
 

 

 http://dx.doi.org/10.22133/ijwr.2024.459595.1224 
.O. Ghadami, A. Rezvanian, " A Scalable Method for Real-Time Facial Emotion Recognition using an Artificial Neural Network and Polynomial 

Equation", International Journal of Web Research, vol.7, no.4, pp.39-49, 2024, doi: http://dx.doi.org/ 10.22133/ijwr.2024.459595.1224. 

*Coressponding Author 
Article History: Received: 26 May 2024; Revised: 12 September 2024; Accepted: 16 September 2024. 

Copyright © 2024 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons 

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted, 

provided the original work is properly cited. 

A Scalable Method for Real-Time Facial 

Emotion Recognition using an Artificial 

Neural Network and Polynomial Equation 

Omid Ghadami, Alireza Rezvanian* 

Department of Computer Engineering, University of Science and Culture, Tehran, Iran; 

omidghadami@stu.usc.ac.ir, rezvanian@usc.ac.ir 
 

A B S T R A C T  

Facial emotion recognition has recently attracted considerable interest due to its wide range of applications. It 

plays a crucial role in supporting individuals with autism spectrum disorders and improving interactions 

between humans and computers. The ability to execute these applications in real-time is essential. The 

architecture of the model and the computational resources available are the key determinants of inference 

time. Consequently, the development of a real-time solution requires a concentrated effort on these elements. 

In this paper, we present a scalable approach that utilizes EfficientNetV2, chosen for its operational efficiency. 

Our methodology involves resolution scaling based on a polynomial equation, which ensures real-time 

performance across various computational resources and model configurations. This scalable technique 

employs a polynomial equation to identify the optimal resolution for designated inference times, specifically 

adapted to our hardware and model specifications. By implementing the polynomial equation for resolution 

scaling, we created two variants of EfficientNetV2. Our findings from the KDEF dataset indicate that the 

proposed EfficientNetV2 can accurately classify images in real time on our hardware. 

Keywords— Real-time facial emotion recognition, Deep Learning, EfficientNetV2, Imbalanced Datasets, 

Resolution scaling. 
 

1. Introduction 

Emotion recognition can be approached through 
various modalities, such as facial expressions, 
textual content, vocal signals, and more [1]. 1. It is 
considered one of the most significant elements in 
the realm of human-computer interaction [2]. 
Furthermore, it may assist individuals with Autism 
Spectrum Disorders (ASDs) in enhancing their 
ability to recognize the facial emotions of others, 
thereby facilitating improved social interactions [3]. 
Individuals with Autism Spectrum Disorder (ASD) 
frequently encounter obstacles in both 
comprehending and articulating emotions, resulting 
in complications in their social interactions and 
relationships. Consequently, the ability to recognize 
emotions can aid those with ASD in enhancing their 
understanding and interpretation of emotional cues, 
thereby promoting more effective communication, 
social engagement, and emotional expression. 
Additionally, the application of emotion recognition 
extends to other areas, including the assessment of 

customer satisfaction [4]. Emotion recognition 
technology enables organizations to assess facial 
expressions and emotional states, thereby offering a 
more profound comprehension of customer 
sentiments and levels of satisfaction. By utilizing 
advanced deep learning methodologies for facial 
emotion detection, companies can obtain immediate 
insights into customer emotions, allowing them to 
customize their products, services, and interactions 
to better align with customer requirements. This 
improved grasp of customer emotions can result in 
heightened customer satisfaction, as businesses can 
modify their strategies in response to customer 
feedback and emotional indicators, ultimately 
enriching the overall customer experience and 
fostering loyalty. According to [5], Facial 
expressions serve as the primary indicators for 
interpreting human emotions, surpassing the 
significance of auditory messages and verbal 
communication. Consequently, the examination of 
facial images enhances the comprehension of 
emotional states. In the context of facial emotion 
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recognition, the process involves inputting a facial 
image, with the resulting output categorizing the 
emotion into one of several distinct types. 
According to [3], There exist two primary 
methodologies for facial emotion recognition. The 
first methodology is known as static facial emotion 
recognition [4], while the second is referred to as 
dynamic facial emotion recognition [3]. 
Furthermore, the efficacy of emotion recognition in 
the aforementioned applications is predominantly 
contingent upon its implementation in real-time. 
Consequently, the primary focus of this paper is on 
real-time facial emotion recognition. 

A significant obstacle in developing a high-
performance real-time emotion recognition system is 
the trade-off between model accuracy and inference 
time; as the model's accuracy improves, the 
inference time tends to increase correspondingly. 
Real-time execution necessitates that the inference 
time remains below 40 milliseconds, as presented by 
[3]. Nevertheless, the majority of highly accurate 
methods tend to exhibit longer delays. Conversely, 
many techniques that achieve lower delays often 
lack precision. This issue is particularly challenging 
to address within Deep Learning frameworks, which 
typically incur substantial computational expenses 
and require robust computational resources to 
facilitate real-time performance. In reference [2], the 
authors utilized a range of Convolutional Neural 
Networks (CNNs), applying fine-tuning methods in 
conjunction with various classification components. 
Additionally, reference [4] introduced a lightweight 
CNN that leverages the inception module concept 
and incorporates Global Average Pooling in place of 
fully connected layers, aiming to decrease inference 
time for emotion recognition across multiple 
datasets, such as FER2013 and JAFFE. 
Additionally, in [6], the implementation of depth-
wise separable convolution has been adopted, 
resulting in the removal of fully connected layers to 
enhance inference speed. Two primary determinants 
of real-time execution are computational capacity 
and the model itself. Prior research has 
predominantly focused on enhancing the model with 
respect to its computational efficiency. As a result, 
these models may experience a decline in 
performance when subjected to varying levels of 
computational power. In certain instances, the 
models may fail to achieve real-time performance 
due to the high demand for computational resources. 
In such scenarios, the implementation of a scalable 
approach becomes essential to maintain real-time 
execution capabilities. 

In this paper, we examined emotion recognition 
through the lens of classification and aimed to 
introduce a scalable, high-performance method for 
real-time emotion detection utilizing the KDEF 
dataset. EfficientNetV2 stands out as one of the 
most efficient neural networks available [7]. This 

model emphasizes the creation of smaller 
architectures that facilitate quicker training and 
reduced inference times. Building on the 
foundations of the EfficientNet model, it seeks to 
improve both efficiency and speed in the training of 
deep learning frameworks. The design of the 
EfficientNetV2 architecture prioritizes compactness 
and efficiency while ensuring high performance, 
rendering it applicable across a range of computer 
vision and machine learning tasks. Consequently, it 
is capable of delivering commendable performance 
with minimal inference time compared to other 
convolutional neural networks (CNNs). 
EfficientNetV2 employs both MBConv (Mobile 
Inverted Bottleneck Convolution) and Fused-
MBConv blocks extensively, integrating 
convolution and pointwise convolution into a 
unified operation to enhance efficiency. The 
architecture favors smaller 3x3 kernel sizes within 
the convolutional layers, compensating for the 
diminished receptive field by incorporating 
additional layers. Notably, EfficientNetV2 
eliminates the final stride-1 stage found in the 
original EfficientNet, addressing concerns related to 
its substantial parameter size and memory access 
overhead. Additionally, reducing the resolution 
proves advantageous for decreasing inference time 
and facilitating real-time processing. However, this 
reduction may lead to a decline in accuracy, 
necessitating preprocessing techniques to mitigate 
performance loss. Conversely, there are instances 
where the neural network can operate in real time 
without the need for resolution scaling, allowing for 
potential model scaling to enhance performance. It is 
important to note that arbitrary scaling does not 
inherently ensure optimal performance; thus, 
resolution should be adjusted according to the 
model's requirements for real-time execution on 
specific computational resources. Furthermore, the 
model itself is not the sole determinant of real-time 
performance; computational power plays a crucial 
role and can significantly influence inference time, 
potentially hindering real-time execution. To 
address these challenges, we propose a scalable 
approach tailored to both the model and the 
available computational power. 

The remaining sections of this paper are 
organized into four sections. Section 2 presents an 
overview of the previous works on facial emotion 
recognition. Also, section 3 explains our proposed 
method, and section 4 covers the experimental 
settings. Section 5 demonstrates outcomes and 
analyzes them. Finally, section 6, concludes the 
paper. 

2. Related Work 

Facial emotion recognition has been the subject 
of numerous studies aimed at various applications. 
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As previously noted, there are two primary 
methodologies for facial emotion recognition: 
dynamic and static approaches. Reference [3] 
exemplifies research in dynamic emotion 
recognition, specifically designed to assist 
individuals with autism spectrum disorders (ASD) 
who often struggle with social interactions due to 
difficulties in interpreting facial expressions. This 
study seeks to develop efficient, low-latency 
systems capable of recognizing facial expressions in 
real-time video contexts. The proposed model 
utilizes a deep time windowed convolutional neural 
network (TimeConvNets) trained on the CK+ 
dataset. The TimeConvNets architecture employs 
time windowing techniques within a convolutional 
neural network framework, enabling the capture of 
temporal dependencies in facial expressions across 
video sequences. Conversely, various initiatives 
have concentrated on static emotion recognition, 
which will be elaborated upon in subsequent 
sections. 

Previous studies have introduced specific 
techniques for the recognition of static facial 
emotions. Nonetheless, a notable drawback of many 
current approaches is their prolonged inference time, 
particularly when utilizing standard computational 
resources. For instance, in [8], the authors aimed to 
develop a model employing convolutional neural 
networks (CNN) alongside various preprocessing 
strategies, including intensity normalization, down-
sampling, image cropping, and spatial 
normalization, to mitigate the challenges posed by 
limited data availability in facial expression 
recognition and enhance the model's efficacy. 
Additionally, they investigated the importance of the 
order of training samples in CNN models for facial 
expression recognition, emphasizing how the 
arrangement of these samples can affect both the 
learning process and the overall performance of the 
model. In [9], the authors review and analyze current 
techniques for automatically identifying human 
emotions through facial expressions, focusing on 
both traditional feature-based methods and modern 
deep-learning approaches. They highlight the 
superiority of Convolutional Neural Networks 
(CNNs) over traditional methods in handling 
variations and achieving higher accuracy, 
particularly when fine-tuned on large datasets. Also, 
they identified key challenges such as the need for 
diverse datasets, real-time processing capabilities, 
and robustness against occlusions and cultural 
variations. 

In [10], the authors employ a three-dimensional 
convolutional neural network (3DCNN) alongside a 
Convolutional-Long-Short-Term-Memory 
(ConvLSTM) neural network to address the task of 
facial emotion recognition. Their objective is to 
accurately model the dynamic nature of human 
emotional behavior by integrating both spatial and 

temporal data. Although deep learning techniques 
have demonstrated efficacy in recognizing emotions 
within video sequences, they often fall short in 
effectively capturing spatiotemporal interactions and 
detecting nuanced emotional variations. This study 
seeks to enhance the precision and overall 
performance of emotion recognition systems by 
leveraging the spatial and temporal dimensions of 
emotional experiences through the use of 3DCNN. 
The findings have potential implications for diverse 
applications, including human-computer interaction, 
social media analytics, and mental health 
assessment. In [11], the authors propose an 
advanced method for recognizing facial emotions by 
integrating image segmentation with the VGG-19 
deep learning architecture. This approach leverages 
the powerful feature extraction capabilities of VGG-
19, enhanced by pre-processing steps involving 
facial region segmentation to improve focus on 
pertinent areas of the face. The model demonstrates 
improved accuracy and robustness compared to 
conventional methods, effectively handling 
variations in facial expressions, lighting, and 
occlusions. 

The significance of real-time execution is 
exacerbated by constraints in computational 
resources. Under these circumstances, it is essential 
to employ methods that incur low computational 
costs to facilitate real-time performance. Numerous 
studies have sought to develop lightweight deep-
learning techniques to address this issue; however, 
many of these approaches fall short in terms of 
accuracy. For example, [6] and [12] proposed light 
CNNs and Support Vector Machine (SVM) on 
FERC and FER2013 datasets, respectively. In [6], 
the focus is on deep learning methodologies, 
particularly Convolutional Neural Networks, which 
are evaluated against traditional techniques for the 
task of facial expression recognition. Also, in [12], 
the authors focused on the application of 
Convolutional Neural Networks (CNNs) for the task 
of facial expression recognition, emphasizing the 
advantages this methodology offers in diverse fields 
such as human-computer interaction, emotion 
analysis, and affective computing. Furthermore, 
authors in [2] introduced CNN-based techniques that 
leverage fine-tuning, utilizing pre-trained weights 
from the ImageNet dataset as a foundational step. 
This approach aims to enhance the effectiveness and 
naturalness of human-computer interaction by 
integrating the capability to discern human emotions 
through facial expressions. Additionally, an active 
learning strategy was proposed to identify the most 
relevant segments of the CK dataset within the 
training set, as noted in [13]. Subsequently, action 
units and Support Vector Machines (SVM) were 
employed for the static facial emotion recognition 
task utilizing this dataset. The researchers in this 
study sought to tackle the issues of diminished 
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recognition accuracy and inadequate robustness in 
automated facial expression analysis. The 
experimental findings indicate that the proposed 
algorithm successfully mitigates correlated noise 
and achieves superior recognition rates when 
compared to principal component analysis and 
human evaluators across seven distinct facial 
expressions. Besides, the study presented in [14], 
different configurations of the web-shaped structure 
are explored to find the optimal one for the emotion 
recognition task, and the K-nearest neighbor 
classifier on the CK+ and KDEF datasets was 
utilized. This method does not require a training 
phase as it analyzes the position of facial reference 
points on the web, adapting to various face sizes and 
types without the need for specific training data. 

In earlier research, both the accuracy and 
inference time of models have been examined. For 
example, studies [4] and [15] introduced real-time 
approaches for facial emotion recognition in robotic 
systems. These investigations focused on 
minimizing the number of parameters to enhance 
inference speed. Specifically, the study [4] 
employed a model inspired by the inception module, 
achieving a tenfold reduction in parameters. This 
research presents findings on the effectiveness of the 
model, its resilience in interpreting diverse facial 
expressions, and its potential applications in human-
computer interaction. Furthermore, recognizing that 
a significant portion of CNN parameters resides in 
the classification layer, the authors of [4] 
implemented Global Average Pooling and utilized 
various datasets to bolster the model's robustness. 
Additionally, a study [15] proposed two CNN-based 
architectures that leverage depth-wise separable 
convolution and eliminate connected layers for real-
time facial emotion recognition, tested on the 
FER2013 and IMDB datasets. The computational 
efficiency of the model is noteworthy, with a 
processing time of under 0.008 seconds on a Core i7 
CPU, rendering it suitable for real-time applications. 
The authors have made their open-source code and 
pre-trained models available through a GitHub 
repository. 

In [16], the authors present a novel system that 
combines facial emotion recognition with 
personalized music recommendations. The system 
employs Convolutional Neural Networks (CNNs) to 
accurately detect and classify emotions from facial 
expressions. Once the user's emotional state is 
identified, the system recommends music tracks that 
align with the detected mood, enhancing the user 
experience. The study highlights the effectiveness of 
CNNs in handling diverse facial expressions and 
varying conditions, achieving high accuracy in 
emotion recognition. Additionally, the integration of 
emotion recognition with music recommendation 
offers a seamless and intuitive application, 
demonstrating significant potential in fields such as 

entertainment, mental health, and user experience 
personalization. Scaling methods serve as effective 
strategies to achieve a balance between inference 
time and accuracy, thereby enhancing overall 
efficiency. These methods can be employed to either 
decrease inference time or improve accuracy. 
Numerous studies have explored three primary 
scaling approaches: width (neural network channel), 
depth (neural network layer), and resolution (neural 
network input size). 

The literature indicates that facial expression 
recognition is applicable across a wide range of 
contexts. Furthermore, real-time performance is 
critical in most applications; however, this aspect 
has often been overlooked in prior research. The 
computational cost becomes particularly relevant in 
systems with limited processing capabilities. 
Conversely, while some earlier studies have 
addressed the need for real-time execution, many 
have not achieved high-performance outcomes. 
Therefore, there is a pressing need for a method that 
combines real-time processing with high 
performance in the domain of facial emotion 
recognition to meet the demands of various 
applications. 

3. Methodology 

In this section, we address our proposed method 
beginning with the definition of the facial emotion 
recognition task, followed by our proposed method 
in detail. 

3.1. Task Definition 

In the task of facial emotion recognition, the 
model necessitates a facial image as input, 
subsequently producing a label that indicates the 
individual's emotional state from a predefined set of 
categories. Furthermore, the model needs to operate 
in real-time with a high degree of accuracy to 
facilitate various applications, including the 
enhancement of human-computer interaction. 
Additionally, the model must be designed to be 
scalable, ensuring its effectiveness across diverse 
computational environments. Therefore, the primary 
aim of this paper is to propose a scalable, high-
performance method for real-time facial emotion 
recognition.  

3.2. Methodology Overview 

Our proposed methodology encompasses five 
primary stages: preprocessing, resolution scaling, 
evaluation of inference time, resolution tuning, and 
training. Upon completion of these stages, our 
models are capable of identifying emotions in facial 
images within a timeframe of 40 milliseconds on our 
computational resources. The stages of our proposed 
approach are illustrated in Figure 1. Furthermore, 
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each stage comprises multiple steps, which will be 
elaborated upon in detail. 

 Preprocessing 

The preprocessing phase encompasses data 
augmentation, normalization, and the management 
of the imbalanced dataset (KDEF). To mitigate the 
risk of overfitting, data augmentation is widely 
recognized as an effective strategy. This technique, 
prevalent in both machine learning and deep 
learning, serves to artificially expand the training 
dataset by generating modified versions of existing 
data or creating new data points derived from the 
original dataset. The augmentation process typically 
involves applying minor alterations or 
transformations to the data, which may include 
operations such as flipping, rotating, cropping, 
adjusting brightness, introducing noise, or 
implementing various other modifications. The 
application of data augmentation contributes to 
enhanced model performance, a reduction in 
overfitting, improved accuracy, and better 
generalization capabilities of machine learning 
models. This approach is particularly advantageous 
in situations where acquiring large volumes of 
diverse training data is either difficult or financially 
prohibitive. In this study, we employed techniques 
such as zoom, horizontal flipping, shifting, shearing, 
and rotation as methods of data augmentation. 

Normalization is widely recognized as a 
fundamental preprocessing procedure that must be 
tailored to the specific requirements of the neural 
network, as each neural network operates with 
distinct input value ranges. In the context of 
Convolutional Neural Networks (CNNs), four 
common types of normalization are identified: 
normalization range, centering, standardization, and 
per-channel normalization. In this study, we 
employed the normalization range, which involves 
scaling pixel values to a defined interval, such as -1 
to +1. 

The preprocessing phase encompasses data 
augmentation, normalization, and the management 
of imbalanced datasets, specifically the KDEF 
dataset. A critical aspect of this phase is addressing 
the issue of dataset imbalance. The KDEF dataset 
exhibits significant imbalance, and training models 
on such datasets can adversely affect their 
performance in practical applications. Models 
trained on imbalanced datasets tend to exhibit bias 
towards classes with a higher number of samples. In 
this research, we implemented a method for 
managing imbalanced datasets as outlined in 
reference [17]. This method involves assigning 
weights to classes under the quantity of their 
samples; classes with a greater number of samples 
receive lower weights. 

Consequently, this approach preserves the dataset's 

 

Figure. 1. The overall structure of the proposed method for 

scalable real-time emotion recognition 

integrity while effectively mitigating the challenges 
posed by imbalance. 

 Resolution Scaling 

A prevalent method for balancing inference time 
and accuracy is resolution scaling [7]. This 
technique involves modifying the resolution of input 
images and the initial layer of the neural network 
under the dimensions of the new input images. In 
this study, we examine n distinct input sizes or 
resolutions (both width and depth of the input 
images) to evaluate the inference time associated 
with each of these resolutions. 

 Inference Time Evaluation 

Following the assignment of distinct numerical 
values to various resolutions, it is essential to assess 
the model's inference time or latency corresponding 
to each specific resolution. This evaluation is 
determined through forward propagation using a 
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single image sample to identify the emotion depicted 
in the image. 

 Resolution Tuning 

At this stage, we have n distinct resolutions 
paired with n corresponding inference times. We 
denote these resolutions as x and the inference times 
as y. This results in n pairs of (x, y), which can be 
utilized to formulate a polynomial equation derived 
from these data points. Essentially, this polynomial 
equation serves to identify the optimal resolution 
that yields a specific inference time given a 
particular computational capacity and model. 
Furthermore, an increase in the value of n enhances 
the accuracy of the polynomial equation. 

Various methodologies exist for deriving a 
polynomial equation that intersects a specified set of 
points, including polynomial regression, Lagrange 
interpolation, and Newton’s divided difference 
interpolation. In this research, we employed 
Lagrange interpolation. Although initially 
discovered by Edward Waring in 1779, the method 
is named after Joseph-Louis Lagrange, who 
published it in 1795. This technique is effective for 
constructing a polynomial that accurately represents 
a collection of discrete data points, thereby 
facilitating the estimation of function values at 
intermediate locations based on the available data. 
Equ(1) represents the formula of Lagrange 
interpolation where x0, x1, x2, … are distinct 
resolutions and y0, y1, y2, … are distinct 
corresponding numbers for inference times. In 
addition, Equ (2) represents li which is a part of the 
P(x) equation. 

 

(1) 

 
(2) 

The optimal resolution for real-time execution 
on our designated computational resource and model 
has been determined following the evaluation of the 
polynomial equation, which was based on varying 
resolutions and inference times. 

 Training 

Following the assessment of inference time and 
the optimization of resolution derived from the 
polynomial equation obtained through Lagrange 
interpolation, it becomes evident which resolution is 
suitable for real-time operation on the designated 
model and available computational resources. 
Subsequently, it is necessary to modify the image 
resolutions and the input dimensions of the neural 
networks following the values determined by the 
polynomial equation in the preceding phase. At this 
point, the model will be prepared for the training 
phase. 

4. Experiments 

In this section, we address the experimental 
setting, which includes the dataset and the metrics 
used for evaluation, baselines, and implementation 
in detail. 

4.1. Dataset and Evaluations 

We evaluate our proposed models utilizing the 
Karolinska Directed Emotional Faces (KDEF) 
dataset, which comprises annotated images of 
human faces. The KDEF dataset features a variety of 
facial expressions and serves as a significant 
resource for research in affective neuroscience, 
psychology, and computer vision. It is extensively 
employed in studies focused on emotion recognition, 
facial expression analysis, and human-computer 
interaction. The dataset is available for non-
commercial research purposes and has contributed 
to over 1500 scholarly publications, highlighting its 
importance in the academic community. Established 
in 1998, KDEF has remained a widely used 
resource. It contains a total of 4900 images 
representing seven distinct emotional categories: 
fear, anger, disgust, happiness, neutrality, sadness, 
and surprise. The dataset includes photographs of 70 
individuals, evenly split between 35 females and 35 
males, with each expression captured from five 
different angles. 

We employed accuracy, loss, and F1 score as 
metrics for model evaluation. Additionally, 
inference time serves as an indicator of the model's 
capability for real-time processing. As noted in [3], a 
model is deemed to operate in real time if its 
inference time does not exceed 40 milliseconds. 
Therefore, we regard this threshold as the criterion 
for real-time execution. 

4.2. Baselines 

Based on prior related works in facial emotion 
recognition, we have selected two distinct models to 
compare with our proposed model. 

BDF-InceptionV3 is a convolutional neural 
network (CNN) that draws inspiration from the 
InceptionV3 architecture. InceptionV3, developed 
by Google, is a member of the Inception model 
family and is specifically tailored for tasks related to 
image classification and object detection. This 
architecture is recognized for its remarkable 
efficiency and precision in addressing intricate 
visual recognition challenges. A notable 
characteristic of InceptionV3 is its incorporation of 
inception modules, which consist of convolutional 
components utilizing multiple filter sizes within a 
single layer. The model has found extensive 
application in the field of computer vision, excelling 
in areas such as image recognition, object detection, 
and facial expression analysis. In the case of BDF-
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InceptionV3, the standard classifier of InceptionV3 
is substituted with additional layers, which include 
batch normalization, dropout, a fully connected 
layer, and softmax activation. Additionally, BDF-
InceptionV3 leverages pre-trained weights from 
InceptionV3; however, it is important to note that 
only the final layers are subject to training, while the 
parameters associated with the feature extraction 
component remain fixed or non-trainable.  

BDF-MobileNet [2] is a convolutional neural 
network (CNN) that draws inspiration from the 
MobileNet [18] architecture. MobileNet is 
specifically engineered for efficient performance in 
mobile and embedded vision applications. Its 
lightweight structure enables deployment on devices 
with limited resources, such as smartphones, 
Internet of Things (IoT) devices, and embedded 
systems. The architecture is optimized to deliver 
high accuracy in image classification tasks while 
minimizing both computational demands and model 
size. A key feature of MobileNets is the use of 
depthwise separable convolutions, which 
significantly decrease the number of parameters and 
computations in comparison to conventional 
convolutional layers, thereby enhancing suitability 
for real-time applications on devices with restricted 
processing power. In BDF-MobileNet, the standard 
classifier of MobileNet is substituted with additional 
layers, including batch normalization, dropout, a 
fully connected layer, and softmax. Furthermore, 
BDF-MobileNet utilizes pre-trained weights from 
MobileNet, although only the final layers are subject 
to training, with the parameters of the feature 
extraction component being fixed or rendered non-
trainable. 

4.3. Implementation Details 

In this part, our implementation details have 
been divided into several steps, representing 
different stages of our proposed method. In addition, 
the hardware involved in the computation of the 
inference time is the 11th Gen Intel core i5-11400H 
2.70GHz CPU. It is a 6-core, 12-thread processor 
that belongs to Intel's 11th-generation Core i5 
lineup. The base clock speed of the i5-11400H is 
2.70GHz, with the ability to boost up to 4.40GHz. 

The first step of the preprocessing stage is data 
augmentation. Table 1 demonstrates all values of 
data augmentation methods, which have been 
employed. 

Normalization is the next step. All 
EfficientNetV2 models need [-1, +1] range of pixel 
values as their inputs. Hence, all pixel values need to 
change to this domain. 

The second stage is resolution scaling. In this 
state, it is required to consider n different resolution 
sizes. In this study, we considered n equal to 10.  

Table 1. Amounts for Data Augmentation Methods 

Augmentation Method Value 

Rotaion_range 40 

Width_shift_range 0.25 

Height_shift_range 0.25 

Shear_range 0.25 

Zoom_range 0.25 

Horizental_flip True 

Fill_mode nearest 

However, the higher the n is, the more accurate 
the polynomial equation becomes. Also, we utilized 
10 more common resolution sizes while it is 
possible to specify these values randomly. These 
common resolutions are (299, 299, 3), (224, 224, 3), 
(162, 162, 3), (143, 143, 3), (128, 128, 3), (100, 100, 
3), (84, 84, 3), (66, 66, 3), (48, 48, 3), and (12, 12, 
3). 

Following the evaluation of inference time and 
the adjustment of resolution through the polynomial 
equation derived from Lagrange interpolation, we 
proceeded to train the models for 120 epochs on the 
KDEF dataset, incorporating pre-trained weights 
from the ImageNet dataset. Additionally, we utilized 
the Adam optimizer with a dynamic learning rate. 

5. Results and Analysis 

In this section, we will first examine the plot of the 

polynomial equation related to our proposed models. 

Subsequently, we will conduct a comprehensive 

assessment of the performance of our proposed 

models in comparison to the baselines on the KDEF 

dataset. 

5.1. Resolution Tuning 

To achieve resolution tuning, it is essential to 
first determine the inference time associated with 
various resolutions or input sizes. This information 
is necessary to derive the polynomial equation 
utilizing Lagrange interpolation, as outlined in the 
methodology section. This approach facilitates the 
identification of an optimal resolution for real-time 
processing. Figures 2 and 3 illustrate the polynomial 
equations corresponding to the EfficientNetV2-B0 
and EfficientNetV2-S models, respectively. In these 
figures, the green boxes indicate the real-time 
operational area, which is confined between 0 and 
40 milliseconds on the y-axis. As indicated in Figure 
2, the EfficientNetV2-B0 model can operate in real-
time with a resolution of up to (302, 302, 3) on our 
hardware. Conversely, Figure 3 shows that the 
EfficientNetV2-S model can function in real-time 
with a resolution of up to (94, 94, 3) on the same 
hardware. These findings suggest that the 
resolutions of both models need to be fine-tuned for 
subsequent processes. Following the resolution 
tuning, the Scalable-ENV2B0 and Scalable-ENV2S  
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Figure. 2. The polynomial equation plot for EfficientNetV2B0 

 

Figure. 3. The polynomial equation plot for EfficientNetV2S 

models are developed based on the EfficientNetV2-
B0 and EfficientNetV2-S models, respectively, 
incorporating additional preprocessing steps and 
varying resolutions tailored to the available 
computational resources. 

5.2. Training 

Figures 4 and 5 illustrate the variations in loss 
and accuracy for both training and validation 
datasets about the Scalable-ENV2B0 model applied 
to the KDEF dataset. Similarly, Figures 6 and 7 
depict the alterations in loss and accuracy for the 
Scalable-ENV2S model on the same dataset. In all 
four figures, the blue lines indicate validation loss 
and validation accuracy, while the red lines 
represent training loss and training accuracy. The 
data presented in these figures reveal a notable 
decrease in validation loss and a significant increase 
in validation accuracy up to approximately the 60th 
epoch, after which minor fluctuations are observed. 

Conversely, Figures 8 and 9 present the changes 
in loss and accuracy for the BDF-InceptionV3 
model over 120 epochs on the KDEF dataset.  

 

Figure. 4. Loss plot of Scalable-ENV2B0 in 120 epochs 

 

Figure. 5. Accuracy plot of Scalable-ENV2B0 in 120 epochs 

Additionally, Figures 10 and 11 illustrate the 
corresponding changes for the BDF-MobileNet 
model over the same number of epochs. In these 
figures, blue lines again denote validation loss and 
validation accuracy, while red lines signify training 
loss and training accuracy. Analysis of Figures 9 and 
11 indicates that the most substantial increases in 
both training and validation accuracy occurred 
before the 100th epoch. Furthermore, Figures 8 and 
10 reveal that the most significant reductions in 
training and validation loss transpired before the 
80th epoch. 

According to Figures 5 and 7, the peak 
validation accuracy achieved by the Scalable-
ENV2B0 and Scalable-ENV2S models was 95% 
and 94%, respectively. In contrast, Figures 9 and 11 
show that the highest validation accuracy for the 
BDF-InceptionV3 and BDF-MobileNet models 
reached 65% and 66%, respectively. 

5.3. Results and discussions 

The findings derived from our proposed models 
and baseline models utilizing the KDEF dataset are  
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Figure. 6. Loss plot of Scalable-ENV2S in 120 epochs 

 

Figure. 7. Accuracy plot of Scalable-ENV2S in 120 epochs 

  

Figure. 8. Loss plot of BDF-InceptionV3 in 120 epochs 

  

Figure. 9. Accuracy plot of BDF-InceptionV3 in 120 epochs 

 

Figure. 10.  Loss plot of BDF-MobileNet in 120 epochs 

 

Figure. 11. Accuracy plot of BDF-MobileNet in 120 epochs 

summarized in Table 2. The inference time indicated 
in this table represents the average duration from ten 
separate executions, while the metrics for accuracy, 
loss, and F1-score (macro, micro, and weighted) are 
calculated based on the dataset's test set. For the 
KDEF dataset's test set, we divided the validation set 
into two equal segments. As illustrated in the table, 
all models, except for BDF-Inception, operate in real 
time on our hardware. Notably, BDF-MobileNet 
recorded the shortest inference time. In terms of 
accuracy, our proposed models surpassed the other 
models by approximately 20 percent. Scalable-
ENV2B0 achieved the highest accuracy at 96%, 
along with the best macro, micro, and weighted 
metrics. Scalable-ENV2S followed closely in 
second place with an accuracy of 92%. These results 
indicate that a significant reduction in resolution can 
drastically impact accuracy, as evidenced by 
EfficientNetV2S, which, at a resolution of 
(384,384,3), outperformed EfficientNetV2B0 at 
(224,224,3) in numerous prior studies across various 
datasets, including ImageNet [7]. Furthermore, 
regarding the loss metric, Scalable-ENV2B0 and 
Scalable-ENV2S recorded values of 0.16 and 0.26, 
respectively. 

Figure 12 illustrates the performance metrics of 
the models in terms of accuracy and inference time 
when evaluated on the KDEF dataset. This visual 
representation encapsulates the results presented in  
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Table 2. The Performance of Different Models On KDEF 

 Scalable-

ENV2B0 

Scalable-

ENV2S 

BDF-

InceptionV3 

BDF-

MobileNet 

Resolution (302,302,3) (94,94,3) (299,299,3) (224,224,3) 

Accuracy 0.96 0.92 0.69 0.74 

Loss 0.16 0.26 0.81 0.76 

Macro 0.95 0.92 0.70 0.74 

Micro 0.96 0.93 0.70 0.73 

Weighted 0.97 0.92 0.68 0.73 

Inference 

Time (ms) 

40 40 54 16 

 

Figure. 12. Models’ performance comparison based on inference 
time and accuracy. 

Table 2, highlighting the efficacy of the models 
in emotion recognition during the dataset tests. The 
use of different colors in the charts signifies 
individual models, thereby offering a comprehensive 
overview of their respective performances. 

6. Conclusions 

This article presents a scalable, high-
performance model designed for real-time facial 
emotion recognition, utilizing resolution scaling in 
conjunction with EfficientNetV2. The resolution 
scaling technique is formulated through a 
polynomial equation, which determines the optimal 
resolution concerning computational resources and 
the model itself. This polynomial equation is derived 
using Lagrange interpolation. Consequently, we 
introduce the Scalable-ENV2B0 and Scalable-
ENV2S models. Our experimental findings indicate 
that the Scalable-ENV2B0 model, operating at a 
resolution of (302, 302, 3), achieves an accuracy of 
96% on the KDEF test set, with an inference time of 
40 milliseconds on our hardware. While the primary 
benefit of our proposed approach lies in its 
scalability, the performance metrics obtained surpass 
those of previous related studies, as evidenced by 
our experiments and insights. In this study, as a 

limitation, one can say its dependency on high-
quality video inputs, which may not perform well 
under low-light or occluded conditions. Future work 
will focus on enhancing robustness in diverse 
environments and exploring multimodal approaches 
to improve accuracy and applicability across various 
real-world scenarios. 
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