was considered that an investor was interested in investing in a portfolio with 

a return that did not vary much from the average. The research of the investor 

reactions shows that he is, in fact, interested in obtaining a minimum desired 

return; any result below the minimum desired return is considered a loss, while 

gains higher than the expected level of return do not constitute a concern, (but 

contrary, they are considered as premium for the courage of investing), the 

"good surprise" (Şova et al., 2018). 

The risk in the post-modern portfolio theory is considered as the possibility 
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of return rates being situated beneath the minimum expected return; investors 

are preoccupied mostly with limiting this kind of variation from their 

investment. 

The post-modern portfolio theory has a wider application than the MPT 

and includes the expectation of investors related to a minimum desired return 

rate as a benchmark rather than the average return rate (Şova et al., 2018). A 
summary of the main characteristics of the two investment theories is presented 

in Table 1 (Heybati & Mousavi, 2009, & Markowitz, 1952). 

Table 1. Characteristics of Modern Portfolio Theory vs Post-Modern Portfolio 

Theory 

Description 
Modern Portfolio Theory 

(MPT) 
Post Modern Portfolio Theory 

(PMPT) 

Risk Measure Standard Deviation, Variance 
Downside risk, Semi Variance, 

Semi Standard Deviation 
Assumption of 

Probability 
Distribution 

Normal Distribution non- Normal Distribution 

Skewness Not Calculating Skewness Calculating Skewness 

The Value of Low and 
High Volatilities 

Both of Low and High 

Volatilities 

High Volatilities Valuable and 
Low Volatilities of not- Valuable 

Interpretation of Risk 
Risk as deviation from the 

average return 
Risk as Deviation From the 

Average of the Specific Target 

Performance Measure 𝑆ℎ𝑎𝑟𝑝 𝑟𝑎𝑡𝑖𝑜 =
𝑟 − 𝑟𝑓

𝜎
 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜

=
𝑟 − 𝑑

𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑅𝑖𝑠𝑘
 

r, rate of return, σ, the standard deviation of r, d, target return, 𝑟𝑓, risk-free ate, and Downside 

Risk, the risk of the actual return being below the expected return. 

Various reasons recommend the use of the expected return-variance of 

return rule, both as a hypothesis to explain well-established investment 

behavior and as a maxim to guide one's own action. The rule serves better; we 

will see, as an explanation of, and guide to, "investment" as distinguished from 

"speculative" behavior. The concepts "yield" and "risk" appear frequently in 

financial writings. Usually, if the term "yield" were replaced by "expected 

yield" or "expected return" and "risk" by "variance of return," little change of 

apparent meaning would result. Variance is a well-known measure of 

dispersion about the expected. If instead of variance, the investor was 

concerned with standard error,𝝈 = √𝑽, or with the coefficient of dispersion, 

𝝈/𝑬, his choice would still lie in the set of efficient portfolios (Markowitz, 

1952). 
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Although modern portfolio theory remained a significant benchmark in 

portfolio theory, the post-modern portfolio theory moves the financial theory 

and practice a step forward, considering investor expectations. Both theories 

are used within financial research but also outside this area; researchers and 

business people extend their application to other economic domains (such as 

real estate, energy portfolios, and other investments except stocks) with 

interesting results and ways of applying the methods of quantifying risk 

(Nateghi et al., 2016, & Şova et al., 2018). 

Since the beginning of the present financial crisis, many researchers and 

portfolio managers have revived the question regarding the MPT realism 

relative to market conditions. Although modern portfolio theory was preferred 

and used for decades before the financial crisis in 2008, the theory was blamed 

for failing in those moments. Investors and researchers have started to look for 

alternative theories that measure risk (Şova et al., 2018). Systemic risk studies 
in Iran, like global research, have a short-term background. Especially in the 

field of portfolio optimization with a systemic risk approach, there has been no 

investigation in the country. Therefore, the contribution of the present research 

is important from this point of view. 

Biglova et al. study the problem of portfolio selection in the presence of 

systemic risk. They propose measures of risk and return that determine 

systemic risk and provide a methodology for creating realistic return scenarios. 

This method first includes the analysis of the experimental behavior of several 

countries' stock indices, which suggests a basis for future scenarios. Then, they 

examine the profitability of several strategies based on the predicted return 

trend. In the following, in particular, the selected methods of optimal future 

wealth obtained by optimizing the portfolio through the ratio between risk and 

return on the simulated data are compared with the retrospective performance 

resulting from the application. Selected portfolio strategies are compared. They 

state that Markowitz's portfolio selection approach does not consider systemic 

risk because the proposal is to diversify the portfolio among the assets that 

offer the lowest variance and the highest average and have a greater mutual 

relationship with each other, and therefore The problem can increase the 

systemic risk (Biglova et al., 2015). 

Lin et al. propose a new method to form an optimal portfolio that 

specifically takes systemic events into account. In maximizing the Sharpe ratio, 

investors adjust the conditions according to a systemic event, and this last case 

(systemic event) is actually interpreted as the condition of low market 

performance. They solve the problem of allocating weights in the portfolio 
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analytically and numerically, respectively, under the conditions of no 

borrowing sales restrictions and when borrowing selling restrictions are 

applied. This method is operationalized to obtain portfolio allocation in a 

multivariate dynamic environment using dynamic conditional correlation and 

copula models (Lin et al., 2020). 

Capponi et al. assume that the investor in question seeks to create a balance 

between the final risk and the expected growth of an investment. They measure 

marginal risk through the portfolio's expected losses subject to a systemic 

event: financial market losses exactly equal to, or at least equal to, its 

conditional value at risk, and portfolio losses the investor above the value level 

is exposed to conditional risk. They provide a closed solution for the 

investment problem and divide it into a part similar to Markowitz's mean-

variance portfolio theory and an adjustment part for systemic risk. Thus, they 

show that the confidence levels of the mentioned metrics control the relative 

sensitivity of the investor's target performance to portfolio-market correlation 

and portfolio variance, respectively. Their empirical analysis shows that 

investors get higher risk-adjusted returns during the period of market recession 

compared to known portfolio criteria. Portfolios that perform best in adverse 

market conditions are less diversified and focus on a small number of stocks 

that have a weak correlation with the market (Capponi & Rubtsov, 2021). In 

another work, in their modeling approach, they used two risk criteria, including 

value at risk and conditional value at risk. Their model investor maximizes the 

expected returns of the portfolio under the condition that the systemic risk 

index is at (or at most at) the level of the value at risk and the returns of the 

stock portfolio are lower than their level. Under some assumptions, the optimal 

investment strategy is achieved in a closed form. The proposed method works 

in balancing the importance of portfolio variance and the correlation of stock 

portfolios with the flexible system risk index. This model was applied in the 

Canadian stock market, and it showed relatively good performance during the 

recession (Capponi et al., 2018). 

In mean-variance portfolio optimization, factor models can accelerate 

computation, reduce input requirements, facilitate understanding, and allow 

easy adjustment to changing conditions more effectively than full covariance 

matrix estimation. Varmaz et al. develop a factor model-based portfolio 

optimization approach that takes into account aspects of the environment, 

social responsibility, and corporate governance (ESG). Investments in assets 

related to ESG have recently grown, attracting interest from both academic 

research and investment fund practice. Various literature strands in this area 

address the theoretical and empirical relation among return, risk, and ESG. 
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Their portfolio optimization approach is flexible enough to take these literature 

strands into account and does not require large-scale covariance matrix 

estimation. An extension of their approach even allows investors to 

discriminate empirically among the literature strands. A case study 

demonstrates the application of our portfolio optimization approach (Varmaz et 

al., 2022). 

Ahmadi et al. aims to investigate portfolio optimization under various 

market risk conditions using copula dependence and extreme value approaches. 

According to the modern portfolio theory, diversifying investments in assets 

that are less correlated with one another allows investors to assume less risk. In 

many models, asset returns are assumed to follow a normal distribution. 

Consequently, the linear correlation coefficient explains the dependence 

between financial assets, and the Markowitz mean-variance optimization 

model is used to calculate efficient asset portfolios. In this regard, monthly 

data-driven information on the top 30 companies from 2011 to 2021 was the 

subject of consideration. In addition, extreme value theory was utilized to 

model the asset return distribution. Using Gumbel's copula model, the 

dependence structure of returns has been analyzed. Distribution tails were 

modeled utilizing extreme value theory. If the weights of the investment 

portfolio are allocated according to Gumbel's copula model, a risk of 2.8% 

should be considered to obtain a return of 3.2%, according to the obtained 

results (Ahmadi et al., 2023). 

Portfolio optimization is the process of distributing a specific amount of 

wealth across various available assets, with the aim of achieving the highest 

possible returns while simultaneously mitigating investment risks. While 

numerous studies have investigated portfolio optimization across various 

domains, there needs to be more literature regarding its application, specifically 

within the automotive industry as one of the largest manufacturing sectors in 

the global economy. Since the economic activity of this industry has a coherent 

pattern with that of the global economy, the automotive industry is very 

sensitive to the booms and busts of business cycles. Due to the volatile global 

economic environment and significant inter-industry implications, providing an 

appropriate approach to investing in this sector is essential. Thus, this paper 

aims to address this need by proposing a suitable investment methodology in 

the aforementioned sector. In this study, an extended Conditional Drawdown at 

Risk (CDaR) model with cardinality and threshold constraints for portfolio 

optimization problems is proposed, which is highly beneficial in practical 

portfolio management. The feature of this risk management technique is that it 

admits the formulation of a portfolio optimization model as a linear 
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programming problem. The CDaR risk functions family also enables a risk 

manager to control the worst (1 − 𝛼) × 100% drawdowns. In order to 

demonstrate the effectiveness of the proposed model, a real-world empirical 

case study from the annual financial statements of automotive companies and 

their suppliers in the Tehran Stock Exchange (TSE) database is utilized. The 

empirical results of this study may appeal to investors and risk managers for 

advanced portfolio management (Ghanbari et al., 2023). 

Conditional Portfolio Optimization is a portfolio optimization technique 

that adapts to market regimes via machine learning. Traditional portfolio 

optimization methods take summary statistics of historical constituent returns 

as input and produce a portfolio that was optimal in the past but may not be 

optimal going forward. Machine learning can condition the optimization of a 

large number of market features and propose a portfolio that is optimal under 

the current market regime. Applications on portfolios in vastly different 

markets suggest that Conditional Portfolio Optimization (CPO) can outperform 

traditional optimization methods under varying market regimes (Chan et al., 

2023). 

Cajas presents two approaches that allow us to diversify portfolios based 

on the graphical representation of the relationships among assets. The 

information obtained from graphs like the minimum spanning tree (MST) or 

the triangulated maximally filtered graph (TMPG) to diversify portfolio based 

on the influence of assets in the graph (centrality) and the asset's neighborhood 

are used. These formulations are simple and versatile because they consist of 

additional constraints that we can add to traditional convex portfolio 

optimization problems. They run some examples that show how classic convex 

models and graph clustering-based asset allocation models do not incorporate 

information about the centrality and connections among assets in the 

optimization process, while the addition of constraints on a centrality measure 

or in the asset's neighborhood allows us to diversify our portfolio selecting 

assets in the periphery of the graph or assets that are not directly connected in 

the graph respectively (Cajas, 2023). 

Another work by Cajas presents the portfolio optimization model of 

Brownian distance variance or distance variance. The Brownian distance 

covariance or distance covariance is a function that quantifies how similar the 

two variables are. It has the advantage that it considers linear and nonlinear 

relationships. The distance variance is the special case of distance covariance 

when both variables are the same. First, they show several ways to calculate 

the sample distance variance. Then, they pose a quadratic portfolio model that 

allows us to optimize the distance variance. This formulation allows us to use 
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distance variance in several portfolio optimization problems, like maximizing 

the risk-adjusted return ratio, risk constraints, or risk parity. Finally, they run 

some examples that show how different portfolios optimize variance and 

distance variance (Cajas, 2023). 

Rey proves that when regular intra-period portfolio rebalancing strategies 

are applied, the one-period portfolio optimization problem already has a unique 

solution without a need for specification of utility or risk trade-offs. This 

portfolio is a linear combination of the minimum variance portfolio and the 

mean-variance optimal portfolio (Rey, 2023). 

Portfolio optimization has a mixed reputation among investment managers, 

with some being so skeptical that they believe it is almost useless due to the 

inherent parameter uncertainty. It is undeniable that portfolio optimization 

problems are sensitive to parameter estimates, especially the expected returns, 

which are arguably also the hardest parameters to estimate. However, most 

practitioners still attempt to build mean-risk optimal portfolios, albeit in 

implicit ways. Resampled optimization is a popular mathematical heuristic that 

tackles the parameter uncertainty issue. It computes optimal portfolios using 

sampled parameter estimates and calculates a simple average of the portfolio 

exposures across samples. The unsatisfactory aspect of the resampled approach 

is that there needs to be a mathematical justification for using the average of 

portfolio exposures; it just works well in practice. Kristensen et al. provide 

perspectives for understanding the resampling approach by analyzing the 

portfolio exposure estimation process from a bias-variance trade-off. They 

show that the traditional resampled optimization corresponds to a naive version 

of stacked generalization. Finally, they introduce a stacked generalization 

approach that can be used to handle both parameter uncertainty and combine 

optimization methods in full generality. They coin the new method of Exposure 

Stacking (Kristensen et al., 2024). 

Lorimer et al. use a numerical methods algorithm based on gradient 

descent to optimize investment portfolios of global indices using raw and 

forecasted risk measures at differing frequencies. The results permit a 

comparison of how the characteristics of risk measures other than the variance 

and standard deviation impact portfolio performance. Asymmetric risk 

measures result in superior portfolio returns, while risk measures incorporating 

unsquared deviations outperform those incorporating squared deviations. Risk 

measures forecasted using the exponentially weighted moving average 

(EWMA) methodology do not yield significant increases in portfolio returns. 

Semi-absolute deviation, mean absolute deviation, and downside semi-
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deviation perform favorably in producing higher returns (Lorimer et al., 2024). 

Research Methodology 

Portfolio selection is one of the most common issues faced by different 

investors with varying levels of capital, and yet one of the most complex in the 

financial world (Qu & Suganthan, 2011). The issue of portfolio selection is a 

model of balancing risk and return. This involves a set of securities that attempt 

to determine the proportion of investment in each in order to minimize 

investment risk and maximize return on investment (Karimi et al., 2007). 

However, high returns are usually high risk (Deng et al., 2012). Investors 

typically hold several securities in an investment portfolio (Chang et al., 2000). 

In 1952, Harry Markowitz used mathematical programming and variance to 

evaluate portfolio, mean and return, and portfolio selection by optimizing two 

conflicting criteria of risk and return (Markowitz, 1952). 

The first model, optimization with simultaneous consideration of 

systematic and systemic risk 

In this method, the optimization problem is solved by using the Markowitz 

optimization model and applying a new constraint in order to control the 

systemic risk. As a result, in addition to the systematic risk that is considered 

based on the standard deviation of the portfolio, by applying the above limit, 

the weight of each company in the portfolio is calculated according to the 

systematic risk. It is expected that the stock portfolio considered in this model 

will be less diverse than the Markowitz model in terms of diversity in the 

selection of companies. In this research, the measure of delta conditional value 

at risk is considered a measure of systemic risk. Therefore, the limit of 

systemic risk in the Markowitz model is based on the mentioned criterion. The 

application of this restriction in the Markowitz optimization model is as 

follows: 
     

min
𝑤

𝜎𝑝
2 =  𝑤𝑇Σ 𝑤                                                                                                        (1) 

𝑠. 𝑡.  𝑤𝑇𝜇 ≥ �̅�𝑝 

𝑤𝑇∆𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠 ≤ 𝑞|∆𝐶𝑜𝑉𝑎𝑅| 

𝑤𝑇1 = 1 

𝑤 ≥ 0 

In which ∆𝑪𝒐𝑽𝒂𝑹𝒔𝒚𝒔, delta conditional value at risk of the system, and 𝑞 the 
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first-order quartile of the positive values of delta conditional value at risk. In 

fact, in the system limit, it is expected that according to the obtained optimal 

weights, the amount of delta conditional value at risk is less than 0.25 of the 

values of delta conditional value at risk obtained for each company. This 

method performed better than considering the mean or other quartiles for delta 

conditional value at risk. 

The second model, optimization only in terms of systemic risk 

In this model, it is assumed that it is desirable for the investor to form a 

portfolio that performs well in the conditions of the overall market recession. 

Systemic risk is included directly in the portfolio optimization model to protect 

a certain portfolio against market stagnation. Simply put, it estimates the 

expected loss of a portfolio in a low-return environment when the market is in 

distress (the market is exactly at its value-at-risk level). Therefore, the problem 

of portfolio selection can be stated as follows (Capponi & Rubtsov, 2021): 

min
𝑤

𝐶𝑜𝐸𝑆 = ⋯                                                                                                            (2)  

𝑠. 𝑡.  𝑤𝑇𝜇 = �̅�𝑝 

𝑤𝑇1 = 1 

𝑤 ≥ 0 

In fact, we find a portfolio that reaches the expected return �̅�𝒑in normal 

times and also performs well when the market is at the level of value at risk 

and the portfolio loss is higher than the conditional value at risk. 

Considering that the t distribution (t) with v degrees of freedom (return 

length) was used for the returns (according to default tests and skewness and 

skewness values), the optimization problem is presented as follows: 

min
𝑤

𝐶𝑜𝐸𝑆 =  −𝑤𝑇�̂� + 𝜆√𝑤𝑇Σ̂𝑤  

𝑠. 𝑡.  𝑤𝑇𝜇 = �̅�𝑝                                                                                                  (3) 

𝑤𝑇1 = 1 

𝑤 ≥ 0 

In which  μ ̂=μ+√((ν-2)/ν) T_ν^(-1) (1-α^')σ/σ_m  , λ=(F(α,α^',ν))/(1-α^' ) 
, Σ ̂=Σ-(σσ^T)/(σ_m^2 ). 
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𝑭(𝜶, 𝜶′, 𝝂) = √
(𝝂 − 𝟐)(𝝂 + (𝑻𝝂

−𝟏(𝟏 − 𝜶′))𝟐)

𝝂(𝝂 + 𝟏)
𝒕𝝂+𝟏,𝟏𝑻𝝂

−𝟏(𝟏

− 𝜶)(
(𝝂 + 𝟏 + (𝑻𝝂

−𝟏(𝟏 − 𝜶))𝟐)

𝝂
) 

α' Confidence level of the system, α confidence level of the portfolio,𝝈𝟐 

variance of returns, and 𝝈𝒎covariance of returns of companies with the market. 

The confidence level of the system and portfolio should be considered higher 

than 0.5 (Capponi & Rubtsov, 2021). 

The third model, Markowitz 

Markowitz introduced and developed the concept of diversification in the stock 

portfolio. He suggested that investors take risk and return together and select 

the amount of capital allocation between different investment opportunities 

based on the interaction between the two (Fabozzi et al., 1997). He generally 

showed how diversification in the capital portfolio reduces the risk for the 

investor. Investors can obtain an efficient stock portfolio for a certain return by 

minimizing portfolio risk. To obtain and select the optimal portfolio in the 

Markowitz method, which is the minimum variance for a certain level of 

return, we have the following planning model: 

𝐦𝐢𝐧
𝒘

𝝈𝒑
𝟐 =  𝒘𝑻𝚺 𝒘  

𝒔. 𝒕.  𝒘𝑻𝝁
= �̅�𝒑                                                                                                                                                 (𝟒) 

𝒘𝑻𝟏 = 𝟏 

𝒘 ≥ 𝟎 

Where 𝚺 the covariance matrix, 𝝁 the return of each company, �̅�𝒑is the 

unconditional expected return of the stock portfolio. The weights obtained by 

this model for determining the stock portfolio are without considering the 

systemic risk, so the variety in-stock selection is greater in this model. 

In the following, the variables used in the investigation are briefly 

introduced: 
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1. The return of each company is calculated based on the natural logarithm of 

the closing price as follows: 

In such a way that P_t represents the (adjusted) daily price of each company. 

r_t=Ln(P_t/P_(t-1) )                                                                                        (5) 

2. Company weight: the ratio of the market value of each company to the total 

market value of the sample companies (system market value) 

3. System return: This is obtained based on the weighted average of the returns 

of the companies in the system. 

4. Delta Conditional Value at Risk (systemic risk measure) 

During the financial crisis of 2007-2009, worldwide taxpayers had to bail 

out many financial institutions. Governments are now trying to understand why 

the regulation failed, why capital requirements were not enough, and how a 

guaranty fund should be built to face the next crisis. An important element is 

missing in the above assessment of risk: it is the dependency between the 

individual institution and the economy or the financial system. In this regard, 

Adrian and Brunnermeier (2010) defined the CoVaR measure. The idea is to 

compare the Value-at-Risk (VaR) of the system under “normal conditions” and 
the VaR of the system conditional on the fact that a given institution is under 

stress (Bernard et al., 2012). 

In order to calculate the mentioned measure, the value at risk, the 

conditional variance, and the variable beta over time have also been calculated, 

which will be briefly described first. To calculate the value at risk, you can use 

the following equation or the GARCH model: 

〖VaR¬¬〗_α=μ+ σ 〖*F〗^(-1) (α)                                                              (6) 

Where 𝝁 and 𝝈, respectively, mean and conditional variance are obtained 

from the GARCH model and 𝑭−𝟏(𝜶) inverse function of return distribution at 

the 𝜶 𝐩𝐨𝐢𝐧𝐭. 

The variable beta over time for my company 𝒊 is obtained as follows: 

𝜷𝒊𝒕 =
𝝈𝒊𝒕𝝆𝒊𝒕

𝝈𝒎𝒕
                                                                                                                    (7) 

Which is obtained according to the conditional variance-covariance matrix 

obtained from the DCC model. 

The measure of delta conditional value at risk (ΔCoVaR) was proposed by 
Adrien and Brunnermeier in 2011 and is based on value-at-risk. This measure 



47 

 

Portfolio Optimization with Systemic Risk Approach 

represents the value exposed to the risk of the system, with the condition that 

the company in question is exposed to the risk of crisis. In the context of 

measuring�systemic risk, ΔCoVaR�means the difference between the maximum 
expected loss of the system in case of criticality of the company 𝒊 and the 

maximum expected loss of the system in case of normal conditions of the 

company 𝒊. The contribution of the systemic risk of a specific company to the 

risk of a specific system is determined using a measure that is equal to: 

∆𝐂𝐨𝐕𝐚𝐑𝐢𝐭 =
𝛔𝐦𝐭𝛒𝐢𝐭

𝛔𝐢𝐭
[𝐕𝐚𝐑𝐢𝐭(𝛂) − 𝐕𝐚𝐑𝐢𝐭(𝟎. 𝟓)]                                                          (8) 

Which 𝑽𝒂𝑹𝒊𝒕(𝟎. 𝟓) will be equal to zero for symmetric distributions (Benoit et 

al., 2012). 

5. GARCH models 

The fluctuation change of financial time series over time is known as a 

phenomenon. In the early 1960s, Mandelbrot observed that there are certain 

patterns in the changes in the volatility of financial time series in such a way 

that often large changes follow large changes, and small changes follow small 

changes. Following this study, much research was done on this feature of 

financial time series, and the results indicated that the fluctuations occur more 

often in some periods and less frequently in other periods. Auto regression 

models conditional on variance heterogeneity (ARCH) and generalized auto 

regression conditional on variance heterogeneity (GARCH) were designed to 

deal with this set of data. The arch model was proposed and presented by Engel 

in 1982. Bullerself generalized the arch model in 1986 under the name 

GARCH. This model is also the weighted average of the squared residuals of 

the previous periods, but it has weights that continuously decrease but never 

become zero. In addition, the statement of this model is low-cost and the 

estimation of its parameters is relatively simple. According to the work of 

Brownless and Engel (2012) regarding the behavior of returns, a multivariate 

GARCH process is considered as follows (Brownlees & Engle, 2012): 

𝑟𝑡 = 𝐻𝑡

1
2⁄

𝜐𝑡                                                                                                       (9) 

Where 𝒓𝒕 = (𝒓𝒎𝒕. 𝒓𝒊𝒕) represents the return of the market and my 

company 𝒊, respectively. The matrix 𝑯𝒕 is the conditional variance-covariance 

matrix that can be displayed as follows: 

𝐻𝑡 = (
𝜎𝑚𝑡

2 𝜎𝑚𝑡𝜎𝑖𝑡𝜌𝑖𝑡

𝜎𝑚𝑡𝜎𝑖𝑡𝜌𝑖𝑡 𝜎𝑖𝑡
2 )                                                                        (10) 
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Moreover, in that 𝝈𝒊𝒕 and 𝝈𝒎𝒕 represent conditional standard deviations 

and 𝝆𝒊𝒕conditional correlations. There are no special assumptions about the 

bivariate distribution of standardized innovations (𝝊𝒕). The only assumption 

here is related to 𝝆𝒊𝒕 and it is assumed that this expression completely covers 

the dependence between the company's return and the market. 

In financial crises, the assumption of conditional constant correlation 

causes risk to be underestimated, and under normal conditions, risk 

overestimation leads to losses. Various theoretical and practical research have 

been conducted in the field of conditional correlation dynamics, and various 

models, such as the DCC model, have been proposed. In 2002, Engel did not 

take into account the assumption of constant conditional correlations and 

presented the model of dynamic conditional correlations. In this model, the 

correlation matrix is allowed to change over time. This model is widely and 

easily used for supplementary calculations. 

Results 

The sample population in the present study is the companies listed in the 

Tehran Stock Exchange. The information related to the price, the market value 

of the companies, and the total index have been extracted and collected from 

the Bourse View website. The sample used for the empirical analysis of the 

portfolio optimization model was determined based on the following 

conditions from among the companies listed in the Tehran Stock Exchange by 

screening sampling or systematic exclusion: 

1. Considering that the time period investigated in the research is the ten-year 

period ending at the end of March 2023, in order to access the information of 

the selected companies in the entire mentioned period, the first condition 

applied was that the selected company during the ten-year period year (from 

the beginning of 2013 to the end of 2023) to be listed in the market. By 

applying this condition, 272 companies were selected among the companies 

listed in the market. 

2. In order to check the price information of the selected companies more 

accurately and to minimize the missing data, the second condition for the 

selection of the sample is the minimum number of trading days of the shares. 

At this stage, companies are selected whose minimum number of trading days 

is more than 80% of the total trading days in each year of the period under 

review. By applying this condition among the 272 filtered companies resulting 

from the application of the first condition, 42 companies were selected as the 
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research sample. 

3. Finally, considering that the data of 4 companies were identified as outliers, 

the selected sample was determined to include 38 companies. 

In order to gain more knowledge about the studied variables, a summary of 

the descriptive statistics of the research variables has been calculated. 

Descriptive statistics include the minimum, maximum, mean, standard 

deviation, etc. of each variable. All the variables used in this research are 

evaluated on a quantitative scale and observations in the form of time series, 

daily logarithmic return percentage for 38 companies, and the total index for 

the ten-year period from the beginning of 2013 to the end of March 2023. For 

the purpose of analysis, the data are divided into two categories: in-sample 

(first 5 years) and out-sample (second 5 years). Descriptive statistics related to 

the daily returns of the sample companies are given in Table 2. Shapiro-Wilk 

tests, generalized Dickey-Fuller unit root, and Arch effect were used to check 

the normality, significance, and heterogeneity of variance among the data 

before entering the modeling. According to the results of Table 2, according to 

the value of the Shapiro-Wilk test statistic for companies and the significant 

value, which are all less than 0.05, the assumption of normality of the data 

related to each company is rejected. This problem has been rejected according 

to the values of skewness and kurtosis listed in Table 2 of descriptive statistics. 

Therefore, in this research, the t-student distribution was used for modeling. In 

order to check the significance assumption of the return of the companies, the 

generalized Dickey-Fuller unit root test has been used, which, according to the 

statistic value for each company and the significance value less than or equal to 

0.05, the significance assumption is accepted among the data of the companies. 

In the end, according to the ARCH effects test, the assumption of 

heterogeneity of variance is accepted according to its statistical value for each 

company and a significance value less than or equal to 0.05 among the 

companies' data (except for a few companies). Therefore, in this research, 

GARCH models are used to analyze the data. 
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Table 2. Descriptive statistics related to the percentage of daily return of sample 

companies 

symbol Minimum Maximum Mean 
Standard 

dev 
Skewness Kurtosis 

Betrance -0.0982 0.1778 0.00161 0.0267 0.47306 1.59807 

Sefars -0.0854 0.1121 0.00178 0.02781 0.21568 -0.27846 

Fesorb -0.1426 0.1753 0.00154 0.03017 0.07115 0.22992 

Dejaber -0.1787 0.2623 0.00188 0.02627 0.42914 5.1204 

Dekosar -0.4801 0.1501 0.00169 0.03061 -1.5169 25.23943 

Vaghadir -0.0819 0.1797 0.00174 0.02252 0.5047 2.73267 

Vasakht -0.205 0.2237 0.00148 0.03182 0.10526 2.53368 

Valbor -0.1079 0.089 0.00165 0.02538 0.15632 0.43717 

Vasanat -0.0748 0.2553 0.00172 0.0247 0.72582 5.02831 

Sepaha -0.2622 0.0903 0.00149 0.02805 -0.19598 2.86019 

Seshomal -0.2728 0.372 0.00166 0.02922 0.66707 13.54845 

Khebahman -0.0957 0.1922 0.00192 0.02775 0.45264 1.44536 

Vaniki -2.718 2.7263 0.00189 0.08234 0.08346 989.1095 

Sekerma -0.3612 0.4193 0.00196 0.02858 0.78426 30.22335 

Derazak -0.127 0.2819 0.0017 0.02672 0.61249 5.67152 

Keroy -0.1038 0.1628 0.00159 0.02845 0.24129 0.41653 

Segharb -0.1369 0.2754 0.00147 0.02894 0.4143 3.57741 

Khemohareke -0.6448 0.7171 0.00178 0.04031 2.65003 95.92611 

Vatoosa -0.1292 0.1865 0.00169 0.02717 0.2831 1.03329 

Vasepah -0.4023 0.4531 0.00182 0.0253 0.79621 68.3726 

Fasmin -0.1152 0.1401 0.00183 0.02687 0.17272 0.25069 

Vatooshe -0.1026 0.2579 0.00185 0.02645 0.4903 3.86946 

Pardis -0.1328 0.1251 0.00179 0.02412 0.22494 0.97085 

Setran -0.1174 0.2108 0.00158 0.02836 0.56596 2.2206 

Desobha -0.1953 0.2616 0.00206 0.02624 0.83121 8.7912 

Ranfor -0.1222 0.1666 0.00138 0.02177 0.36889 2.82674 

Vanaft -0.0844 0.1985 0.00156 0.0276 0.37439 0.80336 

Vabooali -0.1693 0.1357 0.00173 0.02643 0.12658 0.98824 

Kheshargh -0.216 0.3197 0.00179 0.0318 0.48387 5.08057 

Semaskan -0.2272 0.1399 0.00109 0.02743 0.04879 2.47691 

Vasna -0.0965 0.1047 0.00135 0.02743 0.18926 0.07817 

Vabahman -0.1587 0.2825 0.00156 0.02751 0.87136 7.35711 

Valsapa -0.0942 0.1238 0.00118 0.02698 0.1792 0.03268 

Seshahed -0.1756 0.1052 0.00137 0.02701 0.0061 1.09068 

Shiraz -0.1641 0.1689 0.00154 0.02517 0.39052 2.67918 

Khegostar -0.1391 0.7339 0.00192 0.03503 3.86802 78.29883 

Fameli -0.115 0.1722 0.00177 0.02377 0.66685 3.21903 

Parsian -0.1518 0.1426 0.00135 0.02616 0.21738 0.94519 

TSE -0.0567 0.0484 0.00164 0.01178 0.23183 2.53009 
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Table 3. Results of preliminary tests (before modelling to check basic 

assumptions) 

symbol 
ARCH effect test 

Dickey-Fuller 

generalized test 
Shapiro-Wilk test 

statistic 
Significance 

value 
statistic 

Significance 

value 
statistic 

Significance 

value 
Betrance <0.01 137.35184 <0.01 -11.92084 <0.01 0.97484 

Sefars <0.01 214.00839 <0.01 -11.50401 <0.01 0.99075 
Fesorb <0.01 85.96330 <0.01 -11.76702 <0.01 0.98619 
Dejaber 0.0857 19.11852 <0.01 -11.47378 <0.01 0.96265 
Dekosar 0.9961 2.91912 <0.01 -12.11793 <0.01 0.93030 
Vaghadir <0.01 258.94403 <0.01 -11.74467 <0.01 0.96592 
Vasakht <0.01 56.97033 <0.01 -11.60954 <0.01 0.97518 
Valbor <0.01 400.44054 <0.01 -11.81414 <0.01 0.98467 
Vasanat <0.01 63.71069 <0.01 -11.52095 <0.01 0.96684 
Sepaha 0.0124 25.54288 <0.01 -12.04019 <0.01 0.97675 

Seshomal 0.5355 10.92292 <0.01 -12.10103 <0.01 0.93860 
Khebahman <0.01 215.02991 <0.01 -11.66491 <0.01 0.97803 

Vaniki <0.01 1105.2788 <0.01 -12.81224 <0.01 0.15932 
Sekerma 0.9999 1.36987 <0.01 -12.20804 <0.01 0.89233 
Derazak 0.0362 22.12222 <0.01 -12.94171 <0.01 0.95565 
Keroy <0.01 99.03339 <0.01 -12.31378 <0.01 0.99009 

Segharb 0.2885 14.19372 <0.01 -12.13327 <0.01 0.97726 
Khemohareke <0.01 712.20690 <0.01 -11.51803 <0.01 0.73974 

Vatoosa <0.01 109.92097 <0.01 -11.40167 <0.01 0.98680 
Vasepah <0.01 847.64347 <0.01 -12.01575 <0.01 0.82944 
Fasmin <0.01 101.78830 <0.01 -12.04810 <0.01 0.98994 

Vatooshe <0.01 36.16156 <0.01 -12.31772 <0.01 0.97674 
Pardis <0.01 235.00452 <0.01 -11.84153 <0.01 0.98124 
Setran <0.01 95.95429 <0.01 -10.95027 <0.01 0.97122 

Desobha <0.01 40.93968 <0.01 -12.04932 <0.01 0.93862 
Ranfor <0.01 124.81640 <0.01 -12.94123 <0.01 0.95920 
Vanaft <0.01 123.18565 <0.01 -11.26861 <0.01 0.98443 

Vabooali <0.01 138.24726 <0.01 -12.54628 <0.01 0.98521 
Kheshargh 0.9939 3.20445 <0.01 -11.12075 <0.01 0.96516 
Semaskan <0.01 114.26155 <0.01 -12.29278 <0.01 0.97864 

Vasna <0.01 200.39066 <0.01 -11.68603 <0.01 0.99184 
Vabahman <0.01 285.91588 <0.01 -12.11555 <0.01 0.94762 

Valsapa <0.01 230.98392 <0.01 -12.11677 <0.01 0.99196 
Seshahed <0.01 181.52264 <0.01 -10.14839 <0.01 0.98525 

Shiraz <0.01 236.09730 <0.01 -12.24367 <0.01 0.96963 
Khegostar 1 0.21650 <0.01 -11.15839 <0.01 0.85847 

Fameli <0.01 97.71918 <0.01 -11.08183 <0.01 0.95769 
Parsian <0.01 130.79289 <0.01 -11.80304 <0.01 0.98377 

TSE <0.01 606.06700 <0.01 -9.10473 <0.01 0.93289 
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Next, the optimal portfolio weights (with the highest Sharpe) of each of the 

examined methods for 38 companies are presented in Table 3. 

Table 4. Optimal weights according to the three methods, along with the systemic 

risk criterion values 

symbol ΔCoVaR The first model 
The second 

model 
The third model 

Betrance -0.00137 0.075 0 0.062 

Sefars -0.00135 0.008 0.013 0.006 

Fesorb -0.00221 0.008 0.017 0.004 

Dejaber -0.00192 0.05 0.003 0.034 

Dekosar -0.00333 0.001 0.001 0.011 

Vaghadir -0.01265 0 0.046 0.057 

Vasakht -0.00232 0 0 0 

Valbor -0.0029 0 0.009 0.003 

Vasanat -0.00231 0.011 0.01 0.011 

Sepaha -0.00283 0 0.032 0 

Seshomal -0.00086 0.047 0.007 0.018 

Khebahman -0.0021 0.008 0 0 

Vaniki -0.00181 0.062 0 0.055 

Sekerma -0.00318 0.018 0.017 0.021 

Derazak -0.00247 0.066 0.062 0.059 

Keroy -0.00307 0 0.037 0 

Segharb -0.00411 0 0.016 0 

Khemohareke -0.00208 0 0.018 0 

Vatoosa -0.0003 0.06 0.023 0.031 

Vasepah -0.0034 0.011 0.049 0.046 

Fasmin -0.00312 0.011 0.056 0.019 

Vatooshe -0.00438 0.001 0.046 0.014 

Pardis -0.00259 0.04 0.068 0.041 

Setran -0.00045 0.043 0 0.024 

Desobha -0.002 0.048 0.05 0.033 

Ranfor -0.00382 0.084 0.11 0.122 

Vanaft -0.00192 0.001 0.019 0 

Vabooali -0.00122 0.05 0.044 0.03 

Kheshargh -0.00252 0.004 0.004 0.003 

Semaskan -0.00362 0.024 0.016 0.037 

Vasna -0.00449 0 0 0 

Vabahman -0.00052 0.085 0 0.054 

Valsapa -0.00535 0 0.017 0.006 

Seshahed -0.00111 0.045 0.071 0.032 

Shiraz -0.00177 0.052 0.047 0.049 

Khegostar -0.00086 0.052 0.013 0.036 

Fameli -0.01445 0 0.033 0.04 

Parsian -0.003 0.036 0.045 0.044 

Sum of Weights - 1.00 1.00 1.00 
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In the following, three portfolio optimization models, including the first 

model (with simultaneous consideration of systematic and systemic risk), the 

second model (only with consideration of systemic risk), and the third model 

(Markowitz, only with consideration of systematic risk), are briefly presented. 

It has been considered. Then, the optimization problem is solved in all three 

ways. 

According to Table 4, the weights obtained in the third model 

(Markowitz), not considering systemic risk, do not show an effective 

relationship with the value of the systemic risk measure (delta conditional 

value at risk, ∆CoVaR). This is despite the fact that in the first (Markowitz 

with systemic risk limit) and second (in terms of systemic risk) models, the 

obtained weights were based on the values of the systemic risk measure,  as 

can be seen in the mentioned table more weight is assigned to companies with 

lower systemic risk. The results of the selected optimal portfolio with an 

expected return of 0.001, based on these three models, are presented in the 

table below. 

Table 5. The results of the selected optimal portfolio according to the optimal 

weights 

Optimization methods Sharpe Ratio 

The first model (Markowitz with systemic risk limit) 0.150 

The second model (only in terms of systemic risk) 0.178 

The third model (Markowitz) 0.162 

Based on the Sharpe ratio calculated for the optimal portfolio, the second 

model that only includes systemic risk shows the highest performance. 

Also, based on the Sharpe ratio, the efficient frontier of each model based 

on the results of the second 5-year period (a 5-year out-of-sample period from 

2018 to 2023 for 1198 working days), calculated as a rolling window has been 

extracted and presented in Figures 1 to 3. 
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Figure 1. The efficient frontier of the first model (Markowitz with systemic risk 

limit) 

 

Figure 2. The efficient frontier of the second model (only in terms of systemic 

risk) 
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Figure 3. The efficiency frontier of the third model (Markowitz) 

As stated, for the purpose of final experimental evaluation, a 5-year out-of-

sample period from 2018 to 2023 for 1198 working days has been considered. 

The result of optimized portfolio return for the period of 1198 days is presented 

in Table 6. 

Table 6. The results of the out-of-sample evaluation for 1198 days 

description the first model the second model The third model 

Total Return 1355% 1319% 1021% 

During the mentioned period and based on the risk measure of each model, 

the return to risk ratio is also presented in Table 7. In this section, the risk was 

calculated based on the risk criteria used in each model.  

In addition, under the conditions of non-normal distribution of stock 

returns, especially in emerging markets such as the Tehran Stock Exchange, 

portfolio performance evaluation indices based on post-modern portfolio 

theory, including the Sortino ratio and the Omega ratio, have been used. 

Performance evaluation ratios of post-modern portfolio theory can provide a 

better insight into the performance of the investigated models, considering how 

to calculate and consider adverse risk on the one hand and emphasizing all 

elements of return distribution on the other hand. 

Based on all three criteria, the first model, which considers systematic and 

systemic risk at the same time, shows a better performance compared to the 

other two models. 
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Table 7. The return to risk ratio of models in the out-of-sample review 

description the first model the second model The third model 

Return to risk ratio 0.044947 0.044674 0.0175 

Sortino Ratio 0.13501 0.13101 0.10983 

Omega Ratio (Ω) 1.2698 1.2556 1.2378 

The Kruskal-Wallis test was performed in order to check the significance 

of the difference between the average return of the three models. The results of 

the test are presented in Table 8. 

Table 8. Kruskal-Wallis test on the returns of three models 

The significant value degree of freedom statistics 

0.915 2 0.17759 

According to Table 8, the significance value is equal to 0.915, which is 

higher than the value of 0.05. As a result, the null hypothesis of the test that 

there is no significant difference in the return values obtained from the three 

models used in the research is confirmed. The return trend of the three models 

is presented in Figure 4. 

 

Figure 4. Performance comparison of three models (during the period of 1198 

days out of sample in %) 
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Conclusion  

As the father of portfolio management, Markowitz summarized the efforts of 

financial pioneers in balancing investment risk and returns and presented it as a 

modern portfolio theory (MPT). With this view that risk is an undesirable 

factor and should be reduced, he formulated the optimal portfolio model from 

the point of view of a rational human being. Markowitz showed that the 

standard deviation of the rate of return is a suitable measure for the risk of the 

portfolio of securities under a set of logical assumptions and explained a 

method for calculating the risk of the portfolio of securities. The distinguishing 

feature of other presented models is the risk measure used in the optimization 

problem. As the most important theory after Markowitz, it was the proposal of 

Post-modern portfolio theory (PMPT) that replaced the downside risk measure. 

After that, the value at risk of the portfolio is a basis for solving the problem. 

The main contribution of this research is to provide a model to consider 

systemic risk in portfolio optimization. For this purpose, two models were 

examined. The first model presented, which is actually the main contribution of 

this research in helping the development of financial literature and investment 

management, is based on the simultaneous consideration of systematic and 

systemic risk in solving the portfolio optimization problem. In this model, 

systemic risk was added as a new limit to the model proposed by Markowitz in 

order to include systemic risk in solving the problem. In the second model, the 

optimization problem was solved only in terms of systemic risk and by solving 

the objective function of minimizing the portfolio systemic risk measure. 

Also, the criteria used to compare and evaluate the performance of each of 

the reviewed models include the ratio of reward to risk, along with two 

portfolio performance evaluation criteria based on post-modern portfolio 

theory. The results of the empirical analysis of the out-of-sample data show 

that based on all three mentioned criteria, the proposed model shows better 

performance than the two other models. In this way, the presented models will 

increase the practical aspect of the optimization problem.  

For future works, the following suggestions are presented: 

• Examining portfolio optimization models with other systemic risk measures 

• Providing appropriate criteria to evaluate portfolio performance according 

to different risk criteria 

• Providing an optimization model with two objective functions for both 

types of systematic and systemic risk. 
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As mentioned in the final suggestions of this section, in order to 

simultaneously consider systematic and systemic risk in solving the 

optimization problem, a two-function model can be used for each of the 

mentioned types of risk. Although this model may provide more accurate 

results, it will bring more complexity. Meanwhile, from a practical point of 

view, the presented model is only enough to add a new limit to the Markowitz 

model to curb the systemic risk in the selection of the portfolio composition 

and solve the optimization problem using the same original Markowitz method. 

Therefore, this model helps asset managers to consider systemic risk despite 

systematic risk simply. 
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