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ABSTRACT 

In the real world, situations frequently occur when we want to allocate a fixed cost 

between a set of decision-making units (DMUs) such as institutions, organiza-

tions. In this paper, we use the data envelopment analysis (DEA) technique to 

allocate fixed costs among DMUs. First, we introduce semi-additive production 

technology in DEA and present efficiency evaluation models in this technology. 

In estimating the frontier of this technology, in addition to the observed DMUs, 

the set of all aggregations of these DMUs are also used. In the following, we 

propose an interactive process for fixed cost allocation between DMUs in DEA 

based on the concept of cross-efficiency. We show that our proposed iterative 

approach is always feasible, and ensures that all DMUs become efficient after the 

fixed cost is allocated as an additional input measure. The cross-efficiency scores 

corresponding to all DMUs are improved at each stage of the interactive process. 

We also illustrate the proposed approach with a numerical example.  The pro-

posed approaches are demonstrated using an application of the fixed cost alloca-

tion problem for branches of commercial banks. Finally, we bring the results of 

the research. 

 

 

 

1 Introduction 
 
Efficiency analysis plays an important role in decision-making processes and is an important issue for 

improving the performance of organizations. Several different techniques have been proposed for 

efficiency analysis. One of these techniques is DEA and based on mathematical programming. At 

first, it was developed by Charnes et al. [5]. This method estimates the efficiency of a set of DMUs 

with multiple inputs and outputs. DEA obtain efficiency score from each DMU by making a set that 

called production possibility set (PPS). DEA accept the underlying assumptions for estimating the 

frontier of PPS, and consider the frontier of PPS as the efficiency frontier. DMUs located on this fron-

tier are referred to as efficient DMUs and other DMUs are inefficient. By accepting different assump-

tions, different production technologies have been proposed to measure efficiency. Charnes et al. [5] 

accepted the property constant returns to scale (CRS) for reference technology, in order to estimate 
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both technical and scale efficiencies. Banker et al. [3] introduced another production technology by 

accepting the property of variable returns-to-scale (VRS). This set based on the convex hull of indi-

vidual units and strong disposability assumption. Fare et al. [11] used nonincreasing (decreasing) re-

turns-to-scale (DRS) technology to estimate efficiency. In a different framework from DEA models, 

Koopmans [18] introduced another form of nonincreasing returns-to-scale technology. Grosskopf [16] 

showed Koopman’s technology in DEA framework and pointed out that it includes the sum of the 

individual units and comprises Fare et al.’s technology. Deprins et al. [9] introduced Free Disposal 
Hall (FDH) technology, which is a non-convex PPS. This model is equivalent to the model of Banker 

et al. [3] if only binary intensity variables are considered. Green and Cook [15] presented a non-

convex PPS known as free coordination hall (FCH). In order to evaluate the performance of DMUs, in 

addition to the observed units, they also used the aggregations DMUs corresponding to these DMUs. 

As mentioned, some of the production technologies in the DEA literature include aggregated DMUs. 

In some of the DEA literature, especially axiomatic-based work, inclusion of aggregated DMUs is 

referred to as the additivity assumption. This assumption states that if the two observed DMUs A and 

B can be produced, then the newly created DMU can also be produced as A + B. Another assumption 

in estimating the frontier of PPS is semi-additive assumption. Ghiyasi [13] used semi-additive as-

sumption and introduced a new PPS that consider aggregations of the set of DMUs. He measured the 

performance of DMUs based on individually observed units and the aggregations DMUs correspond-

ing to these DMUs. Hence, this technology creates a larger competitive environment than other tech-

nologies for DMUs to reach the efficiency frontier. The two general assumptions of additivity and 

semi-additive can be assumed to be distinct. In accordance with additivity assumption, new aggregat-

ed DMUs can be exact multiples of the original observed units, but not in semi-additive technology, 

and we have to use different units to create new aggregated DMUs. According to the additivity as-

sumption, if unit A belongs to the PPS, then the new aggregated DMUs as 2A or 3A also belong to 

the PPS, but this will not be in accordance with semi-additive assumption, and if A and B are two 

distinct DMUs, then A + B also belongs to the PPS in accordance with semi-additive assumption. [13] 

We must note that all production technologies accepting general additivity presume specific returns to 

scale properties. In the real world, however, unless we have knowledge regarding the returns to scale 

of a technology, we cannot impose any specific such properties concerning that technology. One of 

the main contributions of the semi-additive technology to the literature is that it addresses the returns 

to scale problem. Namely, the semi- additive technology does not presume any returns to scale re-

quirements. [14] 

The main problem with semi-additive technology is the resulting computational complexity due to the 

large number of aggregated DMUs created based on the observed DMUs. However, in many real-

world applications, we may not need to consider all the DMUs and be able to solve the above prob-

lem. But Ghiyasi and Cook [14] solved the above problem, and they proposed a new PPS that is equal 

to the original semi- additive technology based on the power set of all DMUs. They showed that the 

efficiency evaluation model based on the new semi- additive technology no longer needs to consider 

all the aggregated DMUs in the power set corresponding to the on individually observed units and 

proposed the semi- additive technology in a new form based only on the observed units. They showed 

that the new model proposed for calculating efficiency in semi- additive technology significantly re-

duces the amount of computation and can be easily used. [14] One of the important applications of 

DEA is the issue of fixed cost allocation among DMUs. In many real management applications, we 

have to allocate a total fixed cost between a set of competitive DMUs. Cook and Kress [7] first pre-
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sented the issue of fixed cost allocation in the context of DEA. They hypothesized that fixed costs 

could be considered as a new input measure for all DMUs. The basis of two principles efficiency in-

variance and pareto-minimality presented a fair cost allocation scheme by solving several linear pro-

gramming models. But in general, their approach was to find a unique efficient unit by cone ratio ap-

proach, thus avoiding a multiple cost fixed allocation. Tohidi and Tohidnia [23] measure the interval 

industry cost efficiency score in DEA. They extend the concept of "cost minimizing industry struc-

ture" and develop two DEA models for dealing with imprecise data. Also, they propose an approach 

to compute the industry cost efficiency measure in the presence of interval data. They show that the 

value obtained by the proposed approach is an interval value. The lower bound and upper bound of 

the interval industry cost efficiency measure are computed and then decomposed into three compo-

nents to examine the relationship between them and the lower and upper bounds of the individual 

interval cost efficiency measures. They define the cost-efficient organization of the industry as a set of 

DMUs, which minimizes the total cost of producing the interval industry output vector. Mozaffari et 

al. [22] presents two strategies for allocating fixed costs with undesirable data. In the first strategy, 

DMU first determines the minimum and maximum shares that it can receive from the fixed resources 

while the efficiency of that DMU and other DMUs re-mains the same after receiving the fixed re-

sources. Also, the decision maker chooses the fixed cost for each DMU between the minimum and 

maxi-mum cost values proposed. In the second strategy, the allocation of fixed costs is done using the 

CCR multiplicative model with undesirable data. The effectiveness of both methods is examined by 

an applied study on the commercial banks. 

Beasly [4] proposed a nonlinear programming model to achieve a unique cost fixed allocation by 

maximizing the average efficiency across all DMUs. Cook and Zhu [8] presented a new approach of 

feasible cost fixed allocation (but not optimal) in the output oriented based on the efficiency invari-

ance principle and the proposed approach by Cook and Kress [7]. Li et al [19] presented a new ap-

proach to the fixed cost allocation problem based on DEA and degree of satisfaction. They provided a 

unique cost fixed allocation, and at the end of the proposed algorithm, all DMUs were efficient by 

considering the amount of dedicated cost fixed allocation as an additional input for all DMUs. They 

showed that the approach presented by them is equivalent to the proportional sharing method in one 

dimension, and in the multidimensional state, cost fixed allocation may not be unique. Du et al. [10] 

presented the issue of fixed cost and resource allocation based on the concept of cross-efficiency. 

They proposed an interactive algorithm for establishing the concept of cross-efficiency to provide a 

fixed cost allocation scheme between all cost DMUs. They hypothesized that the amount of cross-

efficiency proportional to each of the DMUs at each stage of the proposed algorithm would be non-

decreasing, and that at the end of the algorithm all DMUs would be cross-efficient. They considered 

the fixed cost proportional to each of the DMUs as an additional input. They then presented the issue 

of resource allocation based on the concept of cross-efficiency and presented another interactive algo-

rithm in this regard. 

Li et al. [20] proposed a new data envelopment analysis-based approach for fixed cost allocation. 

They suggest a non-egoistic principle which states that each DMU should propose its allocation pro-

posal in such a way that the maximal cost would be allocated to itself. Also, a preferred allocation 

scheme should assign each DMU at most its non-egoistic allocation and lead to efficiency scores at 

least as high as the efficiency scores based on non-egoistic allocations. They integrate a goal pro-

gramming method with DEA methodology to propose a new model under a set of common weights. 

The final allocation scheme is determined in such a way that the efficiency scores are maximized for 
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all DMUs through minimizing the total deviation to goal efficiencies. Li et al. [21] developed allocat-

ing a fixed cost based on a DEA-game cross efficiency approach. They approach the fixed cost alloca-

tion problem by explicitly considering both competition and cooperation relationships among DMUs. 

They integrate cooperative game theory and the cross-efficiency method to propose a DEA-game 

cross efficiency approach to generate a unique and fair allocation plan. Based on the proposed ap-

proach by them, each DMU is considered as a player and a super-additive characteristic function is 

defined for coalitions of DMUs. In the following, the Shapley value is calculated for each DMU and 

accordingly associated common weights are optimized to determine the final allocation plan. Since 

the cross-efficiency method considers peer appraisal and the cooperative game theory allows for equi-

table negotiations, all DMUs are supposed to reach a consensus on the equitable allocation scheme 

through their novel approach. An et al. [1] proposed fixed cost allocation for two-stage systems with 

cooperative relationship using DEA. They developed an approach for fixed-cost allocation issues of 

two-stage systems by considering a cooperative relationship among DMUs. They integrate coopera-

tive game theory and the DEA methodology to generate a unique and fair allocation plan. The results 

confirm that each DMU can maximize its relative efficiency to one by a series of optimal variables 

after the fixed cost allocation. A unique nucleolus solution can be generated through a feasible com-

putation algorithm. An et al. [2] proposed fixed cost allocation based on the principle of efficiency 

invariance in two-stage systems. They proposed a fixed cost allocation approach for basic two-stage 

systems based on the principle of efficiency invariance and then extend it to general two-stage sys-

tems. They developed a fixed cost allocation under the overall condition of efficiency invariance 

when the two stages have a cooperative relationship. Then, the model of fixed cost allocation under 

the divisional condition of efficiency invariance wherein the two stages have a noncooperative rela-

tionship is studied. Chu et al. [6] developed DEA-based fixed cost allocation in two-stage systems 

based on the leader-follower and satisfaction degree bargaining game approaches. They proposed a 

new fixed cost allocation approach for allocating a fixed cost among DMUs with two-stage structures 

under the framework of DEA. They give the set of possible fixed cost allocations, and prove that all 

DMUs can be overall efficient when evaluated by a common set of weights after fixed cost allocation. 

Secondly, from a centralized point of view, they consider the competition between the DMUs’ two 
stages in fixed cost allocation and regard these two kinds of stages as two unions. They incorporate 

leader-follower models to propose a fixed cost allocation approach to handle the situation in which the 

two unions make decisions sequentially.  Izadikhah [17] proposes a new two stage BAM model and 

further evaluates the banks and financial institutes in Tehran stock exchange by considering the finan-

cial ratios. Conventional DEA models consider each firm as black box and don’t note into the inner 
activities. Two-stage data envelopment analysis has been researched by a number of authors that 

evaluate each firm by considering the inner operations. He proposes a new variant of two stage DEA 

models and further evaluates the banks and financial institutes in Tehran stock exchange by consider-

ing the financial ratios. In this paper, we present the issue of fixed cost allocation in semi-additive 

technology based on the concept of cross-efficiency. The proposed model for calculating cross-

efficiency considers the fixed cost allocation as an additional input. According to the nonlinear form 

of the proposed model, we bring the necessary transformations for linearization of the model. To pre-

sent an optimal fixed cost allocation plan, we propose an interactive algorithm. At each stage of algo-

rithm, we improve the cross-efficiency scores corresponding to all DMUs, and when the algorithm 

terminates, we can obtain the optimal fixed cost allocation corresponding to each of the DMUs based 

on the concept of cross-efficiency. It can be said that the contribution of this paper is as follows. 1) In 



Gerami 

 
 

   

Vol. 9, Issue 2, (2024)         Advances in Mathematical Finance and Applications  [499] 

 

this paper, we present efficiency evaluation models in semi-additive technology based on the both 

envelopment and multiple models in DEA. 2) We present a cost fixed allocation scheme in semi-

additive technology, based on the concept of cross-efficiency. 3) We apply the proposed approach in 

this paper for the data set of 18 branches of a bank in China.  

The remainder of the paper is organized as follows. In the second section, we introduce semi-additive 

technology in theory and geometry. In the third second, we present the issue of fixed cost allocation in 

semi-additive technology. In the fourth section, we illustrate the proposed approach with a numerical 

example. In the fifth section, we show the application of the proposed approach for the set of bank 

branches in China, and in the sixth section, we bring the results of the research. 

 

2 Semi-Additive Production Technology 
 

Suppose that there are 𝑛 𝐷𝑀𝑈𝑠 producing the same set of 𝑠 outputs by consuming the same set of 𝑚 

inputs. Let 𝐷𝑀𝑈𝑗, 𝑗 = 1, … , 𝑛, denote 𝑗𝑡ℎ observed DMUs and its 𝑖𝑡ℎ input and 𝑟𝑡ℎ output from this 

DMU are denoted by 𝑥𝑖𝑗, 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛, and 𝑦𝑟𝑗, 𝑟 = 1, … , 𝑠, 𝑗 = 1, … , 𝑛, respectively. We 

define the possibility of general production as follows. 

𝑇 = {(𝑥, 𝑦)|𝑥 𝐶𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦 }.  

Ghiyasi [13] introduced semi-additive production technology. To introduce the above technology, we 

first introduce the following assumptions in creating production technology. 

S1. Feasibility of observations. 

This assumption implies that all observed DMUs belong to the production technology, i.e. 

(𝑥𝑗, 𝑦𝑗) ∈ 𝑇, 𝑗 = 1, … , 𝑛. 

S2. Free (strong) disposability. 

This assumption states that if (𝑥1, 𝑦1) ∈ 𝑇 and if a point (𝑥2, 𝑦2) is such that, 𝑥2 ≥ 𝑥1, 𝑦1 ≥ 𝑦2, then 

(𝑥2, 𝑦2) ∈ 𝑇. 

S3. Convexity. 

This assumption states that if (𝑥1, 𝑦1) ∈ 𝑇, (𝑥2, 𝑦2) ∈ 𝑇, then 𝜇(𝑥1, 𝑦1) + (1 − 𝜇)(𝑥2, 𝑦2) for all 𝜇 ∈

(0,1). 

S4. Radial rescaling. 

This assumption states that if (𝑥, 𝑦) ∈ 𝑇, then 𝜇(𝑥, 𝑦) ∈ 𝑇, for all 𝜇 ≥ 0. 

S5. Semi-additive. 

This assumption implies that (𝑥𝑖, 𝑦𝑖) ∈ 𝑇, (𝑥𝑗, 𝑦𝑗) ∈ 𝑇, then ((𝑥𝑖, 𝑦𝑖) + (𝑥𝑗, 𝑦𝑗)) ∈ 𝑇, that 𝑖 ≠ 𝑗. 

S6. Minimum extrapolation. 

This assumption states that the set 𝑇 is the smallest set that holds in the above assumptions. In other 

words, the 𝑇 set is the subscription of all sets of production technologies that have the above proper-

ties. 

We now consider the power set corresponding to the set 𝐽 = {1, … , 𝑛} as the set  𝑃(𝐽). This set in-

cludes all subsets of the 𝐽 set. Let set  𝐽′ =  𝑃(𝐽)/∅. It should be noted that the set  𝐽′ is the power set 

corresponding to the set 𝐽 that includes all subsets of the set 𝐽 except the empty set namely this pro-

duction technology does not include the origin. ∅, denote empty set. The set 𝐽′ has 2𝑛 members.  

By accepting the assumptions S1-S6, we can present the PPS in semi-additive technology as follows. 

 

𝑇𝑆𝐴 = {(𝑥, 𝑦)| ∑ 𝜆𝑗𝑗∈𝐽′ 𝑥𝑗 ≤ 𝑥, ∑ 𝜆𝑗𝑗∈𝐽′ 𝑦𝑗 ≥ 𝑦, ∑ 𝜆𝑗𝑗∈𝐽′ = 1, 𝜆𝑗 ≥ 0, 𝑗 ∈ 𝐽′ } (1) 
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The efficiency evaluation model of the unit under evaluation, i.e. 𝐷𝑀𝑈𝑘 = (𝑥𝑘 , 𝑦𝑘), in the input ori-

ented based on semi-additive technology, will be as follows. 

min  {𝜃𝑆𝐴|(𝜃𝑆𝐴𝑥𝑜, 𝑦𝑜) ∈ 𝑇𝑆𝐴}. (2) 

 

Now according to the definition of the set 𝑇𝑆𝐴, model (2) will be as follows. 

min 𝜃𝑆𝐴 

              𝑆. 𝑡.  ∑ 𝜆𝑗𝑗∈𝐽′ 𝑥𝑖𝑗 ≤ 𝜃𝑆𝐴𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚,    

         ∑ 𝜆𝑗𝑗∈𝐽′ 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 , 𝑟 = 1, … , 𝑠,                 

         ∑ 𝜆𝑗𝑗∈𝐽′ = 1,  𝜆𝑗 ≥ 0, 𝑗 = 1, . . , 𝑛. 

(3) 

 

As can be seen, model (3) has 𝑚 + 𝑠 + 1 constraints and 2𝑛 variables. To solve model (3), we must 

form all the aggregated DMUs corresponding to the observed DMUs. As stated earlier. In this regard, 

we must create all aggregated DMUs from the set 𝐽′ or the power set corresponding to the set 𝐽, which 

includes all subsets of the set 𝐽 except the empty set. Therefore, it is very difficult to calculate the col-

lective inputs and outputs for each member of the set 𝐽′. In this regard, Ghiyasi and Cook [14] showed 

that we can present the PPS under semi-additive condition, i.e. 𝑇𝑆𝐴, as follows. 

𝑇𝑛𝑒𝑤
𝑆𝐴 = {(𝑥, 𝑦)| ∑ 𝜆𝑗𝑥𝑗

𝑛
𝑗=1 ≤ 𝑥, ∑ 𝜆𝑗𝑦𝑗

𝑛
𝑗=1 ≥ 𝑦, ∑ 𝜆𝑗 ≥ 1,𝑛

𝑗=1  0 ≤ 𝜆𝑗 ≤ 1, 𝑗 = 1, … , 𝑛}  (4) 

The efficiency evaluation model of the unit under evaluation, i.e. 𝐷𝑀𝑈𝑘 = (𝑥𝑘 , 𝑦𝑘), in the input ori-

ented based on semi-additive technology based on the the new PPs namely 𝑇𝑛𝑒𝑤
𝑆𝐴  will be as follows. 

 

min {𝜃𝑛𝑒𝑤
𝑆𝐴 |(𝜃𝑛𝑒𝑤

𝑆𝐴 𝑥𝑜, 𝑦𝑜) ∈ 𝑇𝑛𝑒𝑤
𝑆𝐴 }.   (5) 

Now according to the definition of the set 𝑇𝑛𝑒𝑤
𝑆𝐴 , model (5) will be as follows. 

𝜃𝑛𝑒𝑤
𝑆𝐴 ∗

= min 𝜃𝑛𝑒𝑤
𝑆𝐴  

𝑆. 𝑡.  ∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝜃𝑛𝑒𝑤

𝑆𝐴 𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚,            

        ∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜, 𝑟 = 1, … , 𝑠,                                                

        ∑ 𝜆𝑗
𝑛
𝑗=1 ≥ 1,  0 ≤ 𝜆𝑗 ≤ 1,, 𝑗 = 1, . . , 𝑛.      

(6) 

 

Definition 1. 𝐷𝑀𝑈𝑜 is called semi-additive efficiency in evaluation with model (6), if 𝜃𝑛𝑒𝑤
𝑆𝐴 ∗

= 1, 

otherwise it is called a semi-additive inefficient DMU. 

As can be seen, model (6) has 𝑚 + 𝑠 + 𝑛 + 1, constraints and only 𝑛 + 1 variables. To solve model 

(3), we no longer need to create all the aggregated DMUs corresponding to the observed DMUs, and 

the efficiency is calculated only on the basis of the existing observed DMUs. Model (6) in evaluating 

the efficiency of the unit under evaluation i.e. 𝐷𝑀𝑈𝑜 = (𝑥𝑜, 𝑦𝑜), significantly reduces the amount of 

calculations compared to model (1). Ghiyasi and Cook [14] showed that 𝑇𝑆𝐴 = 𝑇𝑛𝑒𝑤
𝑆𝐴 .  

For illustrate PPS under semi-additive technology, we consider three DMUs as follows. 

𝐴 = (2, 0.5) ،𝐵 = (3, 2.5) ، and 𝐶 = (5, 3). 

In this case, we can form aggregated DMUs as follows. 
𝐷 = 𝐴 + 𝐵 = (5, 3), 𝐹 = 𝐴 + 𝐶 = (7, 3.5), 𝐺 = 𝐵 + 𝐶 = (8, 5.5), 𝐸 = 𝐴 + 𝐵 + 𝐶 = (10, 6). 

In the state one input (Input-axis) and one output (Output-axis), and all three original DMUs are effi-

cient. The PPS under constant returns to scale (CCR) property is the region restricted by the Input-

axis and the right-hand side of the line starting from the origin and passing the B (the dash–dot line). 

CRS technology is the biggest technology that includes all the other technologies. The bounded region 

by the Input-axis starting from 𝑥𝐴 and the segment A–B–C and the horizontal extension from B is 
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corresponding to the PPS of the BCC technology and has VRS property. The PPS under semi-additive 

assumption is bigger than the PPS of the BCC model and is bounded by the Input-axis starting from 

𝑥𝐴 passing the segment of A–B–G–E and horizontal extension from E. 

Now, consider DMU 𝐶. This DMU is efficient in variable returns to scale technology, while it is inef-

ficient in semi-additive technology. In order to evaluate the efficiency of this DMU, we can solve 

model (6). This model depicts DMU 𝐶 at point 𝐶1 on the efficiency frontier of the PPS corresponding 

to semi-additive technology. As shown in Fig. 1, the efficiency score is calculated as the ratio |
𝑂𝐶1

𝑋

𝑂𝐶𝑋| =

0.6. 𝐶𝑋 and 𝐶1
𝑋, represent the image of the points 𝐶 and 𝐶1 on the Input-axis, respectively. 

 

3 Fixed Cost Allocation in Semi-Additive Technology 
 
Suppose we have 𝑛 decision units as 𝐷𝑀𝑈𝑗 = (𝑋𝑗, 𝑌𝑗), 𝑗 = 1, … , 𝑛. The input and output vectors cor-

responding to 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛 are as 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) and 𝑌𝑗 = (𝑦1𝑗 , … , 𝑦𝑠𝑗)  

respectively. 

As stated in the second section, the efficiency score of the unit under evaluation, i.e.  𝐷𝑀𝑈𝑘 =

(𝑥𝑘 , 𝑦𝑘) in semi-additive technology can be obtained using model (6).  

Given that model (6) is a linear programming model, we can also get the efficiency score of the unit 

under evaluation based on the dual of this model as follows. 

 

           max ∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑘 + 𝑢𝑘 − ∑ 𝑤𝑗
𝑘𝑛

𝑗=1   

𝑠. 𝑡.   ∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 + 𝑢𝑘 − 𝑤𝑗

𝑘 ≤ 0,        𝑗 = 1, . . , 𝑛,              

        ∑ 𝑣𝑖
𝑘𝑥𝑖𝑘 = 1𝑚

𝑖=1 ,                                                                                   

                𝑣𝑖
𝑘 ≥ 0, 𝑢𝑟

𝑘 ≥ 0,    𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,  

                𝑢𝑘 ≥ 0,  𝑤𝑗
𝑘 ≥ 0, 𝑗 = 1, . . , 𝑛. 

(7) 

 

In the above model, the multiples 𝑢𝑟
𝑘, 𝑣𝑖

𝑘 are related to output, input constraints of model (6) respec-

tively. Also, we consider the multiples 𝑢𝑘, 𝑤𝑗
𝑘 corresponding to constraints ∑ 𝜆𝑗

𝑛
𝑗=1 ≥ 1, 𝜆𝑗 ≤ 1, 𝑗 =

1, . . , 𝑛, in model (6), respectively.  

Model (7) is presented in the fractional form as follows. 

           𝜃𝑘
𝑆𝐴𝐹∗

= max 
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑘+𝑢𝑘−∑ 𝑤𝑗

𝑘𝑛
𝑗=1

∑ 𝑣𝑖
𝑘𝑥𝑖𝑘

𝑚
𝑖=1

  

                𝑠. 𝑡.  
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗

𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1

≤ 1,      𝑗 = 1, . . , 𝑛,                             

                          𝑣𝑖
𝑘 ≥ 𝜖, 𝑢𝑟

𝑘 ≥ 𝜖,       𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,                

                           𝑢𝑘 ≥ 𝜖,  𝑤𝑗
𝑘 ≥ 𝜖,     𝑗 = 1, . . , 𝑛. 

(8) 

 

Definition 2. 𝐷𝑀𝑈𝑘 is called semi-additive efficiency in evaluation with model (7), if the optimal 

objective function score of model (7) is equal to one, otherwise it is called a semi-additive inefficient 

DMU. 
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         Fig. 1: Semi-Additive Technology. 

 

Definition 3. 𝐷𝑀𝑈𝑘 is called semi-additive efficiency in evaluation with model (8), if 𝜃𝑘
𝑆𝐴𝐹∗

= 1, 

otherwise it is called a semi-additive inefficient DMU. 

Suppose that a fixed cost R is to be distributed among all  𝐷𝑀𝑈𝑠. Then, we can allocate amount a 

cost 𝑟𝑗, 𝑗 = 1, … , 𝑛, to each 𝐷𝑀𝑈𝑗, 𝑗 = 1, … , 𝑛, in a way that ∑ 𝑟𝑗
𝑛
𝑗=1 = 𝑅. If the shared cost R is treat-

ed as a new input, then the efficiency for 𝐷𝑀𝑈𝑘, becomes 

𝐸𝑘
𝑆𝐴 =

∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑘 + 𝑢𝑘 − ∑ 𝑤𝑗
𝑘𝑛

𝑗=1

∑ 𝑣𝑖
𝑘𝑥𝑖𝑘

𝑚
𝑖=1 + 𝑣𝑚+1

𝑘 𝑟𝑘
𝑘  

 

For calculate the post-allocation efficiency score for 𝐷𝑀𝑈𝑘, we consider the following fractional 

mathematical program. 

             𝜃𝑘−𝑐𝑜
𝑆𝐴𝐹 ∗

= max 
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑘+𝑢𝑘−∑ 𝑤𝑗

𝑘𝑛
𝑗=1

∑ 𝑣𝑖
𝑘𝑥𝑖𝑘

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑘
𝑘   

                 𝑠. 𝑡.  𝐸𝑗
𝑆𝐴 ≤

∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗
𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑗
𝑘 ≤ 1,      𝑗 = 1, . . , 𝑛,   

                         ∑ 𝑟𝑗
𝑘𝑛

𝑗=1 = 𝑅, 𝑟𝑗
𝑘 ≥ 0,     𝑗 = 1, . . , 𝑛, 

                          𝑣𝑖
𝑘 ≥ 𝜖, 𝑢𝑟

𝑘 ≥ 𝜖,       𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,                                   

                           𝑢𝑘 ≥ 𝜖,  𝑤𝑗
𝑘 ≥ 𝜖,     𝑗 = 1, . . , 𝑛. 

(9) 

 

In model (9), 0 ≤ 𝐸𝑗
𝑆𝐴 ≤ 1, is a parameter. At first, for solving model (9), Initially, we consider the 

value 𝐸𝑗
𝑆𝐴, as the semi-additive efficiency score of 𝐷𝑀𝑈𝑗 which is obtained by solving model (8). In 

other words, we can put 𝐸𝑗
𝑆𝐴 = 𝜃𝑗−𝑐𝑜

𝑆𝐴𝐹 ∗
. 𝜃𝑗−𝑐𝑜

𝑆𝐴𝐹 ∗
is the optimal objective function of model (8), when we 

evaluate 𝐷𝑀𝑈𝑗.  

Note that model (9) is a non-linear program. In order to convert model (9) into a linear program, we 

use the Charnes–Cooper transformation and let 𝑣𝑚+1𝑟𝑗
𝑘 be a new variable as �̃�𝑗

𝑘. 

           max ∑ �̂�𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑘 + �̂�𝑘 − ∑ �̂�𝑗
𝑘𝑛

𝑗=1   

𝑠. 𝑡.  ∑ �̂�𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑗 − (∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 + �̃�𝑗

𝑘) + �̂�𝑘 − �̂�𝑗
𝑘 ≤ 0,        𝑗 = 1, . . , 𝑛,  

        ∑ �̂�𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑗 − 𝐸𝑗
𝑆𝐴(∑ 𝑣𝑖

𝑘𝑥𝑖𝑗
𝑚
𝑖=1 + �̃�𝑗

𝑘) + �̂�𝑘 − �̂�𝑗
𝑘 ≥ 0,        𝑗 = 1, . . , 𝑛,                

        ∑ 𝑣𝑖
𝑘𝑥𝑖𝑘 + �̃�𝑘

𝑘 = 1𝑚
𝑖=1 ,                                                                                   

        ∑ �̃�𝑗
𝑘𝑛

𝑗=1 = 𝑣𝑚+1
𝑘 𝑅, 𝑟𝑗

𝑘 ≥ 0,     𝑗 = 1, . . , 𝑛, 

                𝑣𝑖
𝑘 ≥ 𝜖, �̂�𝑟

𝑘 ≥ 𝜖,    𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠,  

                �̂�𝑘 ≥ 𝜖, 𝑣𝑚+1 ≥ 𝜖,  �̂�𝑗
𝑘 ≥ 𝜖, 𝑗 = 1, . . , 𝑛. 

(10) 
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After solving model (10), suppose we obtain a set of optimal values of �̂�𝑟
𝑘∗

, �̂�𝑘
∗
, 𝑤𝑗

𝑘∗
,  𝑣𝑖

𝑘∗
, 𝑣𝑚+1

∗
, 

𝑟𝑗
𝑘∗

, corresponding to 𝐷𝑀𝑈𝑘. Based on this set, the semi-additive k-cross efficiency for each 𝐷𝑀𝑈𝑗, 

𝑗 = 1, . . , 𝑛, is calculated as follows. 

𝐸𝑗
𝑆𝐴𝑘

=
∑ �̂�𝑟

𝑘∗𝑠
𝑟=1 𝑦𝑟𝑗 + �̂�𝑘

∗ − ∑ �̂�𝑗
𝑘∗𝑛

𝑗=1

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1 + �̃�𝑗

𝑘∗  
(11) 

 

Therefore, the semi-additive cross-efficiency score corresponding to 𝐷𝑀𝑈𝑗, 𝑗 = 1, . . , 𝑛,  is calculated 

as the average of all of its the semi-additive k-cross efficiencies as follows. 

𝐸𝑗
𝑆𝐴 =

1

𝑛
∑ 𝐸𝑗

𝑆𝐴𝑘
=

1

𝑛

𝑛

𝑘=1
∑

∑ �̂�𝑟
𝑘∗𝑠

𝑟=1 𝑦𝑟𝑗 + �̂�𝑘
∗ − ∑ �̂�𝑗

𝑘∗𝑛
𝑗=1

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1 + �̃�𝑗

𝑘∗

𝑛

𝑘=1
 

(12) 

 

For the fixed cost allocation problem in the above strategy, we consider all DMUs. We determine the 

optimal solution of models (9) or (10) for each 𝐷𝑀𝑈𝑘,  and its maximum efficiency provided that the 

semi-additive cross-efficiency score of all DMUs do not be less of their current level. Now, we pre-

sent an interactive algorithm to obtain an optimal fixed cost allocation scheme. In this regard, we first 

obtain the semi-additive cross-efficiency score corresponding to each of the DMUs based on model 

(10) and the value of parameter 𝐸𝑗
𝑆𝐴 in the first step of the proposed algorithm is equal to the optimal 

objective function score of model (8) in efficiency evaluation of 𝐷𝑀𝑈𝑗, 𝑗 = 1, . . , 𝑛.  

 

Table 1: An Algorithm for the Fixed Cost Allocation Process in Semi-Additive Technology. 

Step One:  Determine the efficiency scores of all DMUs. 

Solve model (8) and obtain a set of semi-additive efficiency scores 𝜃𝑗
𝑆𝐴𝐹∗

.  Let p = 1, 𝐸𝑗
𝑆𝐴 =

𝐸𝑗
𝑆𝐴(1) = 𝜃𝑗

𝑆𝐴𝐹∗∗
, and go to the second step. 

Step Two: Determine the semi-additive cross-efficiency score of all DMUs. 

Solve model (10) for each 𝐷𝑀𝑈𝑘. Let  

𝐸𝑗
𝑆𝐴(𝑝 + 1) =

1

𝑛
∑

∑ �̂�𝑟
𝑘∗

(𝑝)𝑠
𝑟=1 𝑦𝑟𝑗+�̂�𝑘

∗(𝑝)−∑ �̂�𝑗
𝑘∗

(𝑝)𝑛
𝑗=1

∑ �̂�𝑖
𝑘∗

(𝑝)𝑥𝑖𝑗
𝑚
𝑖=1 +�̃�𝑗

𝑘∗
(𝑝)

𝑛
𝑘=1  , that �̂�𝑟

𝑘∗
(𝑝), �̂�𝑘

∗(𝑝), �̂�𝑗
𝑘∗

(𝑝), 𝑣𝑖
𝑘∗

(𝑝),  

𝑣𝑚+1
𝑘 ∗

(𝑝), �̃�𝑗
𝑘∗

(𝑝), represent optimal values for �̂�𝑟
𝑘, �̂�𝑘, �̂�𝑗

𝑘, 𝑣𝑖
𝑘, 𝑣𝑚+1

𝑘 , �̃�𝑗
𝑘, when  𝐸𝑗

𝑆𝐴 = 𝐸𝑗
𝑆𝐴(𝑝), re-

spectively. Go to the third step. 

Step Three: Check the termination condition. 

If |𝐸𝑗
𝑆𝐴(𝑝 + 1) − 𝐸𝑗

𝑆𝐴(𝑝)| ≥ 𝜖, for some j, where 𝜖 is a specified small positive value, in this case, let 

𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(𝑝 + 1), and go to step two. If |𝐸𝑗
𝑆𝐴(𝑝 + 1) − 𝐸𝑗

𝑆𝐴(𝑝)| < 𝜖, for all j, then go to the fourth 

step. 

Step Fourth: Determine the allocated fixed cost. 

For each 𝐷𝑀𝑈𝑘, as the unit under evaluation, let the optimal allocation plan follows. 

𝑟𝑗
𝑘 =

�̃�𝑗
𝑘∗

(𝑝+1)

�̂�𝑚+1
𝑘 ∗

(𝑝+1)
, 𝑗 = 1, . . , 𝑛, we select the average of this allocations, that is 

�̅�𝑗 =
1

𝑛
∑

�̃�𝑗
𝑘∗

(𝑝+1)

�̂�𝑚+1
𝑘 ∗

(𝑝+1)

𝑛
𝑘=1  , 𝑗 = 1, . . , 𝑛, as the final amount of fixed cost R which is distributed to 𝐷𝑀𝑈𝑗, 

𝑗 = 1, . . , 𝑛. 

 

In the next steps, we solve the model (10) for 𝐷𝑀𝑈𝑘 and get the semi-additive cross-efficiency score 
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of all DMUs based on equation (12). This process continues until the termination condition of the 

algorithm is met. We consider the termination condition of the algorithm as |𝐸𝑗
𝑆𝐴𝑛𝑒𝑤

− 𝐸𝑗
𝑆𝐴𝑜𝑙𝑑

| ≤ 𝜖, 

this implies that the semi-additive cross-efficiency score for each of 𝐷𝑀𝑈𝑗, 𝑗 = 1, . . , 𝑛, does not im-

prove. At the end of the proposed algorithm, we obtain a fair allocation of a fixed cost among all 

DMUs. We now present the proposed algorithm as follows. 

 

Theorem 1. Model (9) is always feasible for each 𝐷𝑀𝑈𝑘. 

Proof. At first, we show that when 𝑝 = 1, or equivalently, when 𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(1) = 𝜃𝑗−𝑐𝑜
𝑆𝐴𝐹 ∗

, model (9) is 

feasible. Suppose 𝑢𝑟
𝑘∗

, 𝑢𝑘
∗, 𝑤𝑗

𝑘∗
, 𝑣𝑖

𝑘∗
, 𝑣𝑚+1

𝑘 ∗
, �̃�𝑗

𝑘∗
, be an optimal solution to the semi-additive frac-

tional model (8) in evaluation 𝐷𝑀𝑈𝑘. In this case, we have  

𝜃𝑘
𝑆𝐴𝐹∗

=
∑ 𝑢𝑟

𝑘∗𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘

∗−𝑤𝑗
𝑘∗

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1

, 𝑘 = 1, . . , 𝑛. Now we put 𝑣𝑖
∗ = min

1≤𝑘≤𝑛
{𝑣𝑖

𝑘∗
}, 𝑢𝑟

∗ = max
1≤𝑘≤𝑛

{𝑢𝑟
𝑘∗

}, 

𝑢∗ = max
1≤𝑘≤𝑛

{𝑢𝑘
∗}, 𝑤𝑗

∗ = min
1≤𝑘≤𝑛

{𝑤𝑗
𝑘∗

}, Then we have 
∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗+𝑢∗−𝑤𝑗

∗

∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑚
𝑖=1

≥ 𝜃𝑗
𝑆𝐴𝐹∗

, therefore 

1

𝜃𝑗
𝑆𝐴𝐹∗ (∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢∗ − 𝑤𝑗

∗) − ∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑚
𝑖=1 ≥ 0, 𝑗 = 1, . . , 𝑛. If we put 𝑟𝑗

𝑘 =
𝑅

𝑛
, 𝑣𝑖

𝑘 = 𝑣𝑖
∗, 𝑢𝑟

𝑘 = 𝑢𝑟
∗, 

𝑤𝑗
𝑘 = 𝑤𝑗

∗, and 𝑣𝑚+1
𝑘  be any value between max {

𝑛

𝑅
max

1≤𝑗≤𝑛
{(∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢∗ − 𝑤𝑗

∗), 0}},  

𝑛

𝑅
min {

1

𝜃𝑗
𝑆𝐴𝐹∗ (∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢∗ − 𝑤𝑗

∗) − ∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑚
𝑖=1 }, then 

 ∑ 𝑟𝑗
𝑘𝑛

𝑗=1 = 𝑅, 𝜃𝑗
𝑆𝐴𝐹∗

≤
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗

𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑗
𝑘 ≤ 1. This indicates that model (9) is feasible when 

𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(1). Now, we prove that if 𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(𝑝), and model (9) be feasible then when 𝐸𝑗
𝑆𝐴 =

𝐸𝑗
𝑆𝐴(𝑝 + 1), model (9) is feasible also. Suppose {𝑢𝑟

𝑘∗
(𝑝), 𝑢𝑘

∗(𝑝), 𝑤𝑗
𝑘∗

(𝑝), 𝑣𝑖
𝑘∗

(𝑝), 𝑣𝑚+1
𝑘 ∗

(𝑝), 𝑟𝑗
𝑘∗

(𝑝)} 

show an optimal solution to model (9) for 𝐷𝑀𝑈𝑘 when 𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(𝑝), then we have 𝐸𝑗
𝑆𝐴(𝑝 + 1) =

1

𝑛
∑

∑ 𝑢𝑟
𝑘∗

(𝑝)𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘

∗(𝑝)−∑ 𝑤𝑗
𝑘∗

(𝑝)𝑛
𝑗=1

∑ 𝑣𝑖
𝑘∗

(𝑝)𝑥𝑖𝑗
𝑚
𝑖=1 +𝑣𝑚+1

𝑘 ∗
𝑟𝑗

𝑘
∗
(𝑝)

𝑛
𝑘=1 . Put 𝑣𝑖

∗ = min
1≤𝑘≤𝑛

{𝑣𝑖
𝑘∗

(𝑝)}, 𝑢𝑟
∗ = max

1≤𝑘≤𝑛
{𝑢𝑟

𝑘∗
(𝑝)},𝑢∗ =

max
1≤𝑘≤𝑛

{𝑢𝑘
∗(𝑝)}, 𝑤𝑗

∗ = min
1≤𝑘≤𝑛

{𝑤𝑗
𝑘∗

(𝑝)}. Then we have 
∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗+𝑢∗−𝑤𝑗

∗

∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑚
𝑖=1

≥ 𝐸𝑗
𝑆𝐴(𝑝 + 1), therefore  

1

𝐸𝑗
𝑆𝐴(𝑝+1)

(∑ 𝑢𝑟
∗𝑠

𝑟=1 𝑦𝑟𝑗 + 𝑢∗ −  𝑤𝑗
∗) − ∑ 𝑣𝑖

∗𝑥𝑖𝑗
𝑚
𝑖=1 ≥ 0, 𝑗 = 1, . . , 𝑛. If we put 𝑟𝑗

𝑘 =
𝑅

𝑛
, 𝑣𝑖

𝑘 = 𝑣𝑖
∗, 

𝑢𝑟
𝑘 = 𝑢𝑟

∗, 𝑢𝑘 = 𝑢∗, 𝑤𝑗
𝑘 = 𝑤𝑗

∗, and 𝑣𝑚+1
𝑘  be any value between  

max {
𝑛

𝑅
max

1≤𝑗≤𝑛
{(∑ 𝑢𝑟

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢∗ − 𝑤𝑗

∗), 0}} , 
𝑛

𝑅
min {

1

𝐸𝑗
𝑆𝐴(𝑝+1)

(∑ 𝑢𝑟
∗𝑠

𝑟=1 𝑦𝑟𝑗 + 𝑢∗ − 𝑤𝑗
∗) −

∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑚
𝑖=1 }, then ∑ 𝑟𝑗

𝑘𝑛
𝑗=1 = 𝑅, 𝐸𝑗

𝑆𝐴(𝑝 + 1) ≤
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗

𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑗
𝑘 ≤ 1, 𝑗 = 1, . . , 𝑛, it show that  

{𝑢𝑟
𝑘 , 𝑢𝑘, 𝑤𝑗

𝑘 , 𝑣𝑖
𝑘, 𝑣𝑚+1

𝑘 , 𝑟𝑗
𝑘}, is a feasible solution to model (9) when 𝐸𝑗

𝑆𝐴 = 𝐸𝑗
𝑆𝐴(𝑝 + 1). 

Therefore, model (9) is always feasible for any DMU and the proof is complete. ∎ 

Theorem 2. For each, 𝑗 = 1, . . , 𝑛, then 𝐸𝑗
𝑆𝐴(𝑝) are non-decreasing for 𝑝 = 1, . . , 𝑛,  and 𝜃𝑗

𝑆𝐴𝐹∗
≤

𝐸𝑗
𝑆𝐴(𝑝) ≤ 1, that 𝜃𝑗

𝑆𝐴𝐹∗
 is semi-additive efficiency score corresponding to 𝐷𝑀𝑈𝑗, 𝑗 = 1, . . , 𝑛. 

Proof. Suppose {𝑢𝑟
𝑘∗

(𝑝), 𝑢𝑘
∗(𝑝), 𝑤𝑗

𝑘∗
(𝑝), 𝑣𝑖

𝑘∗
(𝑝), 𝑣𝑚+1

𝑘 ∗
(𝑝), 𝑟𝑗

𝑘∗
(𝑝)} show an optimal solu-

tion to model (9) for 𝐷𝑀𝑈𝑘 when 𝐸𝑗
𝑆𝐴 = 𝐸𝑗

𝑆𝐴(𝑝), then, we have 
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𝐸𝑗
𝑆𝐴(𝑝) ≤ 𝐸𝑗

𝑆𝐴(𝑝 + 1) =
1

𝑛
∑

∑ 𝑢𝑟
𝑘∗

(𝑝)𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘

∗(𝑝)−∑ 𝑤𝑗
𝑘∗

(𝑝)𝑛
𝑗=1

∑ 𝑣𝑖
𝑘∗

(𝑝)𝑥𝑖𝑗
𝑚
𝑖=1 +𝑣𝑚+1

𝑘 ∗
𝑟𝑗

𝑘
∗
(𝑝)

≤ 1𝑛
𝑘=1 . Thus, for any 𝑗 =

1, . . , 𝑛, 𝐸𝑗
𝑆𝐴(𝑝), 𝑝 = 1, . . , 𝑛, are non-decreasing, and satisfy 𝜃𝑗

𝑆𝐴𝐹∗
≤ 𝐸𝑗

𝑆𝐴(𝑝) ≤ 1, and the proof is 

complete. ∎ 

Theorem 3. If we consider the fixed cost as an additional input, then for all 𝑝 ≥ 1, the self-evaluated 

efficiency, or the optimal objective of model (9) for each 𝐷𝑀𝑈𝑘, 𝑘 = 1, . . , 𝑛, is equals one, namely, 

𝜃𝑘−𝑐𝑜
𝑆𝐴𝐹 ∗

= 1. 

Proof. We consider the following program 

       𝐸𝑘
𝑆𝐴 = max 

∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑘+𝑢𝑘−∑ 𝑤𝑗
𝑘𝑛

𝑗=1

∑ 𝑣𝑖
𝑘𝑥𝑖𝑘

𝑚
𝑖=1

  

                   𝑠. 𝑡.  𝐸𝑗
𝑆𝐴 ≤

∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗
𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1

≤ 1,      𝑗 = 1, . . , 𝑛,   

                           𝑣𝑖
𝑘 ≥ 𝜖, 𝑢𝑟

𝑘 ≥ 𝜖,       𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,                                   

                           𝑢𝑘 ≥ 𝜖,  𝑤𝑗
𝑘 ≥ 𝜖,     𝑗 = 1, . . , 𝑛. 

(13) 

 

Suppose 𝑢𝑟
𝑘∗

, 𝑢𝑘
∗, 𝑤𝑗

𝑘∗
, 𝑣𝑖

𝑘∗
, be an optimal solution to model (13) in evaluation 𝐷𝑀𝑈𝑘. Then we have  

𝐸𝑘
𝑆𝐴 =

∑ 𝑢𝑟
𝑘∗𝑠

𝑟=1 𝑦𝑟𝑗+𝑢𝑘
∗−∑ 𝑤𝑗

𝑘∗𝑛
𝑗=1

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1, and 𝐸𝑗
𝑆𝐴 ≤

∑ 𝑢𝑟
𝑘∗𝑠

𝑟=1 𝑦𝑟𝑗+𝑢𝑘
∗−𝑤𝑗

𝑘∗

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1, 𝑗 = 1, . . , 𝑛. Also, we have 

𝐸𝑘
𝑆𝐴 =

∑ 𝑢𝑟
𝑘∗𝑠

𝑟=1 𝑦𝑟𝑗+𝑢𝑘
∗−∑ 𝑤𝑗

𝑘∗𝑛
𝑗=1

∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1

, and 
1

𝐸𝑗
𝑆𝐴 (∑ 𝑢𝑟

𝑘∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢𝑘

∗ − 𝑤𝑗
𝑘∗

)-𝐸𝑘
𝑆𝐴(∑ 𝑣𝑖

𝑘∗
𝑥𝑖𝑗

𝑚
𝑖=1 ) ≥

1

𝐸𝑗
𝑆𝐴 (∑ 𝑢𝑟

𝑘∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢𝑘

∗ − 𝑤𝑗
𝑘∗

)-∑ 𝑣𝑖
𝑘∗

𝑥𝑖𝑗
𝑚
𝑖=1 ≥ 0, for any 𝑗 = 1, . . , 𝑛. If we put 𝑟𝑘

𝑘 = 0, 𝑟𝑗
𝑘 =

𝑅

𝑛−1
, 

𝑢𝑟
𝑘 = 𝑢𝑘

∗, 𝑣𝑖
𝑘 = 𝐸𝑘

𝑆𝐴𝑣𝑖
𝑘∗

, 𝑢𝑘 = 𝑢𝑘
∗, 𝑤𝑗

𝑘 = 𝑤𝑗
𝑘∗

, and 𝑣𝑚+1
𝑘  be any value between  

max {
𝑛−1

𝑅
max

1≤𝑗≤𝑛
{((∑ 𝑢𝑘

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢𝑘

∗ − 𝑤𝑗
𝑘∗

) − 𝐸𝑘
𝑆𝐴(∑ 𝑣𝑖

𝑘∗
𝑥𝑖𝑗

𝑚
𝑖=1 )) − ,0}} , 

𝑛−1

𝑅
min {

1

𝐸𝑗
𝑆𝐴 ((∑ 𝑢𝑘

∗𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢𝑘

∗ − 𝑤𝑗
𝑘∗

) − 𝐸𝑘
𝑆𝐴(∑ 𝑣𝑖

𝑘∗
𝑥𝑖𝑗

𝑚
𝑖=1 )) , 0}, then ∑ 𝑟𝑗

𝑘𝑛
𝑗=1 = 𝑅,  

∑ 𝑢𝑟
𝑘𝑠

𝑟=1 𝑦𝑟𝑘+𝑢𝑘−∑ 𝑤𝑗
𝑘∗𝑛

𝑗=1

∑ 𝑣𝑖
𝑘𝑥𝑖𝑘

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑘
𝑘 = 1, 𝐸𝑗

𝑆𝐴 ≤
∑ 𝑢𝑟

𝑘𝑠
𝑟=1 𝑦𝑟𝑗+𝑢𝑘−𝑤𝑗

𝑘

∑ 𝑣𝑖
𝑘𝑥𝑖𝑗

𝑚
𝑖=1 +𝑣𝑚+1

𝑘 𝑟𝑗
𝑘 ≤ 1, 𝑗 = 1, . . , 𝑛, it show that  

{𝑢𝑟
𝑘 , 𝑢𝑘, 𝑤𝑗

𝑘 , 𝑣𝑖
𝑘, 𝑣𝑚+1

𝑘 , 𝑟𝑗
𝑘}, is a feasible solution to model (9) that makes 𝐷𝑀𝑈𝑘 has efficiency 

score of one. ∎ 

When algorithm terminates, the cross-efficiency score corresponding to for any 𝐷𝑀𝑈𝑗,  𝑗 = 1, . . , 𝑛, is 

equal to one. Also, all efficient DMUs become efficient after the fixed cost allocation, in the event 

that we consider the amounts of fixed cost allocated as an additional input for all DMUs. 

 

4 Numerical Example 
In this section, we use the proposed approach in this paper for the data set in Table 2. This data in-

cludes 12 DMUs, each with three inputs and outputs. This data set was previously used in Cook and 

Kress [7], Beasley [4], and Cook and Zhu [8]. As in Beasley [4]. We allocate a fixed cost of 100 

among the 12 DMUs. The last column of Table 2 shows the efficiency scores of each DMUs based on 

constant returns to scale, variable returns to scale, and semi-additive technologies in the input orient-

ed. In this paper, considering that the proposed approach is based on a semi-additive technology, we 

examine the results of this model. As shown in the last column of Table 2, units 4, 5, 8, 9, 11, and 12 
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are efficient and the other units are inefficient. We now use the algorithm presented in section 3 to 

find an optimal fixed cost allocation. For this purpose, we set the value 𝜖 = 10−6. Table 3 shows the 

specific fixed cost values based on equation (11) in iteration 13. The last row of Table 3 shows the 

amount of fixed costs allocated to 12 DMUs. If we increase the number of iterations of the algorithm, 

we can obtain a fairer fixed cost allocation. Table 4 shows the specific fixed cost values based on 

equation (11) at the end of the algorithm after 55 iterations. As can be seen, the largest allocated cost 

is related to DMU 9 and the lowest fixed cost is related to DMUs 1 and 7, which is equal to zero. In 

Table 5, we compare the results of the proposed approach in this paper for the allocation of fixed costs 

with the results of other previous approaches that based on the constant returns to scale technology. 

But the proposed approach in this paper is presented in semi-additive technology. As previously stat-

ed, all 12 DMUs are efficient at the end of the algorithm, taking into account the specific fixed cost as 

a new input for all DMUs. As can be seen in semi-additive technology, we can obtain a different allo-

cation scheme than the proposed previous approaches in this field. As can be seen in Table 5, units 9 

and 11 have the same input, but based on the proposed approach in this paper, these units have differ-

ent specific fixed cost amounts. This is a logical result because these two units have different output 

levels. But based on the approach provided by Cook and Kress [7], they have the same amount of 

specific fixed cost. We can have similar interpretations for DMUs 10 and 12. The proposed approach 

in this paper may not lead to a unique cost allocation scheme. However, if we want to obtain a unique 

fixed cost allocation scheme, we can impose additional restrictions on the fixed cost amount allocated 

to the DMUs in model (9). For example, we can put 𝑟1
𝑘 = 6.78, 𝑟2

𝑘 = 7.21, 𝑟3
𝑘 = 6.83, 𝑟10

𝑘 = 10.08. 

In this case, by solving model (9), the values of fixed costs specific to other DMUs are obtained as: 

�̃�1 = 6.78, �̃�2 = 7.21, �̃�3 = 6.83, �̃�4 = 14.89, �̃�5 = 8.22, �̃�6 = 5.47, �̃�7 = 0, �̃�8 = 7.21, �̃�9 = 24.97, 

�̃�10 = 10.08, �̃�11 = 0.13,  �̃�12 = 8.21, which are different from the results obtained from previous 

approaches as Beasley [4], and Cook and Zhu [8], Du et al. [10] based on models based on constant 

returns to scale technology. 
 

Table 2: Numerical Example. 
DMU Input1 Input2 Input3 Output1 Output2 CCR 

efficiency 

BCC 

efficiency 

Semi 

efficiency 

1 350 39 9 67 751 0.7567 0.8292 0.8292 

2 298 26 8 73 611 0.923 0.9348 0.9348 

3 422 31 7 75 584 0.747 0.7483 0.7483 

4 281 16 9 70 665 1 1 1 

5 301 16 6 75 445 1 1 1 

6 360 29 17 83 1070 0.9612 1 0.9612 

7 540 18 10 72 457 0.8604 0.8889 0.8889 

8 276 33 5 78 590 1 1 1 

9 323 25 5 75 1074 1 1 1 

10 444 64 6 74 1072 0.8318 0.8333 0.8333 

11 323 25 5 25 350 0.3333 1 1 

12 444 64 6 104 1199 1 1 1 

 
Table 3 shows the cross cost fixed allocation scores obtained on the step fourth of proposed algorithm 

in repetition 13. Also, last row of Table 3 shows the amount of fixed cost R=100 distributed to all 

DMUs obtained on the step fourth of proposed algorithm in repetition 13.  
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Table 3: The Cross Cost Fixed Allocation (In Repetition 13). 

DMU The cross cost fixed allocation 

1 0.000 7.293 3.616 15.567 12.824 3.903 0.000 8.365 37.119 1.482 1.104 8.728 

2 0.000 6.794 2.746 16.225 11.693 6.624 0.000 6.676 38.990 1.305 0.973 7.975 

3 0.000 6.800 2.730 16.254 11.690 6.701 0.000 6.656 39.008 1.269 0.946 7.946 

4 0.000 6.781 2.780 16.166 11.698 6.471 0.000 6.714 38.955 1.378 1.027 8.032 

5 0.000 6.833 2.642 16.408 11.678 7.100 0.000 6.557 39.099 1.080 0.805 7.798 

6 0.000 6.686 3.026 15.732 11.733 5.345 0.000 6.994 38.697 1.912 1.425 8.452 

7 0.000 6.712 2.888 16.245 11.583 7.276 0.816 6.254 38.665 1.063 0.792 7.707 

8 0.000 6.798 2.734 16.248 11.691 6.685 0.000 6.660 39.004 1.277 0.952 7.953 

9 0.000 6.685 3.029 15.728 11.734 5.334 0.000 6.996 38.694 1.917 1.429 8.455 

10 0.000 6.685 3.028 15.727 11.732 5.337 0.000 6.994 38.695 1.918 1.427 8.457 

11 0.000 6.345 2.586 15.870 10.882 7.485 0.000 6.050 39.522 2.163 0.000 9.096 

12 6.473 12.522 6.373 14.289 16.242 0.000 0.000 15.245 14.444 0.000 14.413 0.000 

Mean 0.539 7.244 3.181 15.871 12.098 5.688 0.068 7.513 36.741 1.397 2.107 7.550 

 
Table 4 shows the final amount of fixed cost R=100 distributed to all DMUs obtained on the step 

fourth of proposed algorithm in final repetition. Also, last row of Table 3 shows the optimal amount 

of fixed cost R=100 distributed to all DMUs obtained on the step fourth of proposed algorithm when 

the algorithm stops. 

 

Table 4: The Optimal Cross Cost Fixed Allocation (At the End of the Algorithm). 

DMU The optimal cross cost fixed allocation 

1 0.000 6.926 3.149 15.867 12.179 4.744 0.000 7.376 38.336 1.517 2.018 7.889 

2 0.000 6.173 2.701 15.498 10.686 7.017 0.000 6.067 39.466 2.735 0.000 9.659 

3 0.000 6.172 2.701 15.498 10.686 7.016 0.000 6.067 39.466 2.736 0.000 9.660 

4 0.000 6.173 2.701 15.499 10.686 7.017 0.000 6.067 39.465 2.734 0.000 9.658 

5 0.000 6.171 2.701 15.496 10.685 7.014 0.000 6.066 39.466 2.738 0.000 9.662 

6 0.000 6.176 2.699 15.504 10.689 7.023 0.000 6.067 39.465 2.726 0.000 9.651 

7 0.000 6.171 2.701 15.496 10.685 7.014 0.000 6.066 39.466 2.738 0.000 9.662 

8 0.000 7.032 2.145 17.287 11.602 9.409 0.000 5.993 39.587 0.000 0.000 6.945 

9 0.000 7.032 2.146 17.287 11.603 9.408 0.000 5.994 39.586 0.000 0.000 6.946 

10 0.000 7.031 2.147 17.284 11.601 9.404 0.000 5.994 39.586 0.004 0.000 6.950 

11 0.000 7.032 2.145 17.287 11.601 9.410 0.000 5.992 39.587 0.000 0.000 6.945 

12 0.000 7.406 2.489 17.678 12.404 8.401 0.000 6.715 40.403 0.000 0.793 3.712 

Mean 0.000 6.624 2.535 16.307 11.259 7.740 0.000 6.205 39.490 1.494 0.234 8.111 

 
Table 5: Fixed Cost Allocation Results for the Different Approaches. 

DMU Our ap-

proach 

Feng et al. 

[12] 

cook and 

kress [7] 

beasly [4] cook and 

zhu [8] 

Du et al. 

[10] 

Li et al. 

[21] 

1 0 8.09 14.52 6.78 11.22 5.79 5.54 

2 6.624 7.36 6.74 7.21 0 7.95 7.53 

3 2.535 8.91 9.32 6.83 16.95 6.54 7.35 

4 16.307 6.94 5.6 8.47 0 11.1 7.87 

5 11.259 7.13 5.79 7.08 0 8.69 6.38 

6 7.74 9 8.15 10.06 15.43 13.49 11.5 

7 0 9.77 8.86 5.09 0 7.1 5.9 

8 6.205 7.41 6.26 7.74 0 6.83 7.77 

9 39.49 8.2 7.31 15.11 17.62 16.68 11.9 

10 1.494 10.21 10.08 10.08 21.15 5.42 11.38 

11 0.234 5.46 7.31 1.58 17.62 0 2.74 

12 8.111 11.52 10.08 13.97 0 10.41 14.14 
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5 Empirical Study 
In this section, we apply the proposed approach to data set was previously used in Li, et al. [21]. This 

data is involving a city commercial bank in Chengdu, Sichuan Province of China, which has 18 

branches. As stated in Li, et al. [21], the city commercial bank was charged 29 million CNY for in-

formation and technology maintenance. The headquarters of that city commercial bank intends to dis-

tribute the total maintenance charge among its 18 branches. We consider each branch is considered as 

a homogeneous and independent DMU, and the total fixed cost is R = 2900 units (1 unit = 10 thou-

sand CNY). Li et al. [21] consider three inputs and three outputs. 

The input and output variables have come in Table 6. Li et al. [21] consider the inputs as: staff (x1), 

that refers to human resource investment and manpower; Second input is fixed assets (x2), referring to 

the asset value of physical capital that can be used for business activities; Third input is operation 

costs (x3), that refers to the costs generated during the bank operations other than the labor costs. 

Outputs include deposit operating amount (y1), loan operating amount (y2) (i.e. total score of loans 

given by the bank), and revenue income (y3), that takes into account both interest income and non-

interest income. 

Table 6: Input and Output Variables Regarding Branches (Li et al. [21]). 

Input/output Variable Unit 

Input Staffs (x1) Person 

Fixed assets (x2) 10 thousand CNY 

Operation costs except for the 

labor costs (x3) 

10 thousand CNY 

Output Deposits (y1) 10 thousand CNY 

Loans (y2) 10 thousand CNY 

Income (y3) 10 thousand CNY 

 
The values of inputs and outputs of city commercial bank branches are given in Table 7. 

 

Table 7: The Dataset of 18 Branches of the City Commercial Bank (Li et al. [21]). 

DMU I1 I2 I3 O1 O2 O3 CCR 

efficiency 

BCC 

efficiency 

Semi 

efficiency 

1 62 1822 1361 140117 130288 5260 1 1 1 

2 80 1833 1565 213774 145761 10773 1 1 1 

3 129 3595 1378 194084 130556 8006 0.6245 0.6249 0.6249 

4 62 1978 333 87876 49454 4479 0.8173 1 1 

5 89 2138 549 107091 60872 5897 0.6766 0.697 0.697 

6 84 1910 704 97472 94310 3849 0.6672 0.8112 0.8112 

7 36 1234 840 114001 80019 5292 1 1 1 

8 172 4348 959 366423 306926 12479 1 1 1 

9 62 879 1253 107393 86485 5132 1 1 1 

10 53 2566 483 69691 43907 3869 0.5483 0.7478 0.7478 

11 92 1348 419 148458 87193 7234 1 1 1 

12 39 1229 513 83752 40046 3984 0.8343 1 1 

13 144 4640 1323 223539 211466 10655 0.7922 0.8177 0.7922 

14 47 2248 670 70555 65110 2205 0.6931 0.7967 0.7967 

15 39 1571 362 99143 66736 5271 1 1 1 

16 56 1635 669 112513 79366 5202 0.814 0.873 0.873 

17 34 939 867 87660 56157 3000 0.8962 1 1 

18 58 1807 419 88334 67160 4171 0.6994 0.8668 0.8668 
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Based on the data in Table 7, we have a series of CCR efficiencies through CCR model, as shown in 

the eighth column of Table 7. We can learn from Table 7 that seven bank branches are identified as 

efficient (1, 2, 7, 8, 9, 11, and 15), while the other eleven bank branches are inefficient. Based on the 

BCC model, as shown in the ninth column of Table 7. We can learn from Table 7 that ten bank 

branches are identified as efficient (1,2, 4, 7, 8, 9, 11, 12, 15, and 17), while the other eight bank 

branches are inefficient. In this paper, given that the proposed approach is based on a semi-additive 

technology, we consider the results in this technology. The results are similar to the results of BCC 

model, except that the efficiency score for the thirteen units of the two models are different. The effi-

ciency scores for unit thirteen in technologies variable returns to scale and semi-additive are equal to 

0.8177, 0.7922, respectively. Now, we apply the algorithm presented in section 3 to find an optimal 

fixed cost allocation. For this purpose, we set the value 𝜖 = 10−6. For comparison purposes, the fixed 

cost allocation scheme from Li et al. [20] are also listed in in Table 8. We have given the correspond-

ing rank for each unit based on the fixed cost allocated to each DMU based on both approaches. 

From Table 8, the fixed cost allocation scheme obtained from the proposed approach is feasible as 

each DMU is allocated a positive fixed cost. DMUs 8, 13 and 2 have the best rankings based on the 

approach presented in this paper, respectively. DMUs 8, 13 and 2 have the best rankings based on the 

approach presented in this paper and the proposed approach provided by Li et al. [21], respectively. 

The results of Li et al. [21] based on the constant returns to scale technology, but the proposed ap-

proach in this paper is presented in semi-additive technology. 

 

Table 8: Fixed Cost Allocation Results for the Different Approaches for Bank Branches. 

DMU Our ap-

proach 

Rank Li et al. 

[21] 

Rank DMU Our ap-

proach 

Rank Li et al. 

[21] 

Rank 

1 132.297 8 157.41 6 10 0.000 16 80.18 17 

2 297.140 3 287.63 3 11 248.044 4 197.79 5 

3 49.738 13 202.67 4 12 74.160 11 96.96 15 

4 91.821 10 107.2 14 13 304.743 2 293.7 2 

5 44.387 14 137.98 10 14 0.000 16 57.24 18 

6 58.190 12 110.81 12 15 227.663 5 140.81 9 

7 175.690 6 144.92 7 16 151.588 7 140.21 8 

8 896.739 1 416.6 1 17 28.476 15 81.78 16 

9 0.000 16 135.6 11 18 119.322 9 110.52 13 

 

Table 9 shows the final amount of fixed cost R=2900 distributed to all DMUs obtained on the step 

fourth of proposed algorithm in final repetition. Also, last row of Table 9 show the optimal amount of 

fixed cost R=2900 distributed to all DMUs obtained on the step fourth of proposed algorithm when 

the algorithm stops. 

 

6 Conclusion 
In this paper, we first introduce semi-additive technology by introducing the underlying assumptions 

for estimating the frontier of PPS. Also, we presented the performance evaluation model in semi-

additive technology in the form of fractions and multiples. In the following, we present an interactive 

process for fixed cost allocation based on the concept of cross-efficiency in DEA. The proposed ap-

proach is always feasible. Cross-efficiency scores in semi-additive technology corresponding to all 

DMUs are improved at each stage of the interactive process, and at the end of the algorithm, if the 

fixed cost amount assigned to each DMUs is added as a new input to all DMU, these units are effi-

cient in semi-additive technology. Although the proposed approach may not lead to a unique cost al-
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location plan, however, by imposing constraints on the corresponding cost amounts of some DMUs, 

we can obtain a unique cost allocation plan corresponding to each of the DMUs. The proposed algo-

rithm is convergent in the interactive process. Due to the linearization of models, it can be easily 

solved with conventional optimization software. As future work, we can use the proposed new models 

in semi-additive technology to determine the returns to scale class of DMUs. We can also obtain a 

fixed cost allocation scheme for new aggregate DMUs and extend the proposed approach to other data 

structures in DEA, such as a two-stage network structure. 

 

Table 9: The Optimal Cross Cost Fixed Allocation to Bank Branches (At the End of the Algorithm). 

D

M

U 

The optimal cross cost fixed allocation 

1 149.

389 

350.

307 

0.00

0 

79.5

46 

0.00

0 

0.00

0 

231.

281 

867.1

68 

0.0

00 

0.0

00 

229.

771 

103.

156 

265.

833 

0.0

00 

273.

084 

172.

090 

62.1

02 

116.

276 

2 114.

921 

317.

141 

0.00

0 

110.

324 

26.6

84 

0.00

0 

235.

252 

831.0

01 

0.0

00 

0.0

00 

282.

202 

147.

639 

142.

309 

0.0

00 

278.

826 

183.

071 

102.

417 

128.

213 

3 98.5

80 

287.

634 

0.00

0 

122.

801 

44.6

54 

17.7

35 

222.

985 

826.5

87 

0.0

00 

0.0

00 

305.

960 

152.

572 

122.

348 

0.0

00 

275.

083 

183.

261 

102.

581 

137.

222 

4 149.

388 

350.

307 

0.00

0 

79.5

46 

0.00

0 

0.00

0 

231.

281 

867.1

69 

0.0

00 

0.0

00 

229.

771 

103.

156 

265.

833 

0.0

00 

273.

084 

172.

090 

62.1

02 

116.

276 

5 149.

389 

350.

307 

0.00

0 

79.5

45 

0.00

0 

0.00

0 

231.

281 

867.1

69 

0.0

00 

0.0

00 

229.

770 

103.

155 

265.

835 

0.0

00 

273.

084 

172.

090 

62.1

01 

116.

275 

6 149.

388 

350.

307 

0.00

0 

79.5

46 

0.00

0 

0.00

0 

231.

281 

867.1

68 

0.0

00 

0.0

00 

229.

772 

103.

157 

265.

830 

0.0

00 

273.

084 

172.

090 

62.1

03 

116.

276 

7 166.

812 

345.

133 

0.00

0 

65.2

75 

0.00

0 

35.0

67 

133.

148 

928.8

86 

0.0

00 

0.0

00 

212.

838 

56.3

28 

397.

675 

0.0

00 

265.

054 

162.

266 

10.3

40 

121.

180 

8 168.

124 

376.

474 

0.00

0 

80.4

33 

0.00

0 

13.5

35 

240.

767 

698.7

85 

0.0

00 

0.0

00 

241.

709 

93.3

75 

338.

092 

0.0

00 

291.

940 

182.

134 

47.1

16 

127.

517 

9 122.

053 

244.

134 

113.

481 

93.9

87 

101.

446 

130.

447 

116.

531 

837.2

53 

0.0

00 

0.0

00 

280.

860 

44.1

91 

377.

743 

0.0

00 

172.

814 

136.

686 

1.71

2 

126.

662 

10 116.

011 

310.

044 

63.0

89 

100.

726 

67.1

80 

48.8

74 

170.

980 

810.7

74 

0.0

00 

0.0

00 

240.

448 

69.7

38 

379.

503 

0.0

00 

241.

481 

154.

270 

0.00

0 

126.

882 

11 167.

111 

342.

529 

26.4

00 

71.8

71 

16.7

24 

55.2

59 

196.

391 

988.0

52 

0.0

00 

0.0

00 

0.00

0 

49.3

09 

435.

637 

0.0

00 

259.

841 

163.

390 

0.00

0 

127.

487 

12 165.

073 

335.

341 

12.9

52 

62.4

86 

5.04

9 

43.7

96 

194.

138 

928.9

03 

0.0

00 

0.0

00 

208.

925 

0.00

0 

416.

916 

0.0

00 

252.

255 

155.

653 

0.00

0 

118.

512 

13 156.

248 

328.

616 

61.1

18 

90.8

18 

47.4

81 

81.6

14 

183.

226 

1054.

559 

0.0

00 

0.0

00 

277.

546 

55.0

60 

0.00

0 

0.0

00 

255.

206 

168.

711 

0.00

0 

139.

796 

14 141.

283 
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042 

101.

394 

82.4

97 

57.3

48 
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962 
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779 

968.1

56 

0.0

00 

0.0

00 

239.
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27.1

46 
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0.0

00 

173.

799 

131.

805 

0.00

0 
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393 

15 94.6

60 
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058 

115.

328 

110.
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125.
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109.
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07 

0.0

00 

0.0

00 

320.

075 

56.2

27 
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0.0

00 
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0 
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0 
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285 

16 93.2

79 
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113.
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070 
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385 

958.4

99 

0.0

00 

0.0

00 

315.
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55.4

06 
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028 

0.0

00 
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0.00

0 

0.00

0 
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17 86.5

45 
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130.

722 

110.
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105.

613 

113.
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553 
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04 

0.0

00 

0.0

00 
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59.9

59 
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521 
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00 
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0 
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00 

216.
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913 
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67 
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00 

0.0

00 
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55.3

00 

358.
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0.0

00 
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844 
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0 

0.00

0 

Me

an 
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297.
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38 
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21 

44.3

87 

58.1

90 
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39 

0.0

00 

0.0

00 
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60 

304.
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0.0

00 

227.
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76 
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