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A B S T R A C T  

Cancer is a complex and dangerous disease in which cells uncontrollably begin to grow. Some cells, with mutated 

genes, cause abnormalities in the cell. These abnormalities are transferred to other genes through specific 

interactions between genes, leading to disruptions in the normal function of cells. The result of these cell 

abnormalities will be the occurrence of cancer. In cancer, modules are considered as clusters of genes and 

regulatory molecules that play a role in the processes of cancer initiation and progression. These modules 

usually have a specific gene sequence as a central unit that is important in controlling and regulating cellular 

processes related to cancer. 

In this study, a novel network-based method called mdGRN is proposed for identifying modules effective in 

lung cancer occurrence in the gene regulatory network. In this method, first, using gene expression data and 

regulatory interactions, a lung cancer regulatory network is constructed. Then, using a greedy modularity 

optimization approach, communities related to lung cancer are identified. Subsequently, the obtained 

communities are ranked using influence diffusion metrics in the network. Finally, the top-ranked communities 

are introduced as effective modules. 

To assess the efficacy of the proposed method, the standard Cancer Genome Atlas (TCGA) database and four 

classifiers including a decision tree, k-nearest neighbors, support vector machine, and random forest were 

utilized. The results obtained demonstrated that the proposed mdGRN method outperforms other methods in 

identifying cancer modules in terms of the average harmonic mean metric with the support vector machine 

classifier. Additionally, in terms of the AUC metric, the proposed method achieved a value of 0.997 using the 

random forest classifier, indicating better performance compared to other previous methods in identifying 

cancer modules. Furthermore, the number of genes identified by the top module is compared with other 

previous computational and network methods. The results show that the top-ranked module, besides containing 

a considerable number of driver genes, contains unique genes that have not been identified by other methods. 

Keywords— Cancer-Effective Modules, Gene Regulatory Networks, Greedy Optimization Algorithm, Lung Cancer 

Driver Genes. 
 

1. Introduction  

Cancer is a serious health problem worldwide, 
resulting from genetic influences and environmental 
factors [1]. Cancer refers to diseases that occur due to 
uncontrolled growth and abnormal proliferation of 
cells. According to the World Health Organization, it 
is recognized as the second leading cause of death 
globally [2]. Essentially, the renewal, proliferation, 

and death of each cell are tightly controlled by the 
cellular genetic combination. The precise genetic 
control is immediately lost, mutations occur, and 
clonal evolution begins irreversibly leading towards 
cancer. These genetic mutations play a role in all 
cancers [3]. Studies on vast volumes of cancer 
genomic data have shown that cancer is a systemic 
network phenomenon attributed to the accumulation 
of genetic or epigenetic changes in molecular 

http://dx.doi.org/10.22133/ijwr.2024.465678.1229


International Journal of Web Research, Vol. 7, No. 3, 2024 

66 

network architecture. In the molecular networks 
within cells, certain parts or "nodes" play crucial roles 
in the initiation and growth of cancerous tumors. 
Therefore, New research employs network-based 
methods to identify genes that may trigger cancer. 
These studies are conducted by extracting crucial 
portions of molecular networks [4]. Network-based 
analysis helps us identify and understand various 
relationships and interactions between genes and 
molecules within cells that play important roles in 
cancer initiation or progression. Recently, evidence 
has shown that instead of focusing on specific 
mutations in the genome, we can explore 
relationships and interactions between different 
components within cells. In other words, by studying 
mutated networks or regulatory pathways occurring 
within cells, we can better understand cancer. 
Additionally, by examining the status of molecules 
within molecular networks, we can further 
understand the impact of drugs on cancer [5]. 

The spread of cancer has made it necessary to 
provide methods to control the disease and produce 
effective drugs. All cellular activities and behaviors 
are directly or indirectly related to interactions 
between biological components present within the 
cell, thus analyzing the networks of these interactions 
plays a crucial role in understanding cell function. 
Furthermore, one of the major reasons for cancer 
occurrence is attributed to abnormalities in regulatory 
networks within a cell, which cause the 
unconventional expression of a gene to impact the 
expression of other genes, leading to the proliferation 
of this abnormality to other genes and ultimately 
resulting in the cell deviating from its normal function 
and cancer initiation [6]. 

The gene regulatory network (GRN) and the 
examination of interactions within it are of paramount 
importance in research related to biological systems 
and particularly in understanding cancer. These 
networks represent mechanisms that illustrate how 
genes are regulated within cells in a specific network 
pattern [7]. The gene regulatory network consists of a 
group of genes that interact with each other inside the 
cell and are facilitated by RNA and proteins encoded 
by them [8]. So far, although many driver genes have 
been identified, cancer diagnosis remains 
challenging. Generally, cancer arises due to the 
interplay of genetic factors and environmental causes 
[9]. 

It has been reported that lung, breast, and 
colorectal cancers are the most common cancers in 
2018 [10]. Genes or gene products often collaborate 
as functional modules in molecular interaction 
networks, playing pivotal roles in organizing 
complex biological processes [11]. Therefore, the 
identification of disordered gene sets or modules as 
biological markers in cancer research is essential. The 
existing challenges in cancer diagnosis and the 

importance of identifying reliable biological markers 
for early detection and personalized treatment are 
crucial and vital. 

So far, Various methods have been proposed for 
identifying gene modules. For instance, the mRank 
method focuses on the limitations of current 
biological markers and suggests the use of an 
extensive set of biological markers for cancer 
diagnosis as a solution. In this method, a module 
detection and ranking approach is introduced with the 
aim of identifying network modules as cancer 
diagnostic biomarkers. The authors evaluated the 
effectiveness of mRank using hepatocellular 
carcinoma (HCC) data and demonstrated its 
superiority over existing methods. Additionally, their 
proposed method is justified through Network 
Ontology Enrichment Analysis and comparison with 
known genes associated with HCC, and its advantage 
lies in discovering new biological markers [12]. 

The Gene Set Analysis (GSA) method is another 
approach that focuses on identifying groups of genes 
declared in microarray experiments. This method is 
based on the Gene Set Enrichment Analysis (GSEA) 
method proposed by Subramanian et al. The authors 
propose two potential advancements for GSEA: the 
use of the Maximum statistical average to define 
differential subset gene information and another 
involving re-standardization for obtaining more 
accurate inferences [13]. 

Another network-based method for identifying 
modules is the Gene Set Enrichment Analysis 
(GSEA), which has been introduced as a powerful 
method for interpreting gene expression data, 
especially in the field of microarray analysis. GSEA 
focuses on gene sets rather than individual genes and 
utilizes prior biological knowledge to evaluate their 
correlation with phenotypic traits. This method 
addresses the limitations of single-gene analysis and 
has been shown to provide insights into various 
biological problems, including cancer-related 
datasets. The authors have demonstrated its 
application in various biological issues and 
introduced relevant software and databases for wider 
usage [14]. 

The Significance Analysis of Function and 
Expression (SAFE) method is another approach 
introduced by Barry et al. This method is two-staged 
and focuses on unknown information about gene 
correlations. It addresses issues arising from data 
collection in the analysis process and utilizes high-
powered genomic and proteomic data for assessing 
the importance of gene sets. SAFE employs valid 
statistical analysis and uses permutations for error 
control. This framework utilizes gene categorization 
based on gene ontology and protein family databases 
to enhance its toolset and flexibility in discovering 
more biological insights [15]. 
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In the field of bioinformatics, the network 
becomes a powerful tool for modeling functional 
interactions between genes/gene products, where 
nodes represent genes and edges denote their 
relationships [15]. 

The Crank method is another approach proposed 
for prioritizing network communities. Community 
detection methods often identify countless 
communities, but empirical validation of all of them 
is impractical. This method effectively evaluates the 
structural features of each community and combines 
them for community prioritization [16]. This method 
can be used with any community detection method 
and does not require additional metadata. Crank 
addresses the challenge of structurally prioritizing 
communities and finds applications in various 
domains, including those with specific domain 
knowledge. 

As mentioned, detecting and describing 
community structures in networks is a fundamental 
subject in studying network systems in various 
scientific fields. Hence, the concept of modularity 
optimization-based approaches is a very effective 
approach for identifying community structures in 
networks. In fact, modularity can be expressed in 
terms of the eigenvectors of a specific matrix called 
the modularity matrix, leading to a spectral algorithm 
for community detection [17]. 

Graph clustering is a practical method that 
categorizes the vertices of a graph based on its edge 
structure. This method focuses on creating clusters 
with high internal connections and fewer inter-cluster 
connections [18]. 

In this study, a network-based method called 
mdGRN1 is proposed to discover important and 
influential communities in the gene regulatory 
network. The goal is to identify communities 
containing the highest number of cancer genes. 
Identifying cancer communities can be effective in 
preventing further deviation in the network and also 
in therapeutic goals. Gene communities are the same 
as modules, referring to a group of genes with more 
interactions and interferences among them than with 
nodes outside the community, which is similar to the 
concept of protein complexes in protein-protein 
interaction networks. 

The results obtained demonstrate that the 
efficiency of the proposed method is higher than 
other existing methods. Additionally, the importance 
of identified modules in terms of the number of 
cancer genes present in them was compared with 
other existing network and computational methods in 
the field of identifying cancer driver genes, showing 
significant results. 

 

1 Module Detection in Gene Regulatory Network 

1.1. Community Detection Background  

In a social network, people form groups based on 
their interests and commonalities, which are called 
communities in network science. From the 
perspective of network science, a community consists 
of a number of nodes and the edges between them, 
such that the relationships among members within a 
community are considerably stronger than the 
relationships between members of different 
communities. Figure 1 illustrates community 
detection in a social network and the types of 
relationships between communities. In some 
literature, the terms "group" or "cluster" are also used 
instead of "community". 

Community detection is an active area of analysis 
in social network analysis aimed at understanding the 
flow of information and the dynamic nature of the 
network. In this approach, it is assumed that the set of 
interactions and information flow between 
communities determines the behavioral nature of the 
network. Therefore, community detection is the 
natural division of the network into densely 
interconnected nodes from other group nodes with 
fewer chances of connection [19]. 

Detecting communities in a network and 
determining their boundaries enable the classification 
of nodes based on their positions within the 
communities. In other words, nodes with central 
positions accommodate many nodes of the 
community and likely play a crucial and functional 
role in controlling and maintaining the stability of 
their community members. On the other hand, nodes 
positioned between communities play a vital role in 
communication and exchange between communities. 
In other words, these nodes act as intermediaries 
between communities. Consequently, large networks 
can be considered as networks where communities 
themselves are nodes, and the edges connecting these 
communities are considered as the main edges of the 
network. In this case, the relationships between the 
new network nodes, which are the communities 
themselves, can be examined. Ultimately, based on 
this new network, the base network can be evaluated 
[20]. 

 
Figure. 1. The community in the social network 
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Various methods have been proposed for 
community detection in networks, some of which are 
used in directed networks, and some are used in 
undirected networks. In this study, five algorithms 
including Louvain, Infomap, Walktrap, Floyd, and 
Greedy Modularity Optimization were examined, and 
ultimately the Greedy Modularity Optimization 
algorithm was selected due to the nature of the 
studied network. Additionally, the Greedy 
Modularity Optimization algorithm yielded the best 
results among the other algorithms in community 
detection and performance evaluation in the gene 
regulatory network. 

1.2. Greedy Modularity Optimization Algorithm 

Consider the graph G= (V, E), where V is the set 
of vertices and E is the set of edges of the graph. Let 
n be the number of vertices in graph G and m be the 
number of its edges. Also, consider A as its adjacency 
matrix, where Aij represents the number of edges 
connecting vertex i to vertex j. The greedy modularity 
optimization algorithm starts by creating n 
communities, each consisting of a single vertex. Let 
Ci be the community associated with vertex i∈V. In 
the next step, using Equa(1), merges two 
communities with the highest increase in modularity, 
where eij represents an edge in the network 
connecting a vertex in community i to a vertex in 
community j, and denotes the number of edges in the 
community i. This step continues until there are no 
more partitions in the network with higher 
modularity. 

∆Q = 2(eij − aiaj) (1) 

Modularity is used to measure the quality of a 
community. The network modularity Q(S) as the sum 
of modularity for each community, as expressed in 
Equ(2), is calculated, where lc and kc represent the 
number of edges and vertices in community c∈S. L 
represents the total number of edges and vertices in 
the network. 

Q(S) = ∑(
lc

L
− (

kc

2 × L
)

2

c∈S

) (2) 

According to the above explanation, the greedy 
modularity optimization algorithm is divided into two 
stages that are repeated sequentially. Suppose we 
start with a weighted network with N nodes. Initially, 
a distinct community is assigned to each node in the 
network. Therefore, in this initial partition, there exist 
as many communities as there are nodes. Then, for 
each node i, neighbors j from the side of I are 
considered, and the modularity gain obtained by 
removing I from its community and placing it in 
community j is evaluated. Then, node i is placed in 
the community where this gain is maximized. If no 

positive gain is possible, i remains in its original 
community. This process is applied repeatedly and 
sequentially to all nodes until no further improvement 
is achieved, and then the first stage is completed. In 
this method, a node may be considered multiple 
times. This first stage stops when the local maximum 
modularity is achieved, meaning when no node 
movement can further improve modularity [21]. 

Part of the efficiency of this algorithm arises from 
the fact that the gain in modularity ΔQ obtained by 
transferring a separated node i to community C can 
easily be calculated using Equ (3). 

∆Q = [ 
∑ in + ki,in

2 × m
− (

∑ tot + ki

2 × m
)

2

] − [
∑ in

2 × m
− (

∑ tot

2 × m
)

2

− (
ki

2 × m
)

2

 ] (3) 

Where: 

∑ in is the sum of weights of links within 
community C. 

∑ tot  is the sum of weights of links entering the 
nodes within community C. 

ki  is the sum of weights of edge entering node i. 

ki,in is the sum of weights of links exiting node i to 
other nodes within community C. 

m is the sum of the weights of all links in the 
network. 

Therefore, in this algorithm, the change in 
modularity by removing node i from its own 
community and then transferring it to a neighboring 
community is evaluated. The second phase of the 
algorithm involves constructing a new network 
whose nodes are now the communities found in the 
first stage [22]. 

This algorithm tends to generate super-
communities that include a large portion of the nodes, 
even in networks where there is no significant 
community structure. This tendency to produce 
super-communities can slow down the algorithm and 
make it impractical for networks with more than a 
million nodes. 

2. Methods and materials 

2.1. Research methodology 

As stated earlier, abnormality occurs in one or 
more genes inside the cell, and then its transfer to 
other genes disrupts the normal function of the cell 
and leads to cancer. The goal of systemic medicine is 
to identify the starting points of system disorders and 
prevent the entire system from failing, detecting 
effective modules in cancer occurrence in gene 
regulatory networks can aid in early identification, 
controlling proliferation, and Effective medicinal 
targets. Therefore, considering this approach, cancer 
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modules are more likely to disrupt the entire 
regulatory network and also have the highest number 
of cancer driver genes. Therefore, using community 
detection algorithms in networks can help identify 
effective modules in cancer progression and 
occurrence, as well as reveal communities that 
contain the most induced genes. The approach of 
identifying cancer modules in gene regulatory 
networks has not been used so far.  

After constructing the lung cancer regulatory 
network, the greedy modularity optimization 
algorithm was applied to the network. Then, the gene 
modules obtained were ranked using propagation-
based algorithms to Identify the best plant in terms of 
impact on the incidence and spread of cancer. Two 
algorithms, HITS and PageRank, were used for this 
purpose, with the PageRank algorithm selected due 
optimality of the results. Then, the performance of the 
proposed mRank model was compared in terms of 
efficiency with 6 module identification methods. 
Decision tree classifiers, k-nearest neighbors, support 
vector machines, and random forests were used for 
accurate performance calculation. Additionally, the 
number of driver genes identified by the top module 
was compared with 18 previous network and 
computational methods for identifying cancer driver 
genes. An overview of the proposed mdGRN 
approach is depicted in Figure 2. 

2.2. Gene regulatory network 

Changes in gene expression significantly impact 
various biological mechanisms within a cell, 
prompting numerous studies to characterize this 
process in both healthy and diseased states. Gene 
regulatory networks, particularly transcription 
regulation networks, are valuable tools for describing 
and investigating these complexities. The network 
analyzed in this research is a type of gene regulatory 
network known as transcription regulatory. In this 
network, the nodes represent transcription factors 
(TFs) and genes, while an edge indicates the 
regulatory effect of the source node on the destination 
node. This regulatory effect implies that changes in 
the expression of the source gene can influence the 
expression of the target gene. Transcription factors 
are crucial for the regulation of transcription and are 
key components in every cell that control gene 
expression. [23] Dysregulation of their function plays 
a significant role in the development of diseases, 
particularly cancer. Analyzing these networks and 
examining TF-target relationships can provide 
valuable insights into the effects of individual genes 
within a biological system and help identify complex 
characteristics associated with human diseases. These 
networks are directional, with nodes representing 

 

 

 

genes and transcription factors, while the edges 
denote physical or regulatory interactions between 
them. This type of network is employed in studies  

aimed at identifying cancer driver genes. 

2.3. Data set 

In this study, the TCGA Lung Squamous Cell 
Carcinoma (LUSC) gene expression dataset 
downloaded from the University of California Santa 
Cruz database was used2. This data set was collected 
by the AffyU133a array. Gene expression 
Specifications were experimentally measured using 
the Affymetrix HT U133a human genome microarray 
platform by MIT's Broad Institute and Harvard 
University's Cancer Genomic Characterization 
Center. 

This dataset shows gene-level transcription 
estimates. Genes were mapped to the human genome 
coordinates using the UCSC Xena HUGO probeMap. 
To facilitate the observation of differential expression 
between samples, the default view was centered at 
zero by independently subtracting the mean of each 
gene or exon at the center of each gene or exon. These 
data contain gene expression values in cancerous 
tissues and adjacent healthy tissues. Each sample pair 
in this dataset corresponds to a lung cancer patient, 
one derived from cancer cells and the other from 
neighboring normal cells. The dataset includes 
expression values of 12,043 genes in both healthy and 
cancerous tissues of 133 patients. Additionally, the 
regulatory interaction dataset from the RegNetwork 
database was used for network construction [24], and 
the validated cancer driver dataset from the Cancer 
Gene Census (CGC) was employed as the gold 
standard for result evaluation3 , as explained in the 
subsequent sections. 

2.4. Network Construction 

The gene regulatory network is responsible for 
monitoring the speed and amount of transcription of 
genes into mRNA. This network has the ability to 
enhance or suppress gene expression, which has a 
significant impact on protein production. Disruptions 
in this network can lead to the production of proteins 
outside of normal constraints and ultimately result in 
cellular abnormalities and cancer. Identifying genes 
that play a role in initiating abnormalities and cancer 
is of great importance. 

To construct the network, a list of regulatory 
interactions was needed, which was downloaded 
from the RegNetwork database. RegNetwork is a 
database of transcriptional and post-transcriptional 
regulatory networks in humans and mice. TF and  

2 https://xenabrowser.net/datapages/ 
3 https://portal.gdc.cancer.gov 
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Figure. 2. A view of the proposed mdGRN approach. 1.Data gathering,2. Network construction, 3. Module detection with GMA, 

4.Module extraction, 5. Module ranking with PR, 6. Fine tuuning methods for each module, 7. Classifier algorithms for each module, 

8,9 and 10. Evaluation metrics, 11. Detected CDGs evaluating. 

miRNA are the two main regulators that control gene 
expression. RegNetwork collects knowledge-based 
regulatory relationships as well as some potential 
regulatory relationships between two regulators and 
targets. It provides a platform to deposit known and 
predicted gene regulation at the transcriptional and 
post-transcriptional levels simultaneously [24]. 
Various interactions, including TF-gene, TF-TF, TF-
miRNA, miRNA-gene, and miRNA-TF, are reported 
in this database. In this study, interactions related to 
miRNAs were ignored. 

The gene expression dataset of lung cancer was 
mapped to the set of regulatory interactions to 
construct the network. Specifically, for each 
regulatory interaction, if there was a reported value in 
the gene expression dataset for both the source and 
target, the interaction was retained; otherwise, it was 
removed from the network. In this manner, the 
regulatory network related to lung cancer was built. 
Details of the constructed network are presented in 
Table 1. 

Table 1. The details of the constructed network 

Number of 

connections 

Number of 

genes 

Cancer network 

123224 18312 Lung Cancer 

(LUSC) 

The final image of the constructed regulatory 
network related to lung cancer, visualized using 
Gephi software version 0.10.0, is depicted in Figure 
3. For a better understanding of the network, nodes 
with degrees greater than 10 (comprising 197 nodes 
and 1299 edges) are visualized. 

2.5. Evaluation Metrics 

An evaluation metric in data mining and machine 
learning is a quantitative measure used to assess the 
performance of trained models and algorithms on 
data. These metrics help us easily evaluate how 
accurately a model can predict data. Most metrics are 
derived from confusion matrices. The confusion 
matrix is shown in Table 2. In this matrix: 
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(a)       (b) 

Figure. 3.  (a) Visualization of the lung cancer regulatory 

network, (b) visualization of network communities (for nodes 

with degrees higher than 10). 

True Positive (TP): The number of positive 
instances that the classifier correctly predicted as 
positive. 

False Positive (FP): The number of negative 
instances that the classifier incorrectly predicted as 
positive. 

False Negative (FN): The number of positive 
instances that the classifier incorrectly predicted as 
negative. 

True Negative (TN): The number of negative 
instances that the classifier correctly predicted as 
negative. 

Using the elements of the confusion matrix, the 
following metrics are calculated and utilized: 

Accuracy: Measures the proportion of instances 
that are correctly predicted (both positive and 
negative) out of the total number of instances. as 
shown 

in Equ (4) this provides an overall evaluation of a 
model's performance. 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
 (4) 

Sensitivity: Sensitivity is also known as recall. It 
measures the ratio of true positive predictions out of 
all true positives. It is calculated using Equ(5). 

Sensitivity =
TP

(TP + FN)
   (5) 

Specificity: Specificity measures the ratio of true 
negative predictions to all true negative instances. It 
quantifies the model's ability to identify all negative 
instances. Specificity is calculated using Equ (6). 

Specificity =
TN

(TN + FP)
 (6) 

Pprecision: precision measures the ratio of true 
positive predictions to all positive predictions made 
by the model. It indicates how many of the positive  

Table 2. Confusion Matrix for Binary Classification Problem 

Negative 

Prediction 
Positive Prediction  

False Negative 

(FN) 
True Positive (TP) Positive Class 

True Negative 
(TN) 

False Positive (FP) Negative Class 

predictions were correct. Precision is calculated using 
Equ (7). 

Precision =
TP

(TP + FP)
 (7) 

F1-Score (F-Measure): This metric combines 
Precision and Recall parameters to assess how well 
the model performs overall. It is also referred to as the 
"harmonic mean" of Precision and Recall. The F1-
Score provides a more precise picture of the model's 
prediction performance for all classes in the data. The 
F1 criterion is one at best and zero at worst. It is 
calculated using Equ(8). 

F − Measure = 2 ∗
(Precision ∗  Recall)

(Precision + Recall)
 (8) 

Area Under the ROC Curve (AUC-ROC): It is a 
measure that evaluates the ability of the model to 
distinguish between positive and negative classes by 
analyzing its performance at different probability 
thresholds. A higher value of this measure indicates a 
better ability to correctly classify samples, making it 
a useful measure when you need to evaluate the 
discrimination ability of a model. This criterion is 
calculated by drawing the receiver operating 
characteristic curve (ROC) and measuring the area 
under it. [25]. 

3. 3Results 

The regulatory network of lung cancer was 
constructed using gene expression data and a list of 
regulatory interactions. Then, the greedy modularity 
optimization algorithm was executed to identify 
communities within the network. Subsequently, the 
obtained modules were ranked based on the 
PageRank metric to determine the most important 
modules. The modules were sorted according to the 
obtained scores. The module with the highest score 
was identified as the most effective module and in 
terms of performance metrics and the number of 
driver genes present in it, it was compared with other 
approaches in module detection and cancer driver 
identification methods. For all stages of the model 
execution and result evaluation, Python version 3.8.5 
and various libraries (including NetworkX, 
ScikitLearn, etc.) were utilized. 

In community detection, the fewer the number of 
communities and the higher the modularity of each 
community, the better the performance will be. Due 
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to the better performance of the greedy modularity 
optimization algorithm and the type of network 
studied, this algorithm was used as the final algorithm 
for identifying gene network modules. Table 3 shows 
the number of identified modules and the amount of 
normal and driver genes in each module. 

Then, the identified modules were ranked using 
the PageRank algorithm. The PageRank algorithm is 
used to rank web pages in the World Wide Web. As 
shown in Figure 4, this algorithm assigns a numerical 
value (PageRank score) to each web page, indicating 
its importance in the web link structure. PR is a 
random algorithm that relies on the properties of 
random walks on web pages and Markov chain theory 
to calculate these scores [26]. This algorithm is used 
to rank web pages based on their connectivity and the 
quality and quantity of inbound links. Higher PR 
scores indicate greater importance, making it a 
valuable tool for search engines like Google to 
determine the relevance and credibility of web pages. 
The PR algorithm has also been employed in the 
context of identifying cancer driver genes. By doing 
this, genes are ranked based on their regulatory 
interactions and linking structures. 

Results obtained from ranking gene modules are 
shown in Table 4. 

Table 3. Identified modules using the greedy modularity 
optimization method and the number of normal and driver genes 

in each module. 

# Of Driver Genes # Of Genes 
Community 

Number 

78 3671 Community1 

57 3449 Community2 

59 3213 Community3 

249 2792 Community4 

24 2395 Community5 

46 1811 Community6 

12 700 Community7 

2 277 Community8 

Table 4. Ranking of communities obtained from the greedy 

modularity optimization method using PageRank. 

PageRank score Community Rank 

0.196918596278968 Community4 1 

0.18882018480989746 Community1 2 

0.17658317728813425 Community2 3 

0.16594645263223817 Community3 4 

0.12411289756502099 Community5 5 

0.09597041227634573 Community6 6 

0.036849357452636886 Community7 7 

0.014150602771404456 Community8 8 

Based on the ranks and PageRank scores 
obtained, the top 5 modules are described as follows: 
Community 4, Community 1, Community 2, 
Community 3, and Community 5. Each of the top 5 
modules was visualized using Cytoscape version 
3.7.1 based on nodes with high degrees and top genes 
in each of the 5 modules. As shown in Figure 5, 
normal genes are depicted in yellow, cancer genes in 
red, and top cancer genes in each community are 
drawn in diamond shapes and colored purple. 

To evaluate the performance of the mdGRN 
model, genes present in it were labeled, with 
stimulatory genes labeled as 1 and normal genes 
labeled as 0. Then, according to the mRank model, 
evaluation metrics were calculated using decision 
tree classifiers, k-nearest neighbors, support vector 
machines, and random forests. Before running each 
classifier, one-sided encoding was applied to convert 
categorical data into numerical format, principal 
component analysis (PCA) was used for 
dimensionality reduction, the Synthetic Minority 
Over-sampling Technique (SMOTE) was used for 
class balancing, and a network search was conducted 
to calculate optimal hyperparameter values using the 
GridSearchCV technique. 

Performance measures, confusion matrix, and 
ROC diagram of each of the top 5 communities are 
shown separately for each class in Figures 6 to 9. 

To compare the performance metrics of the 
proposed model in each classifier, the averaged 
values were calculated. The final results of mdGRN 
and ROC curves are presented in Table 5 and Figure 
10, respectively. 

 

Figure. 4. An example of PageRank ranking 

 

Figure. 5. Visualization of the top modules in the lung cancer 

regulatory network.
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Figure. 6. Performance metrics, ROC curve, and confusion matrix for the top 5 modules based on the decision tree classifier. 

 

Figure. 7. Performance metrics, ROC curve, and confusion matrix for the top 5 modules based on the k-nearest neighbors classifier 

 

Figure. 8. Performance metrics, ROC curve, and confusion matrix for the top 5 modules based on the support vector machine 

classifier. 

 

Figure. 9. Performance metrics, ROC curve, and confusion matrix for the top 5 modules based on the random forest classifier. 
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Figure. 10. ROC curve of the mdGRN model with different 

classifiers. 

Table 5. Comparison of performance metrics of the mdGRN 

model with different classifiers. 

AUC 
F1- 

Score 
Specificity Sensitivity Accuracy  

0.912 0.907 0.887 0.936 0.911 DT 

0.949 0.920 0.826 1.000 0.913 KNN 

0.993 0.981 0.962 0.999 0.981 SVM 

0.997 0.979 0.969 0.988 0.978 RF 

Among the four classifiers, the support vector 
machine and random forest exhibit the best 
performance. The support vector machine shows 
AUC=0.993, a harmonic means of 0.981, and an 
accuracy of 0.981. also, the random forest shows 
AUC=0.997, a harmonic means of 0.979, and an 
accuracy of 0.978. Additionally, the ROC curves for 
all four classifiers demonstrate that the random forest 
has the highest area under the curve. 

Furthermore, the performance of the proposed 
mdGRN model was compared with the baseline 
mRank model using two classifiers, namely, the 
support vector machine and random forest. As 
depicted in Figure 11, in the support vector machine 
classifier, the proposed mdGRN method shows a 
higher harmonic mean, sensitivity, and accuracy 
compared to the mRank method. also, in the random 
forest classifier, the proposed method demonstrates a 
higher AUC. 

The mdGRN method has an AUC value of 0.993, 
indicating excellent class separation capability, and a 
strong F1 score of 0.981, which demonstrates a strong 
balance between precision and recall and is higher 
than the mRank method. Moreover, it has a 
specificity score of 0.962 and exceptional sensitivity 
(true positive rate) of 0.999, indicating its ability to 
correctly classify negative and positive instances. Its 
accuracy is also noteworthy at 0.981. Similarly, the 
mRank method performs with an AUC of 0.995, 
higher than mdGRN, an F1 score of 0.980, lower than 
mdGRN, and an accuracy of 0.981, which is the same  

 

Figure. 11. Comparison of the mdGRN model and the mRank 
model based on RF and SVM classifier. 

as mdGRN, with a specificity of 0.980 and sensitivity 
of 0.982. 

Additionally, the AUC of the proposed method 
was compared with five previous module detection 
methods. As shown in Figure 12, mdGRN achieved 
the highest AUC value among the previous methods 
with the random forest classifier. It also ranks second 
among the previous methods with the support vector 
machine classifier. 

In addition to the above evaluations, the overlap 
of driver genes in the top module of the proposed 
method was compared with other methods for cancer 
driver gene detection. Considering the ranking of 
identified modules, only the driver genes identified in 
module number 4, which has the highest rank, were 
compared with other network-based and 
computational methods. Previous computational 
methods include the set of methods introduced in the 
study [1] (15 methods), and network-based methods 
include methods introduced in [1], [6], and [9]. The 
results of computational methods were extracted 
similarly from the DriverDB v2 database [27], and 
network-based methods were extracted from relevant 
articles. The accuracy of predicted drivers by 
mdGRN and other methods is evaluated by 
comparing each list with the list of standard genes 
introduced by the Cancer Gene Census (CGC) as the 
gold standard. 

The top module of the mdGRN method identifies 
249 driver genes. The overlap of identified genes in 
the Venn diagram in Figure 13 shows that mdGRN 
identified 71 driver genes identified by computational 
methods and additionally identified 178 driver genes 
not detected by computational methods. Furthermore, 
in comparison with network-based methods, mdGRN 
identified 150 genes identified by other methods and 
managed to identify 99 unique driver genes. 
Moreover, the proposed method successfully 
identified 75 driver genes that were not identified by 
any of the previous network-based and computational 
methods. 

4. Conclusion 

In this study, a method for identifying effective 
modules in lung cancer occurrence in the gene 
regulatory network called mdGRN, was proposed. 
The greedy module optimization algorithm was used 
for module aggregation. The use of this method for  
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(a) 

 
(b) 

Figure. 12. AUC comparison in the mdGRN method and other 

methods with (a) the random forest classifier and (b) based on 

the support vector machine classifier. 

   

 

Figure. 13.  The level of gene overlap identified by mdGRN and 

other network-based and computational methods 

identifying cancer modules in the gene regulatory 
network has not been used before. Then, the obtained 
modules were prioritized based on the PageRank 
algorithm for importance ranking. The performance 
of the proposed method was compared with six 
previous module identification methods using the 
standard Cancer Genome Atlas (TCGA) database and 
four classifiers: decision tree, k-nearest neighbors, 
support vector machine, and random forest. The 
results showed that the proposed method mdGRN 
outperforms other methods in terms of the average 
harmonic mean with the support vector machine 
classifier. Additionally, in terms of the AUC metric, 
the proposed method with the random forest classifier 
with a value of 0.997 also outperformed other 
previous methods in identifying cancer modules. 
Furthermore, the number of genes identified by the 

top module was compared with 18 previous 
computational and network-based methods. The 
results show that the top module in the proposed 
method not only contains a significant number of 
driver genes but also contains unique genes that were 
not identified by other methods. This approach can be 
used in other cancers and biological networks as well. 
One of the limitations pertains to the lack of data 
during the formation of gene regulatory networks for 
each disease. Since expression values were not 
reported for certain genes, some driver genes were 
excluded from the final structure of the constructed 
networks. Addressing this issue in future research 
could enhance the performance of the proposed 
methods. 

5. Future works 

Based on the findings of this study, several 
avenues for future research can be explored. The 
methods employed to identify and rank communities 
can be applied to other biological networks. The 
dynamics of gene regulatory networks, including 
how rankings change over time or under different 
conditions, can be investigated. In fact, dynamic 
network analysis can uncover the evolving impact of 
potential cancer genes. Additionally, more advanced 
machine learning techniques and other network 
centrality measures can be explored to enhance 
ranking accuracy. Furthermore, the proposed method 
can be applied to other cancers or diseases. 
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