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Abstract
The advent of big data marks a profound shift in our epistemological framework, 
introducing a new knowledge paradigm where the social landscape is shaped by data 
processing, perceived as both comprehensive and natural. This transformative shift 
challenges traditional notions of human agency in societal understanding, positioning 
empirical quantification at the forefront of inquiry. Beyond philosophical implications, 
pragmatic challenges abound in big data research—from issues of commensuration 
and the influence of action grammars to the dominance of correlational over causal 
relationships, the prevalence of everyday data over historical archives, and the 
pervasive impact of algorithms on data ecosystems. This manuscript undertakes a 
comprehensive exploration of these challenges, proposing strategies for navigating 
them within emerging disciplines such as Digital Humanities, Social Computing, and 
Cultural Analysis. Methodologically anchored in constructivist principles and critical 
discourse analysis (CDA), the study investigates how socio-cultural contexts shape 
data and knowledge production. Drawing on extensive literature and meta-analyses, 
it synthesizes diverse perspectives to underscore the necessity for methodological 
innovation and reflexivity in addressing the complexities of big data research, ensuring 
the integrity and depth of social inquiry amidst evolving data-driven methodologies.
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Introduction
For millennia, humans have used data to comprehend, evaluate, analyze, 
calculate, and define reality. From the recording of agricultural data, 
commercial transactions, and “administrative details on clay tablets by 
the Sumerians in 4000 BC” (Yeo, 2021: 17) to the “emergence of statistics 
as a formal discipline in the 19th century” (Porter, 2020: 193), data 
has consistently played a pivotal role in chronicling historical events, 
census figures, legal codes, and more. Indeed, the principles governing 
the nature of data and the logic of its relationships have been integral to 
human civilization.

As we move from the era of the internet of information to the age 
of the internet of data (Mohseni Ahooei, 2022; 2023) and witness the 
rise of the datafied society (Van & Schäfer, 2017), a new paradigm is 
emerging across all fields of science, including the humanities. This 
paradigm, driven by the phenomenon of big data, heralds what has 
been termed the “end of theory” (Anderson, 2008), where “the numbers 
speak for themselves” (Jablonka & Bergsten, 2021), and correlation is 
often equated with causation (Pietsch, 2021).

This paradigm shift is grounded in “a new order of knowledge” 
(Couldry, 2014; 883), where big data becomes a transformative force 
in human self-understanding, offering a purportedly superior form 
of intelligence and providing true, objective, and precise knowledge. 
This approach promises insights that were previously unattainable, 
potentially rendering obsolete past efforts to understand humanity 
through localized interpretations.

In the current era dominated by big data, it is imperative for 
academics, especially within the humanities and arts, to develop 
proficiency in data research methodologies. This skill set is essential 
for participating in significant public discussions about data science, 
which encompass topics such as accountability in data creation and 
application, ethical considerations, privacy concerns, the influence of 
data, and transparency. Furthermore, researchers must reassess their 
impact on public dialogue and policy formulation. For students, this 
means becoming discerning data practitioners capable of questioning 
the misconceptions about a data-driven society and interacting with 
data-centric practices outside the academic sphere.

From a rigorous scientific methodology standpoint, the fundamental 
inquiry pertains to the extent to which the evolving landscape of 
knowledge, influenced by the advent of big data, has substantiated its 
purported advancements, particularly within the realms of humanities 
and social sciences. Addressing this query necessitates demystifying 
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big data and assessing its analytical and descriptive capacities through 
the lens of established scientific methodology and statistical principles. 
Therefore, this article aims to scrutinize critical challenges posed by big 
data in social research and propose alternative approaches conducive 
to more effective scientific endeavors during this era dominated by big 
data.

To this end, the initial focus of this manuscript will be on delineating 
the characteristics that define the envisioned new knowledge paradigm. 
Emphasis will be placed on its phenomenological attributes and its 
epistemological departure from classical paradigms. Subsequently, 
a critical examination will be undertaken to evaluate key assertions 
regarding the efficacy of big data in knowledge generation. Finally, 
the discourse will pivot towards exploring more reasoned and viable 
pathways for scientific inquiry amid the prevalence of big data.

The New Order of Knowledge
The advent of big data has not merely introduced a new tool for knowledge 
development; it has ushered in a paradigm shift in the very nature of 
knowledge itself. As Van and Schäfer aptly observe, “Data have become 
ontological and epistemological objects of research – manifestations of 
social interaction and cultural production” (Van & Schäfer, 2017: 11).

The new order of knowledge, ontologically speaking, has heralded a 
fundamental shift in our understanding of knowledge, challenging the 
long-held notion of Kantian rationality as the bedrock of all scientific 
inquiry. This new paradigm, driven by computational power and 
data-driven methodologies, has given rise to an “ontological epoch” 
characterized by “destablising amounts of knowledge and information 
that lack the regulating force of philosophy” (Berry, 2011: 8). As Berry 
suggests, computationality has emerged as a new “ontotheology”, 
shaping our perception of reality and establishing a new framework by 
“creating a new ontological epoch as a new historical constellation of 
intelligibility” (ibid: 12).

Referring to the famous quote of Karl Marx, “Philosophers have 
hitherto only interpreted the world in various ways; the point is to change 
it” (Marx, 1932[1845]: 123), this very new order is both responsible for 
imagining the world in a new way and creating the world in a novel sense. 
As Anderson states, “This is a world where massive amounts of data and 
applied mathematics replace every other tool that might be brought 
to bear. Out with every theory of human behavior, from linguistics to 
sociology. Forget taxonomy, ontology, and psychology. Who knows why 
people do what they do? The point is they do it, and we can track and 
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measure it with unprecedented fidelity. With enough data, the numbers 
speak for themselves” (Anderson, 2008).

The advent of big data has not only transformed the way we 
produce knowledge, but also brought about a fundamental shift in 
our understanding of human nature and agency. This new paradigm, 
characterized by its emphasis on computational methods and large-
scale data analysis, often assumes a generic human nature, suggesting 
that the study of any individual can be generalized to the entire 
human population. This assumption, however, overlooks the inherent 
uniqueness and self-interpreting nature of human beings, as eloquently 
expressed by Taylor and Smith, “The human being is a self-interpreting 
animal condemned to meaning” (Taylor, 1986: 52; Smith, 2010: 126). 
Indeed, the very essence of our shared existence lies in our ongoing 
efforts to interpret and make sense of our interactions with one another.

In cognitive science, it is believed that research on neural pathways 
in one person can provide insights into common neural structures 
and functions across all humans (Kandel et al., 2013; Sporns et al., 
2008). Similarly, in psychology, studying decision-making processes 
in a controlled group reveals universal patterns applicable to broader 
populations (Tversky & Kahneman, 1974). This approach aligns with 
trends in big data and machine learning, where large datasets are 
analyzed to identify generalizable patterns and behaviors, ignoring 
the attention to individual differences. In this way, the study of 
human cognition and behavior becomes just systematic and objective, 
paralleling methodologies in the natural sciences.

The second premise of the new order of knowledge is the reification 
of social processes and existences. The rise of big data has not only 
transformed our approach to knowledge production, but has also 
introduced a new set of assumptions about the nature of social reality. 
The collection and processing of vast amounts of data, often treated 
as objective “facts”. have led to the reification of social processes and 
existences. This tendency to objectify social phenomena has resulted 
in a disregard for the interpretive and contextual dimensions of human 
behavior and social practices.

As Mayer-Schönberger and Cukier aptly observe, “We will no longer 
regard our world as a string of happenings that we explain as a natural 
or social phenomenon, but as a universe comprised essentially of 
information” (Mayer-Schönberger & Cukier, 2013: 96). This emphasis 
on information, or more accurately, on data, as the fundamental building 
block of reality overlooks the inherent complexity and subjectivity of 
social life.
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The third premise of the new order of knowledge is the interpretability 
of social phenomena. In line with the methodologies of the natural 
sciences, the humanities and social sciences now aim to accurately 
interpret the relationships between variables and predict behavioral 
patterns. This shift signifies a movement towards a systematic approach 
to understanding social matters, recognizing the social realm “provable”.

In economics, the use of econometric models enables researchers 
to analyze large datasets and predict economic trends with remarkable 
precision. The famous example of the Phillips Curve illustrates this point. 
By examining the relationship between inflation and unemployment, 
economists can interpret and predict economic conditions, providing 
a concrete example of how social phenomena can be measured and 
analyzed quantitatively (Gayo-Avello et al., 2011). Similarly, techniques 
such as network analysis enable social scientists to uncover complex 
relationships and predict patterns with unprecedented accuracy. Social 
media analysis, for example, can predict public opinion trends and 
even election results by interpreting vast amounts of user-generated 
data (Greene, 2003). This paradigm shift indicates that the focus of the 
human sciences is no longer merely to approach and describe human 
phenomena, but to rigorously prove and predict the patterns underlying 
these phenomena.

Following this new approach, a wide set of justifying concepts 
appeared under the influence of the new worldview. The first one is 
“posthumanism” (Haraway, 2011; Hayles, 2000). It seeks to decenter 
humanity, arguing that human identity and significance are not intrinsic 
but contingent upon our interactions with other species, machines, and the 
environment. This perspective diminishes the traditional, exceptionalist 
view of human beings as the pinnacle of evolution or the primary 
agents of meaning. By recognizing humans as entities without inherent 
supremacy, posthumanism redefines the human condition, emphasizing 
our interconnectedness and interdependence with all forms of life and 
matter, thus stripping humanity of its unique, semantic pedestal.

Subsequently, the actor-network theory (ANT) (Latour, 2007) 
emerged as a framework that considers objects, ideas, processes, and 
other related factors to be as vital as humans in shaping social situations. 
This theory serves as both a theoretical and methodological approach to 
social theory, asserting that all entities in the social and natural realms 
exist within constantly evolving networks of relationships. According to 
the ANT, all elements in a social situation hold equal importance. 

The object-oriented ontology (Harman, 2018) proposes a 
framework where all entities, whether human, non-human, animate, 
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or inanimate, possess equal ontological significance. This perspective 
aligns with contemporary scientific approaches that emphasize the 
interconnectedness and agency of diverse objects within complex 
systems and networks.

These new approaches indicate a paradigm shift in the academy and 
the emergence of systemic alternatives to human-centered culture. This 
shift not only redefines human identity and its place in the world but also 
fosters a more inclusive consideration. Through this lens, the academy 
is embracing a more systemic approach to knowledge and culture.

Method
The methodological approach of this study is anchored in a critical 
examination of the ontological and epistemological shifts precipitated 
by the advent of big data in social sciences. Recognizing the 
transformation from traditional paradigms to a data-driven knowledge 
order, this research adopts a constructivist epistemology, which posits 
that knowledge and data are inherently contextual and constructed by 
human agents (Crotty, 1998). This perspective is crucial in addressing the 
decontextualization crisis, where data is often stripped of its contextual 
meaning, leading to potential misinterpretations and oversimplifications 
of social phenomena (Boyd & Crawford, 2012).

To navigate the complexities associated with big data, the study 
employs a qualitative approach. This strategy ensures a comprehensive 
analysis of the phenomena under investigation, leveraging the strengths 
of methodological tradition which involves an in-depth critical 
discourse analysis (CDA) of the narratives and contexts surrounding 
data production and utilization. CDA is particularly suited for examining 
how language and power dynamics influence the construction and 
interpretation of data, providing insights into the socio-cultural 
underpinnings of big data practices (Fairclough, 2013). This approach 
is instrumental in uncovering the implicit assumptions and biases that 
shape data-centric knowledge production.

To ensure methodological rigor and transparency, the study draws 
on a diverse range of data sources. These include extensive literature 
reviews encompassing theoretical discussions and empirical studies 
on big data’s implications for social sciences. The selection criteria 
prioritize relevance, credibility (preferably peer-reviewed sources), 
and diversity of perspectives to capture a comprehensive spectrum of 
opinions and findings.

Additionally, the study conducts meta-analyses of existing research 
to deepen insights into big data methodologies and their socio-cultural 
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impacts. This involves synthesizing and critically evaluating studies that 
examine the application and implications of big data in social research. 
The analytical procedures are guided by principles of contextual integrity 
and commensuration. Contextual integrity, as proposed by Nissenbaum 
(2011), underscores the importance of preserving the context within 
which data is generated and interpreted, thus maintaining its intrinsic 
meaning and relevance amidst aggregation and analysis processes. The 
analytical framework of this study is rooted in the principles of contextual 
integrity and commensuration. Contextual integrity, as proposed by 
Nissenbaum (2011), emphasizes the importance of preserving the 
context within which data is generated and interpreted. This concept is 
pivotal in addressing the decontextualization crisis, ensuring that data 
retains its intrinsic meaning and relevance. Commensuration, defined as 
the transformation of different qualities into a common metric (Espeland 
& Stevens, 1998), is critically examined to highlight its potential pitfalls 
in homogenizing diverse social phenomena. By interrogating these 
processes, the study aims to reveal the limitations and biases inherent 
in big data methodologies.

By employing these methodological approaches, the study aims 
to provide a nuanced and critical examination of big data’s role in 
social research. This holistic approach enhances the transparency, 
reproducibility, and theoretical grounding of the research findings, enabling 
readers to comprehensively evaluate its contributions to understanding 
contemporary socio-technological dynamics influenced by big data.

Demystifying the Big Data: Pitfalls of Data-Driven Social Research
Despite the prevailing hype surrounding the transformative potential 
of big data in knowledge production, a critical examination of both big 
data analysis processes and research methodologies reveals a multitude 
of shortcomings. These limitations are so profound that they call into 
question the validity of many social research studies conducted using 
big data approaches.

The pervasive adoption of big data in social research has sparked 
a lively debate, with a spectrum of perspectives ranging from radical 
critiques to enthusiastic endorsements. I aim to present a comprehensive 
overview of the key criticisms leveled against big data research 
methodologies and findings, categorizing them along a continuum of 
critical stances.

At the extreme end of the spectrum lies Couldry’s (2014) 
philosophically grounded critique, which challenges the very 
epistemological foundations of big data-driven knowledge production 
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in cultural research. Couldry argues that big data research cannot 
replace the rigor and depth of traditional qualitative studies. Moving 
towards the center of the spectrum, we encounter perspectives like 
that of Boyd and Crawford (2012), who acknowledge the inherent 
challenges of big data research but ultimately maintain that these 
challenges can be overcome through methodological advancements and 
careful consideration of ethical implications. At the opposite end of the 
spectrum, we find proponents of big data who view the criticisms as 
misguided and rooted in a misunderstanding of the nature and potential 
of big data. These scholars, such as Resnyansky (2019), argue that the 
focus should be on adapting and refining “social scientific theories and 
conceptual frameworks that may inform the analysis of the social in the 
age of Big Data.” 

While I refrain from making definitive pronouncements on the merits 
or demerits of big data in social research, I emphasize the importance of 
critically evaluating the methodological pitfalls and potential invalidity 
of big data-driven research. Ultimately, the decision to employ big data 
approaches lies with individual researchers. However, it is crucial to be 
aware of the inherent limitations and potential biases associated with 
big data analysis to ensure the integrity and validity of research findings.

In my articulation of the shortcomings of big data research, I 
have drawn heavily from my personal research experiences. This has 
inevitably led to the inclusion of more specialized discussions that may 
pose challenges for readers unfamiliar with advanced social research 
methodologies. While these sections may not be essential for non-
specialists, I have made a conscious effort to incorporate such complex 
analyses to enhance the practical value of this work for those deeply 
engaged in the field. Conversely, I have intentionally refrained from 
dwelling on widely acknowledged challenges that are already familiar 
to those interested in big data research. 

The Objectivity Crisis 
The debate surrounding objectivity and subjectivity in research is not a 
new one. Immanuel Kant is often credited with initiating this discourse 
by introducing the concept of “the thing-in-itself (Ding an sich)” (Kant, 
1908[1781]: 26), emphasizing the importance of recognizing the 
inherent objectivity of reality. In the realm of social sciences, Durkheim 
(1982[1895]) made a significant contribution by establishing objectivity 
as a fundamental principle of sociological methodology. Since then, the 
pursuit of objectivity and the critiques of its limitations have remained 
central to both the justification and evaluation of scientific research.
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Epistemological perspectives underscore the inherent subjectivity 
and contextuality of data, arguing that it cannot be separated from 
the knowledge systems in which it is embedded. Constructivist 
epistemologies posit that all knowledge, including data, is constructed 
by human beings and is thus inherently subjective and contextual (Crotty, 
1998). Phenomenological approaches further emphasize that data is 
always perceived and interpreted through the lens of human experience 
and consciousness, highlighting the role of individual perception in 
shaping understanding (Moran, 2002).

Contextual dependence also plays a crucial role in the interpretation 
and meaning of data. Cultural and social contexts influence data collected 
in different settings, as seen in the varying implications of income data 
across different economic environments (Geertz, 1973). 

Subjectivity in data collection is another significant factor, as the 
choices and biases of those who collect data inherently influence the 
results. Researchers’ decisions on what variables to measure and how 
to measure them frame the data within their theoretical perspectives 
(Kuhn, 1962). Additionally, the measurement tools used, whether 
qualitative or quantitative, can affect outcomes.

With the advent of big data, the question of objectivity has once 
again taken center stage in scientific research. The inherent challenges 
of maintaining objectivity in big data research cast a shadow over all 
stages of the research process, from data collection to the “discovery” of 
correlational relationships.

Moving beyond technical considerations and adopting a 
phenomenological lens, it becomes evident that the concept of “raw 
data” in the context of big data is an oxymoron (Gitelman, 2011). Even 
before data collection, there are pre-existing frameworks and constructs 
that shape what data is deemed worth collecting. These frameworks are 
informed by cultural, social, and scientific norms, which influence the 
way data is framed and understood (Bowker & Star, 2000). As Badiou 
argues, “What counts, in the sense of what is valued – is that which is 
counted. Conversely, everything that can be numbered must be valued” 
(Badiou, 2008: 1). As such, data cannot be considered raw because it 
is always already shaped by these constructs. This issue has far wider 
implications in the field of big data.

The mediation of data collection and processing by technology 
introduces many layers of orientation. Software algorithms can introduce 
biases through the data processing and analysis stages (Couldry, 2020). 
Machine learning models are trained on specific datasets that reflect 
the orientations and biases inherent in those datasets, often leading to 
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skewed outcomes (Pessach & Shmueli, 2022). Similarly, the way data is 
stored, indexed, and retrieved can significantly impact its accessibility 
and usability, which in turn shapes its interpretation (Berman, 2013), 
therefore data cleaning process is necessarily biased by some subjective 
filter (Bollier, 2010).

The “Big” Ideology Crisis
The acceptance of big data is mainly justified by the ideology of “the 
bigger, the better” (see, for example, Mayer-Schönberger & Cukier, 2013; 
Kitchin, 2014). But this ideology in the field of scientific research is just 
a myth. Among the many arguments that have addressed the challenges 
of big data, I will address four of the more pernicious, yet more technical 
ones.

One of the fundamental claims of big data is that its sheer volume 
makes it a more accurate representation of society compared to 
traditional sampling methods. However, for several reasons, big data 
does not reflect the entirety of society. Big data research often treats 
all data points from social media platforms equally, regardless of their 
diverse functions and usage patterns among different social groups. 
This homogenization of data points overlooks the heterogeneous 
nature of user actions and interpretations, leading to oversimplified and 
potentially misleading analyses. Moreover, big data often fails to account 
for the contextual factors and socio-economic disparities that influence 
individual behavior and online interactions. By treating all data points 
as equally representative, big data analyses risk perpetuating biases 
and misrepresenting the nuances of social dynamics. In addition, the 
inherent biases and limitations of the algorithms used to collect and 
process big data can further distort the accuracy of its representation 
of society. These algorithms may reflect the biases of their creators 
or the underlying data they are trained on, leading to systematic 
misinterpretations and perpetuation of stereotypes.

Drawing generalizations about the global population based on 
Twitter data, for example, is fraught with limitations. The Twitter 
user base does not accurately represent the world’s demographics, 
and equating accounts with individual users is a flawed assumption. 
The prevalence of multiple accounts per user and the shared use of 
single accounts complicate the assessment of individual behavior and 
preferences. This heterogeneity in account usage patterns means that 
each tweet cannot be directly attributed to a single unique individual 
and a significant portion of the population does not engage with Twitter 
at all, limiting the platform’s ability to capture a comprehensive picture 
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of global perspectives and opinions. Those who do not use Twitter may 
have different viewpoints and experiences than those who are active on 
the platform.

User activities on social media platforms, recorded via social media 
clients, cross-platform integrations, and automated software, are 
frequently converted into standardized metrics. This quantification 
process allows for the aggregation of diverse actions into singular data 
points, thereby concealing the varied interpretations and practices 
that exist beneath the surface. Optimization algorithms, including 
genetic algorithms and simulated annealing, further shape the data and 
determine the importance assigned to its different elements (Boyd & 
Crawford, 2012; Gillespie, 2014).

The notion that an increase in the volume of data inherently ensures 
representativeness is fundamentally flawed due to the intricacies of 
advanced statistical methodology and the profound challenges posed by 
high-dimensional data analysis. In statistical parlance, the assumption 
of representativeness is often scrutinized through the lens of sampling 
bias and non-probability sampling (Lohr, 2021). Traditional probability 
sampling techniques, underpinned by the Central Limit Theorem, assure 
that

                                       ,
where n is the sample size,  the sample mean, and μ the population 
mean (Ziegel, 2002: 408). However, big data typically eschews these 
methodologies, favoring convenience sampling, thus violating the 
assumption                         for all i, leading to substantial undercoverage 
and selection bias (Meng, 2018). 

Furthermore, the presence of heteroskedasticity, characterized by 
disrupts the homoscedasticity assumption of classical 

linear models. The Generalized Least Squares (GLS) method attempts 
to rectify this by transforming the data via 
where Ω represents the covariance matrix of the error terms (Greene, 
2003). Despite this, estimating Ω accurately in large datasets is 
computationally intensive and often infeasible, leading to biased 
parameter estimates and inefficiency (Hansen, 2022).

Compounding these issues is the curse of dimensionality, a phenomenon 
where the feature space increases exponentially with the number of 
dimensions, denoted as O(np), where n is the number of observations and p the 
number of features (Bellman, 1961). This exponential growth renders many 
traditional statistical techniques, such as Maximum Likelihood Estimation 
(MLE), impractical due to the sparsity of the data (Fan & Li, 2006). Consider 
the K-nearest neighbors (KNN) algorithm, where the distance metric
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becomes less informative as p increases, leading to the “empty space” 
phenomenon and high variance in model predictions (Beyer et al., 1999).
Moreover, Simpson’s paradox further complicates the interpretation of 
aggregated data, where an observed relationship within the aggregate 
data, Pr(Y | A)   Pr(Y | A, B), can be reversed when disaggregated, 
indicating a severe misrepresentation if subgroup heterogeneity is 
ignored (Pearl, 2009).

In the realm of classification problems, Imbalanced Classes pose 
significant challenges. The skewness in class distribution, where n1 > n2 
(with n1 and n2 representing the sizes of the majority and minority 
classes, respectively), biases the classifier towards the majority class (He 
& Garcia, 2009). Techniques such as Synthetic Minority Over-sampling 
Technique (SMOTE) and the use of cost-sensitive learning algorithms

, where   adjusts the weight for minority class 
samples are employed to mitigate this bias, yet they introduce additional 
complexity and require meticulous parameter tuning (Chawla et al., 
2002).

Missing data mechanisms, categorized as MCAR, MAR, and MNAR, 
present further complications. The MCAR assumption, P(Mi = 1) = P(Mi = 1 ∣ X),
rarely holds in practical scenarios, leading to biased estimates when 
applying techniques like Expectation-Maximization (EM) for data 
imputation (Little & Rubin, 2019). For MNAR data, where P(Mi = X,Y), 
advanced models like Heckman’s two-step correction                                       
observe                                                             must be employed, significantly complicating 
the modeling process and often relying on unverifiable assumptions 
(Heckman, 2013).

A second critical challenge arises from the misconception that 
correlational relationships in big data represent genuine causal 
connections. As I have previously noted, the new epistemological order 
shaped by big data often equates correlations with causal relationships 
(Pietsch, 2021). However, as we will further explore, even the purported 
correlations identified in big data analyses are not always real.

This assertion can be rigorously substantiated by delving into the 
complex interplay between high-dimensional statistical theory and the 
inherent limitations of traditional methodologies when scaled to the 
context of big data. First, consider the pervasive issue of dimensionality 
reduction, where techniques like Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) are often 
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where Ω represents the covariance matrix of the error terms (Greene, 2003). Despite this, 
estimating Ω accurately in large datasets is computationally intensive and often infeasible, 
leading to biased parameter estimates and inefficiency (Hansen, 2022). 
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feature space increases exponentially with the number of dimensions, denoted as O(np), 
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Pij = exp(−‖𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗‖2∕2𝜎𝜎2)
𝛴𝛴𝑘𝑘≠1 exp(−‖𝑥𝑥𝑘𝑘−𝑥𝑥𝐿𝐿‖2𝜎𝜎2), 

introduces significant instability and sensitivity to parameter tuning, which is 
exacerbated in high-dimensional settings, rendering the derived correlation structures 
highly unreliable. Moreover, the phenomenon of spurious correlations in high-
dimensional data is particularly pernicious. Given p variables, the number of pairwise 
correlations is  

(𝑝𝑝
2) = 𝑝𝑝(𝑃𝑃−1)

2 , 
leading to a combinatorial explosion of hypothesis tests. Under the null hypothesis of no 
association, the probability of observing at least one significant correlation purely by 
chance is approximated by  

1 − (1 − 𝛼𝛼)(𝑝𝑝
2), 

where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
increases, necessitating the use of stringent multiple testing corrections like the 
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correlations identified in big data analyses are not always real. 
This assertion can be rigorously substantiated by delving into the complex interplay 
between high-dimensional statistical theory and the inherent limitations of traditional 
methodologies when scaled to the context of big data. First, consider the pervasive issue 
of dimensionality reduction, where techniques like Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) are often employed. The 
eigenvalue decomposition in PCA, denoted as X = UΣVT where X ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p, 
and V ∈ Rp×p, becomes computationally infeasible and loses interpretability as p grows 
exponentially relative to n (Johnstone & Lu, 2009). 
Furthermore, the stochastic nature of t-SNE, governed by the joint probabilities  

Pij = exp(−‖𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗‖2∕2𝜎𝜎2)
𝛴𝛴𝑘𝑘≠1 exp(−‖𝑥𝑥𝑘𝑘−𝑥𝑥𝐿𝐿‖2𝜎𝜎2), 

introduces significant instability and sensitivity to parameter tuning, which is 
exacerbated in high-dimensional settings, rendering the derived correlation structures 
highly unreliable. Moreover, the phenomenon of spurious correlations in high-
dimensional data is particularly pernicious. Given p variables, the number of pairwise 
correlations is  

(𝑝𝑝
2) = 𝑝𝑝(𝑃𝑃−1)

2 , 
leading to a combinatorial explosion of hypothesis tests. Under the null hypothesis of no 
association, the probability of observing at least one significant correlation purely by 
chance is approximated by  

1 − (1 − 𝛼𝛼)(𝑝𝑝
2), 

where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
increases, necessitating the use of stringent multiple testing corrections like the 

Moreover, Simpson’s paradox further complicates the interpretation of aggregated data, 
where an observed relationship within the aggregate data, Pr(Y | A) ≠ Pr(Y | A, B), can be 
reversed when disaggregated, indicating a severe misrepresentation if subgroup 
heterogeneity is ignored (Pearl, 2009). 
In the realm of classification problems, Imbalanced Classes pose significant challenges. 
The skewness in class distribution, where n1 > n2 (with n1 and n2 representing the sizes of 
the majority and minority classes, respectively), biases the classifier towards the majority 
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Technique (SMOTE) and the use of cost-sensitive learning algorithms L =  Σⅈ=1
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where 𝜔𝜔𝑖𝑖 adjusts the weight for minority class samples are employed to mitigate this bias, 
yet they introduce additional complexity and require meticulous parameter tuning 
(Chawla et al., 2002). 
Missing data mechanisms, categorized as MCAR, MAR, and MNAR, present further 
complications. The MCAR assumption, P(Mi = 1) = P(Mi = 1 ∣ X), rarely holds in practical 
scenarios, leading to biased estimates when applying techniques like Expectation-
Maximization (EM) for data imputation (Little & Rubin, 2019). For MNAR data, where P(Mi 
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where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
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Compounding these issues is the curse of dimensionality, a phenomenon where the 
feature space increases exponentially with the number of dimensions, denoted as O(np), 
where n is the number of observations and p the number of features (Rand Corporation, 
and Bellman, 1961). This exponential growth renders many traditional statistical 
techniques, such as Maximum Likelihood Estimation (MLE), impractical due to the 
sparsity of the data (Fan and Li, 2006) Consider the K-nearest neighbors (KNN) algorithm, 

where the distance metric d(xi, xj)= √∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖)2𝑝𝑝

𝑖𝑖=1
 becomes less informative as p 

increases, leading to the “empty space” phenomenon and high variance in model 
predictions (Beyer et al., 1999). 
Moreover, simpson’s paradox further complicates the interpretation of aggregated data, 
where an observed relationship within the aggregate data, Pr(Y | A) ≠ Pr(Y | A, B), can be 
reversed when disaggregated, indicating a severe misrepresentation if subgroup 
heterogeneity is ignored (Pearl, 2009). 
In the realm of classification problems, Imbalanced Classes pose significant challenges. 
The skewness in class distribution, where n1 > n2 (with n1 and n2 representing the sizes of 
the majority and minority classes, respectively), biases the classifier towards the majority 
class (He and Garcia, 2009). Techniques such as Synthetic Minority Over-sampling 
Technique (SMOTE) and the use of cost-sensitive learning algorithms L =  Σⅈ=1

n 𝜔𝜔𝑖𝑖𝐿𝐿 (yi, �̂�𝑦𝑖𝑖), 
where 𝜔𝜔𝑖𝑖 adjusts the weight for minority class samples) are employed to mitigate this 
bias, yet they introduce additional complexity and require meticulous parameter tuning 
(Chawla et al., 2002). 
Missing data mechanisms, categorized as MCAR, MAR, and MNAR, present further 
complications. The MCAR assumption, P(Mi = 1) = P(Mi = 1 ∣ X), rarely holds in practical 
scenarios, leading to biased estimates when applying techniques like Expectation-
Maximization (EM) for data imputation (Little and Rubin, 2019). For MNAR data, where 
P(Mi = X,Y), advanced models like Heckman’s two-step correction yi* = Xi𝛽𝛽 +  𝜖𝜖i; observe 
 
 yi = yi* if Ziy + 𝑣𝑣𝑖𝑖 > 0  
 
must be employed, significantly complicating the modeling process and often relying on 
unverifiable assumptions (Heckman, 2013). 
A second critical challenge arises from the misconception that correlational relationships 
in big data represent genuine causal connections. As I have previously noted, the new 
epistemological order shaped by big data often equates correlations with causal 
relationships (Pietsch, 2021). However, as we will further explore, even the purported 
correlations identified in big data analyses are not always real. 
This assertion can be rigorously substantiated by delving into the complex interplay 
between high-dimensional statistical theory and the inherent limitations of traditional 
methodologies when scaled to the context of big data. First, consider the pervasive issue 
of dimensionality reduction, where techniques like Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) are often employed. The 
eigenvalue decomposition in PCA, denoted as X = UΣVT where X ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p, 
and V ∈ Rp×p, becomes computationally infeasible and loses interpretability as p grows 
exponentially relative to n (Johnstone and Lu, 2009). 
Furthermore, the stochastic nature of t-SNE, governed by the joint probabilities Pij = 

exp(−‖𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗‖2∕2𝜎𝜎2)
𝛴𝛴𝑘𝑘≠1 exp(−‖𝑥𝑥𝑘𝑘−𝑥𝑥𝐿𝐿‖2𝜎𝜎2), introduces significant instability and sensitivity to parameter tuning, 
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employed. The eigenvalue decomposition in PCA, denoted as X = UΣVT 
where X ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p, and V ∈ Rp×p, becomes computationally 
infeasible and loses interpretability as p grows exponentially relative to 
n (Johnstone & Lu, 2009).

Over and above that, the stochastic nature of t-SNE, governed by the 
joint probabilities 

introduces significant instability and sensitivity to parameter tuning, 
which is exacerbated in high-dimensional settings, rendering the derived 
correlation structures highly unreliable. Moreover, the phenomenon 
of spurious correlations in high-dimensional data is particularly 
pernicious. Given p variables, the number of pairwise correlations is 

 

leading to a combinatorial explosion of hypothesis tests. Under the null 
hypothesis of no association, the probability of observing at least one 
significant correlation purely by chance is approximated by 

w here α is the significance level (Fan, 2008). This probability rapidly 
approaches 1 as p increases, necessitating the use of stringent multiple 
t esting corrections like the Benjamini-Hochberg procedure or the 
Bonferroni correction, both of which suffer from severe power limitations 
i n high-dimensional contexts (Benjamini & Hochberg, 1995).

Additionally, the issue of noise accumulation, quantified through the 
spectral norm of the noise matrix ∣∣E∣∣2, where E represents random noise, 
results in the contamination of the signal, leading to inflated eigenvalues 
a nd distorted principal components. This is encapsulated in the 
eigenvalue perturbation theory, where Δλi ≤ ∣∣E∣∣2 for the i-th eigenvalue, 
highlighting the sensitivity of high-dimensional data to noise and further 
undermining the validity of inferred correlations (Johnstone & Lu, 2009). 
High-dimensional regression models, such as Least Absolute Shrinkage 
a nd Selection Operator (LASSO) and Ridge Regression, introduce 
regularization to mitigate overfitting. LASSO, which solves 

minβ ( ||y – Xβ + λ∣∣β∣∣1),
imposes sparsity by shrinking coefficients to zero, yet its performance 
i s highly dependent on the choice of the regularization parameter λ, 
typically selected via cross-validation (Tibshirani, 1996). In the context 
of big data, the curse of dimensionality exacerbates the variance-bias 
tradeoff, often leading to unstable and non-generalizable models. 
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where an observed relationship within the aggregate data, Pr(Y | A) ≠ Pr(Y | A, B), can be 
reversed when disaggregated, indicating a severe misrepresentation if subgroup 
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The skewness in class distribution, where n1 > n2 (with n1 and n2 representing the sizes of 
the majority and minority classes, respectively), biases the classifier towards the majority 
class (He & Garcia, 2009). Techniques such as Synthetic Minority Over-sampling 
Technique (SMOTE) and the use of cost-sensitive learning algorithms L =  Σⅈ=1
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where 𝜔𝜔𝑖𝑖 adjusts the weight for minority class samples are employed to mitigate this bias, 
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(Chawla et al., 2002). 
Missing data mechanisms, categorized as MCAR, MAR, and MNAR, present further 
complications. The MCAR assumption, P(Mi = 1) = P(Mi = 1 ∣ X), rarely holds in practical 
scenarios, leading to biased estimates when applying techniques like Expectation-
Maximization (EM) for data imputation (Little & Rubin, 2019). For MNAR data, where P(Mi 
= X,Y), advanced models like Heckman’s two-step correction yi* = Xi𝛽𝛽 +  𝜖𝜖i; observe yi = yi* 
if Ziy + 𝑣𝑣𝑖𝑖 > 0 must be employed, significantly complicating the modeling process and often 
relying on unverifiable assumptions (Heckman, 2013). 
A second critical challenge arises from the misconception that correlational relationships 
in big data represent genuine causal connections. As I have previously noted, the new 
epistemological order shaped by big data often equates correlations with causal 
relationships (Pietsch, 2021). However, as we will further explore, even the purported 
correlations identified in big data analyses are not always real. 
This assertion can be rigorously substantiated by delving into the complex interplay 
between high-dimensional statistical theory and the inherent limitations of traditional 
methodologies when scaled to the context of big data. First, consider the pervasive issue 
of dimensionality reduction, where techniques like Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) are often employed. The 
eigenvalue decomposition in PCA, denoted as X = UΣVT where X ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p, 
and V ∈ Rp×p, becomes computationally infeasible and loses interpretability as p grows 
exponentially relative to n (Johnstone & Lu, 2009). 
Furthermore, the stochastic nature of t-SNE, governed by the joint probabilities  

Pij = exp(−‖𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗‖2∕2𝜎𝜎2)
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introduces significant instability and sensitivity to parameter tuning, which is 
exacerbated in high-dimensional settings, rendering the derived correlation structures 
highly unreliable. Moreover, the phenomenon of spurious correlations in high-
dimensional data is particularly pernicious. Given p variables, the number of pairwise 
correlations is  

(𝑝𝑝
2) = 𝑝𝑝(𝑃𝑃−1)

2 , 
leading to a combinatorial explosion of hypothesis tests. Under the null hypothesis of no 
association, the probability of observing at least one significant correlation purely by 
chance is approximated by  

1 − (1 − 𝛼𝛼)(𝑝𝑝
2), 

where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
increases, necessitating the use of stringent multiple testing corrections like the 
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where an observed relationship within the aggregate data, Pr(Y | A) ≠ Pr(Y | A, B), can be 
reversed when disaggregated, indicating a severe misrepresentation if subgroup 
heterogeneity is ignored (Pearl, 2009). 
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A second critical challenge arises from the misconception that correlational relationships 
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exacerbated in high-dimensional settings, rendering the derived correlation structures 
highly unreliable. Moreover, the phenomenon of spurious correlations in high-
dimensional data is particularly pernicious. Given p variables, the number of pairwise 
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leading to a combinatorial explosion of hypothesis tests. Under the null hypothesis of no 
association, the probability of observing at least one significant correlation purely by 
chance is approximated by  
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where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
increases, necessitating the use of stringent multiple testing corrections like the 
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reversed when disaggregated, indicating a severe misrepresentation if subgroup 
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correlations identified in big data analyses are not always real. 
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between high-dimensional statistical theory and the inherent limitations of traditional 
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and V ∈ Rp×p, becomes computationally infeasible and loses interpretability as p grows 
exponentially relative to n (Johnstone & Lu, 2009). 
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introduces significant instability and sensitivity to parameter tuning, which is 
exacerbated in high-dimensional settings, rendering the derived correlation structures 
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dimensional data is particularly pernicious. Given p variables, the number of pairwise 
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leading to a combinatorial explosion of hypothesis tests. Under the null hypothesis of no 
association, the probability of observing at least one significant correlation purely by 
chance is approximated by  
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where α is the significance level (Fan, 2008). This probability rapidly approaches 1 as p 
increases, necessitating the use of stringent multiple testing corrections like the 
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Fur thermore, the presence of multicollinearity, quantified by 
the  condition number κ(X)=σmax(X)/σmin(X)’, inflates the variance 
of coefficient estimates, rendering traditional correlation metrics 
inadequate. Consider the intricacies of the high-dimensional Gaussian 
graphical models (GGM), where the precision matrix Θ=Σ−1 is estimated 
to infer the conditional independence structure among variables. The 
gra phical lasso, which maximizes the penalized log-likelihood log det 
(Θ)  − tr(SΘ) − λ∣∣Θ∣∣1, is computationally intensive and sensitive to 
the penalty parameter λ. Moreover, the sparsity pattern of Θ is highly 
sensitive to the sample size and the underlying distribution of the data, 
often leading to erroneous inferences about the network structure in 
hig h-dimensional regimes (Koller & Friedman, 2009). The temporal 
dynamics inherent in big data necessitate advanced time series models 
such as Vector Autoregression (VAR) and State Space Models (SSM). The 
VAR  model, expressed as 

whe re yt  is a vector of observations and Ai  are coefficient matrices, 
encounters significant challenges in high-dimensional settings due to the 
proliferation of parameters, leading to overfitting and unstable forecasts. 
State Space Models, defined by the observation equation yt = Ztαt + εt and 
the state equation αt+1 = Ttαt + ηt, where αt represents the latent states, 
involve complex estimation procedures such as the Kalman filter, which 
bec ome computationally prohibitive as the state dimension increases 
(Durbin & Koopman, 2012).  

The third challenge lies in the low signal-to-noise ratio inherent in 
big data, which significantly compromises the reliability of inferential 
conclusions. This low signal-to-noise ratio can be dissected through the 
lens of advanced statistical techniques and methodological frameworks, 
rev ealing a plethora of complexities that render the extraction of 
mea ningful information exceedingly difficult.

Fir stly, consider again the concept of the curse of dimensionality, 
which exacerbates the noise accumulation effect. In high-dimensional 
spa ces, the Euclidean distance

becomes increasingly dominated by noise as the number of dimensions p 
increases (Bellman, 1961). This phenomenon leads to the concentration 
of distances, where the relative difference between the nearest and 
farthest neighbor diminishes, making it challenging to distinguish signal 
fro m noise. Theoretical underpinnings from random matrix theory 

Benjamini-Hochberg procedure or the Bonferroni correction, both of which suffer from 
severe power limitations in high-dimensional contexts (Benjamini & Hochberg, 1995). 
Additionally, the issue of noise accumulation, quantified through the spectral norm of the 
noise matrix ∣∣E∣∣2, where E represents random noise, results in the contamination of the 
signal, leading to inflated eigenvalues and distorted principal components. This is 
encapsulated in the eigenvalue perturbation theory, where Δλi ≤ ∣∣E∣∣2 for the i-th 
eigenvalue, highlighting the sensitivity of high-dimensional data to noise and further 
undermining the validity of inferred correlations (Johnstone & Lu, 2009). High-
dimensional regression models, such as Least Absolute Shrinkage and Selection Operator 
(LASSO) and Ridge Regression, introduce regularization to mitigate overfitting. LASSO, 
which solves  

minβ ( 1
2𝑛𝑛 ||y – Xβ||2

2 + λ∣∣β∣∣1) 
 imposes sparsity by shrinking coefficients to zero, yet its performance is highly 
dependent on the choice of the regularization parameter λ, typically selected via cross-
validation (Tibshirani, 1996). In the context of big data, the curse of dimensionality 
exacerbates the variance-bias tradeoff, often leading to unstable and non-generalizable 
models.  
Furthermore, the presence of multicollinearity, quantified by the condition number 
κ(X)=σmax(X)/σmin(X)’, inflates the variance of coefficient estimates, rendering traditional 
correlation metrics inadequate. Consider the intricacies of the high-dimensional Gaussian 
graphical models (GGM), where the precision matrix Θ=Σ−1 is estimated to infer the 
conditional independence structure among variables. The graphical lasso, which 
maximizes the penalized log-likelihood log det (Θ) − tr(SΘ) − λ∣∣Θ∣∣1, is computationally 
intensive and sensitive to the penalty parameter λ. Moreover, the sparsity pattern of Θ is 
highly sensitive to the sample size and the underlying distribution of the data, often 
leading to erroneous inferences about the network structure in high-dimensional regimes 
(Koller & Friedman, 2009). The temporal dynamics inherent in big data necessitate 
advanced time series models such as Vector Autoregression (VAR) and State Space 
Models (SSM). The VAR model, expressed as  

yt = 𝛴𝛴ⅈ=1
𝑝𝑝  Aiyt−i + ut, 

where yt  is a vector of observations and Ai  are coefficient matrices, encounters significant 
challenges in high-dimensional settings due to the proliferation of parameters, leading to 
overfitting and unstable forecasts. State Space Models, defined by the observation 
equation yt = Ztαt + εt and the state equation αt+1 = Ttαt + ηt, where αt represents the latent 
states, involve complex estimation procedures such as the Kalman filter, which become 
computationally prohibitive as the state dimension increases (Durbin & Koopman, 2012).  
The third challenge lies in the low signal-to-noise ratio inherent in big data, which 
significantly compromises the reliability of inferential conclusions. This low signal-to-
noise ratio can be dissected through the lens of advanced statistical techniques and 
methodological frameworks, revealing a plethora of complexities that render the 
extraction of meaningful information exceedingly difficult. 
Firstly, consider again the concept of the curse of dimensionality, which exacerbates the 
noise accumulation effect. In high-dimensional spaces, the Euclidean distance 

d(xi, xj)= √∑ (𝑥𝑥ⅈ𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘)2𝑝𝑝

𝑘𝑘=1
 

becomes increasingly dominated by noise as the number of dimensions p increases 
(Bellman, 1961). This phenomenon leads to the concentration of distances, where the 
relative difference between the nearest and farthest neighbor diminishes, making it 

underlying data they are trained on, leading to systematic misinterpretations and 
perpetuation of stereotypes. 
Drawing generalizations about the global population based on Twitter data, for example, 
is fraught with limitations. The Twitter user base does not accurately represent the 
world's demographics, and equating accounts with individual users is a flawed 
assumption. The prevalence of multiple accounts per user and the shared use of single 
accounts complicate the assessment of individual behavior and preferences. This 
heterogeneity in account usage patterns means that each tweet cannot be directly 
attributed to a single unique individual and a significant portion of the population does 
not engage with Twitter at all, limiting the platform's ability to capture a comprehensive 
picture of global perspectives and opinions. Those who do not use Twitter may have 
different viewpoints and experiences than those who are active on the platform. 
User activities on social media platforms, recorded via social media clients, cross-platform 
integrations, and automated software, are frequently converted into standardized 
metrics. This quantification process allows for the aggregation of diverse actions into 
singular data points, thereby concealing the varied interpretations and practices that exist 
beneath the surface. Optimization algorithms, including genetic algorithms and simulated 
annealing, further shape the data and determine the importance assigned to its different 
elements (Boyd & Crawford, 2012; Gillespie, 2014). 
The notion that an increase in the volume of data inherently ensures representativeness 
is fundamentally flawed due to the intricacies of advanced statistical methodology and the 
profound challenges posed by high-dimensional data analysis. In statistical parlance, the 
assumption of representativeness is often scrutinized through the lens of sampling bias 
and non-probability sampling (Lohr, 2021). Traditional probability sampling techniques, 
underpinned by the Central Limit Theorem, assure that 

√𝑛𝑛(�̅�𝑥 − 𝜇𝜇) →d N(0, σ2), 
where n is the sample size, �̅�𝑥 the sample mean, and μ the population mean (Ziegel, 2002: 
408). However, big data typically eschews these methodologies, favoring convenience 
sampling, thus violating the assumption 𝑃𝑃(𝑋𝑋𝑋𝑋)  >  0 for all i, leading to substantial 
undercoverage and selection bias (Meng, 2018).  
Furthermore, the presence of heteroskedasticity, characterized by  

𝑉𝑉𝑉𝑉𝑉𝑉(𝜖𝜖𝑖𝑖| 𝑥𝑥�̇�𝑖) = 𝜎𝜎𝑖𝑖
2, 

disrupts the homoscedasticity assumption of classical linear models. The Generalized 
Least Squares (GLS) method attempts to rectify this by transforming the data via  

�̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺 = (𝑥𝑥′𝛺𝛺−1𝑥𝑥)−1𝑥𝑥′𝛺𝛺𝑦𝑦
−1, 

where Ω represents the covariance matrix of the error terms (Greene, 2003). Despite this, 
estimating Ω accurately in large datasets is computationally intensive and often infeasible, 
leading to biased parameter estimates and inefficiency (Hansen, 2022). 
Compounding these issues is the curse of dimensionality, a phenomenon where the 
feature space increases exponentially with the number of dimensions, denoted as O(np), 
where n is the number of observations and p the number of features (Bellman, 1961). This 
exponential growth renders many traditional statistical techniques, such as Maximum 
Likelihood Estimation (MLE), impractical due to the sparsity of the data (Fan & Li, 2006). 
Consider the K-nearest neighbors (KNN) algorithm, where the distance metric 

d(xi, xj)= √∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖)2𝑝𝑝

𝑖𝑖=1
 

becomes less informative as p increases, leading to the “empty space” phenomenon and 
high variance in model predictions (Beyer et al., 1999). 
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further illustrate this, where the eigenvalues of the sample covariance 
matrix

converge to the Marčenko-Pastur distribution as p/n→c, with c > 
0, indicating that the largest eigenvalues (representing signal) are 
not significantly separated from the bulk of smaller eigenvalues 
(representing noise) (Marchenko & Pastur, 1967).

Moreover, the application of high-dimensional statistical methods 
such as Principal Component Analysis (PCA) and its variants encounter 
significant challenges. In the high-dimensional regime, the principal 
components themselves become noisy. Specifically, Johnstone and Lu 
(2009) demonstrate that the empirical principal components deviate 
substantially from the population principal components, leading to 
distorted signal extraction. This is exacerbated by the presence of 
spiked eigenvalues, where the top eigenvalues of the covariance matrix 
are inflated due to noise, further obfuscating the true signal structure 
(Johnstone, 2001).

Another critical issue is the application of regularization 
techniques such as LASSO and Ridge Regression in high-dimensional 
settings. While these methods aim to mitigate overfitting by imposing 
sparsity or penalizing large coefficients, they are highly sensitive to 
the tuning parameters λ. The choice of λ significantly impacts the bias-
variance tradeoff, and in the context of big data, the optimal λ is often 
difficult to estimate accurately due to the low signal-to-noise ratio. 
This sensitivity can lead to model instability and poor generalizability 
(Tibshirani, 1996).

Furthermore, consider the phenomenon of multiple hypothesis 
testing in high-dimensional data. With the vast number of variables p, the 
likelihood of encountering spurious correlations increases dramatically. 
The family-wise error rate (FWER) and the false discovery rate (FDR) 
must be controlled using methods such as the Bonferroni correction 
or the Benjamini-Hochberg procedure. However, these corrections 
introduce their own set of problems, such as reduced statistical power 
and increased Type II errors, which further diminish the signal-to-
noise ratio by making it harder to detect true associations (Benjamini & 
Hochberg, 1995).

Additionally, the notion of intrinsic dimensionality, which refers to 
the minimal number of parameters needed to accurately describe the 
data structure, often reveals that many big data sets are intrinsically 
low-dimensional. This implies that the high-dimensional representation 
contains a significant amount of redundant and noisy information, 

The third challenge lies in the low signal-to-noise ratio inherent in big data, which 
significantly compromises the reliability of inferential conclusions. This low signal-to-
noise ratio can be dissected through the lens of advanced statistical techniques and 
methodological frameworks, revealing a plethora of complexities that render the 
extraction of meaningful information exceedingly difficult. 
Firstly, consider again the concept of the curse of dimensionality, which exacerbates the 
noise accumulation effect. In high-dimensional spaces, the Euclidean distance d(xi, xj)= 

√∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖)2𝑝𝑝

𝑖𝑖=1
 becomes increasingly dominated by noise as the number of 

dimensions p increases (Rand Corporation and Belman, 1961). This phenomenon leads to 
the concentration of distances, where the relative difference between the nearest and 
farthest neighbor diminishes, making it challenging to distinguish signal from noise. 
Theoretical underpinnings from random matrix theory further illustrate this, where the 
eigenvalues of the sample covariance matrix  
 
S = 1𝑛𝑛X⊤X  
 
converge to the Marčenko-Pastur distribution as p/n→c, with c > 0, indicating that the 
largest eigenvalues (representing signal) are not significantly separated from the bulk of 
smaller eigenvalues (representing noise) (Marčenko and Pastur, 1967). 
Moreover, the application of high-dimensional statistical methods such as Principal 
Component Analysis (PCA) and its variants encounter significant challenges. In the high-
dimensional regime, the principal components themselves become noisy. Specifically, 
Johnstone and Lu (2009) demonstrate that the empirical principal components deviate 
substantially from the population principal components, leading to distorted signal 
extraction. This is exacerbated by the presence of spiked eigenvalues, where the top 
eigenvalues of the covariance matrix are inflated due to noise, further obfuscating the true 
signal structure (Johnstone, 2001). 
Another critical issue is the application of regularization techniques such as LASSO and 
Ridge Regression in high-dimensional settings. While these methods aim to mitigate 
overfitting by imposing sparsity or penalizing large coefficients, they are highly sensitive 
to the tuning parameters λ. The choice of λ significantly impacts the bias-variance 
tradeoff, and in the context of big data, the optimal λ is often difficult to estimate 
accurately due to the low signal-to-noise ratio. This sensitivity can lead to model 
instability and poor generalizability (Tibshirani, 1996). 
Furthermore, consider the phenomenon of multiple hypothesis testing in high-
dimensional data. With the vast number of variables p, the likelihood of encountering 
spurious correlations increases dramatically. The family-wise error rate (FWER) and the 
false discovery rate (FDR) must be controlled using methods such as the Bonferroni 
correction or the Benjamini-Hochberg procedure. However, these corrections introduce 
their own set of problems, such as reduced statistical power and increased Type II errors, 
which further diminish the signal-to-noise ratio by making it harder to detect true 
associations (Benjamini and Hochberg, 1995). 
Additionally, the notion of intrinsic dimensionality, which refers to the minimal number 
of parameters needed to accurately describe the data structure, often reveals that many 
big data sets are intrinsically low-dimensional. This implies that the high-dimensional 
representation contains a significant amount of redundant and noisy information, further 
lowering the signal-to-noise ratio. Techniques such as manifold learning, including 
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further lowering the signal-to-noise ratio. Techniques such as manifold 
learning, including Isomap and Locally Linear Embedding (LLE), attempt 
to uncover the low-dimensional manifold. However, these methods are 
computationally intensive and sensitive to the choice of parameters, 
often leading to unstable and non-robust embeddings (Tenenbaum et 
al., 2000).

While big data analysts often emphasize statistically significant 
correlations within data, Leinweber (2007) cautions against 
interpreting these correlations as anything more than “apophenia”– 
the tendency to perceive patterns and meaning in random or unrelated 
data. Therefore, as the third fatal challenge, the propensity of big data 
to overfit is a deeply entrenched issue that arises from the complex 
interplay between model complexity, high-dimensionality, and the 
limitations of traditional validation techniques in adequately assessing 
model performance. Overfitting occurs when a model captures the noise 
and idiosyncrasies in the training data rather than the underlying signal, 
leading to poor generalizability to new, unseen data.

To understand this phenomenon, consider the Vapnik-Chervonenkis 
(VC) dimension, a fundamental concept in statistical learning theory 
which measures the capacity of a model to fit a variety of functions 
(Vapnik, 2013). In high-dimensional settings typical of big data, the VC 
dimension tends to be extremely large, reflecting the model’s ability 
to fit an enormous number of configurations. This high capacity, while 
potentially allowing for very accurate fitting of the training data, 
increases the risk of overfitting, as the model may essentially memorize 
the training data rather than learning a generalizable pattern.

The bias-variance tradeoff further elucidates the overfitting problem. 
In high-dimensional data, models with high complexity (low bias) tend to 
have high variance, which manifests as sensitivity to the specific training 
data points. This is mathematically described by the decomposition of 
the mean squared error (MSE) into bias, variance, and irreducible error 
components (Hastie et al., 2009): 

MSE = Bias2 + Variance + Irreducible Error.
In the context of big data, where the dimensionality p can vastly exceed 

the number of observations n, the variance term can dominate, leading 
to models that perform exceedingly well on the training data but fail to 
generalize to new data.

Regularization techniques, such as LASSO and Ridge Regression, aim 
to mitigate overfitting by introducing a penalty term to the loss function. 
LASSO, for instance, adds an ℓ1 penalty to the sum of absolute coefficients 
(Tibshirani, 1996). However, in the context of big data, the choice of the 
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regularization parameter λ is crucial and often determined via cross-
validation. Cross-validation itself becomes computationally intensive 
and prone to overfitting if not properly managed, as the validation sets 
may not fully represent the variability in the data.

Another sophisticated approach to combat overfitting in big data is the 
use of ensemble methods, such as Random Forests and Gradient Boosting 
Machines. These methods build multiple models and aggregate their 
predictions to improve generalizability. The Random Forest algorithm, 
which constructs multiple decision trees and averages their predictions, 
theoretically reduces overfitting by decorrelating the individual trees 
through random feature selection (Breiman, 2001). However, in high-
dimensional settings, the trees themselves can become overly complex, 
and the aggregation may still suffer from high variance due to the 
underlying data noise.

The concept of model selection criteria, such as the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC), also plays a 
pivotal role in addressing overfitting. These criteria introduce a penalty 
for model complexity, aiming to balance the goodness-of-fit with model 
simplicity: AIC = 2k − 2log(L) and BIC = log(n)k − 2log(L), where k is the 
number of parameters and L is the likelihood function (Akaike, 1974; 
Schwarz, 1978). In the context of big data, however, the computation 
of these criteria can become infeasible due to the high dimensionality, 
and their effectiveness diminishes as the parameter space grows 
exponentially.

Moreover, the stability selection method, which combines subsampling 
with selection algorithms, offers another layer of robustness against 
overfitting. Stability selection operates by repeatedly sampling the 
data and applying a selection algorithm to identify stable features, 
thus enhancing the reliability of the selected model (Meinshausen 
& Bühlmann, 2010). Despite its advantages, stability selection can be 
computationally prohibitive in big data contexts and requires careful 
calibration of the subsampling and selection parameters.

Lastly,  the advent of deep learning models, particularly neural networks 
with numerous layers and parameters, exacerbates the overfitting 
challenge. While these models are capable of capturing highly complex 
patterns, their training involves minimizing a loss function through 
gradient-based optimization methods, which can easily lead to overfitting 
if the model complexity is not adequately regularized. Techniques such 
as dropout, where a fraction of the neurons are randomly ignored during 
training, and batch normalization, which normalizes the input of each 
layer, have been proposed to address this issue (Srivastava et al., 2014; 
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Ioffe & Szegedy, 2015). However, the sheer scale and flexibility of these 
models mean that overfitting remains a significant concern.

The inherent statistical and methodological complexities in big 
data reveal significant challenges in extracting reliable and meaningful 
information. These issues necessitate rigorous skepticism and 
advanced methodologies to address the high model capacity, increased 
variance, and computational constraints, ultimately challenging the 
prevailing ideology that merely increasing data volume leads to better 
insights.

The Decontextualization Crisis
The Internet of Data’s purported superiority over the Internet of 
Information hinges on the assumption that data, as the smallest unit 
of the digital ecosystem, can be abstracted from its context and other 
units (Mohseni Ahooei, 2022). However, this notion is fundamentally 
flawed due to the intrinsic properties of data and the complex interplay 
of contextual factors.

The notion of decontextualization crisis in the context of big data 
highlights profound epistemological and methodological challenges. 
Data, when abstracted from its context, ceases to be a “thing-in-itself” 
(Kant, 1908[1781]). Data cannot exist in a vacuum; it is inherently 
bound to the context of its creation and interpretation. Boyd and 
Crawford (2012) emphasize that data devoid of context loses its intrinsic 
meaning. This concept challenges the fundamental assumption of big 
data analytics, which posits that larger volumes of data inherently yield 
greater insights. Data abstraction, or the process of decontextualizing 
data, strips it of the essential contextual factors that impart significance 
and relevance. Advanced statistical techniques, such as hierarchical 
linear modeling (HLM), attempt to account for nested data structures 
but often fall short when the data is fundamentally decontextualized 
(Raudenbush & Bryk, 2002). HLM is designed to handle data with 
multiple levels of context, but when these contexts are not adequately 
captured, the results can be misleading.

Moreover, the premise of interpretability in big data hinges on the 
concept of “commensuration”, which Espeland and Stevens define as “the 
transformation of different qualities into a common metric” (Espeland & 
Stevens, 1998: 314). This process is assumed to render data generic and 
universally interpretable. However, the inherent uniqueness of each data 
unit, due to its dependence on its physical counterpart, fundamentally 
contradicts this notion. Data normalization techniques, such as z-score 
standardization or min-max scaling, are often employed to achieve 



19
5

The Datafied Society

Jo
ur

na
l o

f C
yb

er
sp

ac
e 

St
ud

ie
s  

   
Vo

lu
m

e 
8 

   
N

o.
 2

   
 Ju

l. 
20

24

commensuration, yet these methods introduce interpretative flexibility 
that can distort the original meaning of the data (Jain et al., 1999). Van 
Dijck (2012) argues that this “interpretative flexibility” undermines the 
reliability of big data analytics. 

Digital media platforms frequently pre-structure user interactions 
into specific formats or “action grammars,” including actions like liking, 
sharing, or commenting (Van Dijck, 2013). These standardized actions 
generate pre-defined data points, converting user behaviors into 
quantifiable metrics. Nevertheless, the meanings users attach to these 
actions can vary significantly, and the widespread use of third-party 
applications further complicates the interpretation of these data points 
(Gillespie, 2010).

Therefore, the generalization of relationships between data points to 
physical social relationships represents a significant misunderstanding 
in big data studies. The virtual network, composed of digital interactions, 
is not equivalent to the network of personal relationships. Granovetter’s 
(1973) theory of weak ties and strong ties demonstrates that social 
relationships in physical contexts are fundamentally different from those 
in virtual environments. Advanced network analysis techniques, such as 
social network analysis (SNA) and graph theory, are used to map and 
analyze these relationships (Wasserman & Faust, 1994). However, these 
methods often fail to capture the depth and complexity of interpersonal 
relationships. For example, eigenvector centrality and betweenness 
centrality, commonly used SNA metrics, may not accurately reflect the 
strength and quality of social ties in virtual networks (Freeman, 1977). 
Additionally, the use of big data to analyze social networks often relies 
on assumptions of homophily and transitivity, which do not necessarily 
hold true in digital interactions (McPherson et al., 2001). Thus, equating 
virtual network metrics with real-world social dynamics is a flawed 
approach that overlooks the nuanced and context-dependent nature of 
human relationships.

The presumption that strong and weak ties in virtual networks 
can be equated with their counterparts in real-world social contexts 
is deeply problematic and fundamentally flawed. Granovetter’s (1973) 
seminal work on the strength of weak ties posits that weak ties, or 
acquaintances, serve as crucial bridges in social networks, facilitating 
the flow of information and resources across otherwise disconnected 
groups. Strong ties, or close relationships, are characterized by frequent 
interactions, emotional intensity, and mutual confiding, serving as 
sources of support and solidarity. In the digital realm, however, the 
nature and quality of interactions diverge significantly from these 
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classical definitions due to the medium’s inherent limitations and 
affordances.

The distinction between “articulated networks” and “behavioral 
networks” in social media research is pivotal for understanding the 
limitations and potentials of digital data in representing personal 
relationships. Articulated networks are those that users explicitly 
create, such as friendship lists or followerships on platforms like 
Facebook and Twitter. Behavioral networks, on the other hand, are 
inferred from user activities, such as interactions, likes, comments, 
and shares. While both types of networks offer valuable insights for 
researchers, they fall short of capturing the nuanced dynamics of 
personal networks, a limitation underscored by the concept of “tie 
strength” proposed by Granovetter (1973). Granovetter’s theory 
differentiates between “strong ties”, which are characterized by 
frequent, emotionally intense, and reciprocal interactions, and “weak 
ties”, which are less frequent and emotionally distant but crucial for 
bridging different social groups and facilitating the flow of information 
across networks. Articulated networks may reflect strong ties to some 
extent, as individuals often list their close friends and family. However, 
these networks can be misleading, as they are subject to social 
desirability bias and strategic self-presentation. Users may include 
or exclude connections for reasons unrelated to the actual strength 
of their relationships. Behavioral networks provide a more dynamic 
view by capturing interactions that occur naturally over time. Yet, 
these networks are not immune to misinterpretation. High frequency 
of online interactions does not necessarily indicate strong ties, as 
people may interact frequently with acquaintances or even strangers 
due to shared interests or network algorithms that promote certain 
content. Moreover, the lack of context in behavioral data means that 
the quality and depth of relationships are often obscured. Therefore, 
while articulated and behavioral networks derived from social media 
offer substantial data for analysis, they cannot fully substitute for the 
richness of personal networks.

Furthermore, the context-dependent nature of human relationships 
poses a significant challenge to the direct application of virtual network 
metrics to physical social dynamics. Studies have shown that digital 
interactions often lack the depth and emotional resonance of face-to-
face communication (Turkle, 2011). This discrepancy is particularly 
evident in the formation and maintenance of strong ties, which rely 
heavily on non-verbal cues, shared experiences, and the ability to 
provide immediate support and feedback (Wellman & Wortley, 1990).
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Moreover, the reliance on big data to analyze social networks introduces 
significant methodological biases. Big data analytics often prioritize 
quantifiable interactions, such as likes, comments, and shares, while 
neglecting the subtleties of relational dynamics. The “datafication” of social 
interactions reduces complex human behaviors to simplistic metrics, which 
can lead to misinterpretations and overgeneralizations (Van Dijck, 2013).

Theoretical advancements in network science and sociology further 
highlight the limitations of equating virtual and physical social networks. 
Borgatti and Halgin (2011) argue that networks must be understood as 
multiplex, consisting of multiple types of ties (e.g., friendship, kinship, 
professional connections) that intersect and influence one another. The 
reduction of these multifaceted relationships to single-dimensional 
metrics in digital networks fails to capture the intricacies of social life.

The application of virtual network metrics to understand physical 
social relationships is fundamentally flawed due to the inherent 
differences in the nature of interactions, the context-dependent nature 
of human relationships, and the methodological limitations of big data 
analytics.

The New Digital Gap Crisis
Access to big data correlates tightly with socio-economic standing, 
exacerbating systemic disparities within the digital realm. The unequal 
and constrained access to vast data reservoirs creates a distinct digital 
schism, vividly demarcating global disparities across institutional 
lines. This divide is acutely pronounced within academia, where 
elite universities command substantial resources to furnish students 
with fundamental knowledge and state-of-the-art instruments 
essential for rigorous big data exploration. Proficiency in navigating 
and exploiting expansive data ecosystems demands mastery of 
intricate computational paradigms such as distributed computing 
architectures, parallel processing frameworks, and cloud-based 
infrastructures. Statistical acumen is equally imperative, involving 
advanced techniques including Bayesian inference, machine learning 
algorithms, and sophisticated data visualization methodologies. These 
technical proficiencies predominantly reside within the purview of 
computer science specialists, a discipline historically skewed towards 
male predominance, further complicating gender parity issues 
(Hellberg, 2024).

Furthermore, the ramifications of unequal access to big data transcend 
mere technical aptitude, profoundly influencing institutional capabilities 
to shape knowledge domains, inform evidence-based policies, and steer 
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societal advancements. Differential access to comprehensive and high-
fidelity data repositories confers significant advantages in scientific 
inquiry, enabling privileged institutions to dictate research agendas, 
monopolize innovation pathways, and wield considerable influence 
over public discourse (Andrejevic, 2013). 

Effective democratization”, as Derrida posits, “is gauged by participation 
in and access to the archive—its formation and interpretation” (Derrida, 
1996: 4). This principle assumes critical relevance in the domain of big 
data, where access to expansive datasets and the capacity to conduct 
comprehensive analyses are predominantly confined to privileged 
entities. Manovich (2011) categorizes the hierarchical structure within the 
big data milieu into three primary roles: data generators encompassing 
both deliberate contributors and inadvertent digital footprint creators, 
developers of analytical tools, and data analysts. This hierarchical 
segmentation underscores the inherent power dynamics within the big 
data ecosystem, where individuals possessing specialized expertise and 
substantial resources wield disproportionate influence over scientific 
inquiry and societal comprehension.

The digital divide significantly influences the questions posed in 
scientific research and the subsequent answers derived. The current 
big data ecosystem exacerbates the divide between the “Big Data rich” 
and the “Big Data poor”, leading to a skewed landscape where a handful 
of institutions dominate knowledge production. The power to decide 
which questions are asked, what methodologies are employed, and how 
findings are interpreted resides with those who have access to extensive 
data repositories and the means to analyze them (Andrejevic, 2013). 
This concentration of power raises critical questions about legitimacy 
and governance within the realm of big data: Who has the authority to 
make decisions? Who owns and controls the data? Who operates the 
analytical infrastructure? These questions, as Derrida suggests, are 
paramount in contemplating our digital future.

When systemic inequalities are ingrained in the architecture of big 
data access and analysis, they entrench resistant class structures. The 
inequities in data access not only reinforce existing societal disparities 
but also create barriers to entry for less privileged institutions and 
individuals (Eubanks, 2018). This dynamic fosters a class of data 
elites who dictate the trajectory of research, policy, and innovation, 
thereby marginalizing diverse perspectives and perpetuating a cycle 
of exclusion. The resultant class structures are resistant to change, as 
those in positions of power have little incentive to democratize access 
or share resources equitably.
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The IRB Crisis
In the realm of scientific research, Institutional Review Boards (IRBs) 
serve as critical gatekeepers, ensuring ethical practices, safeguarding 
human subjects, and maintaining public trust in scientific endeavors. 
Their operations are guided by the Belmont Report (National Commission 
for the Protection of Human Subjects of Biomedical and Behavioral 
Research, 1979), which emphasizes respect for persons, beneficence, 
and justice. However, as scientific research evolves, particularly in the 
domain of big data, IRBs have faced significant challenges in maintaining 
their regulatory influence.

First, the sheer volume and variety of data available in big data 
research do not inherently justify its ethical use. The principle of 
informed consent, a cornerstone of ethical research, is often overlooked 
in big data studies. Informed consent necessitates that individuals are 
fully aware of and agree to the specific uses of their data. However, in 
the context of big data, individuals who provide their personal data 
on social media platforms and other digital services typically do not 
consent to their data being used for research purposes. This misuse of 
data can be likened to unauthorized surveillance, which contravenes 
ethical standards set forth by IRBs.

Advanced algorithms and artificial intelligence (AI) systems 
exacerbate this issue by mining data from various sources without 
explicit consent, raising serious ethical concerns. For instance, predictive 
algorithms used in big data analytics can infer sensitive information 
about individuals, even if such data were never explicitly provided 
(Metcalf & Crawford, 2016). This practice violates the principle of 
autonomy, as individuals lose control over their personal information 
and its uses.

Moreover, privacy concerns are paramount in the use of big data for 
research. The aggregation and analysis of vast amounts of data can lead 
to the discovery of intricate connections between data points, effectively 
enabling researchers to make detailed claims about individuals. This 
process, facilitated by sophisticated machine learning algorithms and 
cloud computing technologies, can inadvertently expose personal 
information and violate privacy rights. The re-identification of anonymized 
data sets, for instance, is a well-documented risk. Studies have shown that 
even de-identified data can be traced back to individuals through cross-
referencing with other data sources (Narayanan & Shmatikov, 2008). The 
use of cloud computing for data storage and analysis further complicates 
privacy concerns, as data breaches and unauthorized access to sensitive 
information can occur despite advanced security measures.
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Moreover, the statistical analyses resulting from big data explorations 
often involve correlations that can misrepresent or oversimplify 
complex social phenomena. When these analyses pertain to subjugated 
social groups, including children, women, and racial, religious, or 
cultural minorities, the results can perpetuate harmful stereotypes 
and exacerbate social inequalities. For instance, biased algorithms can 
reinforce existing prejudices, leading to discriminatory outcomes in 
areas such as education, healthcare, and criminal justice (O’Neil, 2016).

Furthermore, the application of quantum computing in big data 
research introduces new dimensions of complexity and risk. Quantum 
computing has the potential to break traditional encryption methods, 
thus exposing data to unprecedented vulnerabilities (Shor, 1994). These 
technological advancements necessitate rigorous oversight to ensure 
that privacy is not compromised in the pursuit of knowledge.

Finaly, the potential for big data research to harm vulnerable populations 
is a significant ethical concern as well. Children and teenagers, who are 
prolific generators of digital data, are particularly at risk. The analysis 
and publication of data derived from these groups can lead to unintended 
consequences.

The ethical implications of these practices are profound. The principle 
of justice, which mandates the fair distribution of research benefits and 
burdens, is often violated in big data research. Vulnerable populations 
may disproportionately bear the risks of data misuse, while the benefits 
of such research accrue to more privileged groups.

Conclusion
The advent of big data has undoubtedly transformed the landscape 
of social research, offering unprecedented opportunities for insight. 
However, it also brings to the fore significant challenges related to 
objectivity, contextualization, and access. To mitigate these challenges, it 
is imperative to adopt a holistic approach that integrates robust scientific 
methodologies, ethical considerations, and a critical perspective on 
the socio-political dimensions of data. By doing so, we can harness the 
potential of big data while safeguarding the integrity and depth of social 
research, ensuring that it contributes meaningfully to our understanding 
of human society.

Addressing the crises and challenges of big data research necessitates 
a multifaceted approach, integrating both technological advancements 
and methodological shifts. A critical starting point involves the de-
reification of social processes. This requires moving beyond the 
perception of data as mere objective entities and recognizing their 



20
1

The Datafied Society

Jo
ur

na
l o

f C
yb

er
sp

ac
e 

St
ud

ie
s  

   
Vo

lu
m

e 
8 

   
N

o.
 2

   
 Ju

l. 
20

24

embeddedness within social, cultural, and political contexts. Such an 
approach demands a nuanced understanding of how data points are 
generated, interpreted, and utilized, acknowledging that they reflect 
diverse human behaviors, intentions, and meanings.

A crucial aspect of big data research lies in its foundational conditions. 
The continuous collection of data across various domains and the 
context-aware interpretation of aggregated data. For big data to truly be 
effective, it is essential that data is not only amassed in real-time from 
diverse sources—ranging from what people do and say to their physical 
positions—but also meticulously analyzed with an understanding of 
the contexts from which it originates. This dual requirement ensures 
that the data reflects a comprehensive and dynamic snapshot of reality, 
capturing the multifaceted nature of human behavior and interactions. 
The continuous collection of data allows for the observation of 
trends and patterns over time, providing a more robust and granular 
understanding of social phenomena. Meanwhile, the aggregation 
and contextual interpretation of this data enable researchers to draw 
meaningful correlations and insights that are grounded in the specific 
circumstances of the data’s origin. Without these conditions, big data 
would risk becoming a collection of disconnected and potentially 
misleading fragments, rather than a coherent and insightful resource for 
understanding complex social dynamics.

To navigate the complexities of big data, scholars must adopt new 
methodologies that transcend traditional paradigms. The continuous 
collection of data across various domains, coupled with sophisticated 
aggregation and context-aware interpretation, forms the bedrock of 
effective big data analysis. This entails not only tracking what individuals 
do and say but also understanding the subtleties of their interactions 
and behaviors. As Marres and Weltevrede (2013) suggest, metrics in this 
context should be considered “lively metrics”—dynamic and reflective of 
the evolving nature of social phenomena. These metrics, as Gerlitz and 
Lury (2014) argue, are inherently variable and animated, capturing the 
multifaceted ways in which individuals engage with digital platforms.

Furthermore, fostering a culture of critical engagement with data 
is essential. Researchers and students must be equipped to interrogate 
the assumptions and implications of data-driven findings, particularly 
regarding their roles in establishing value and credibility across different 
fields. This involves not only technical proficiency but also a critical 
understanding of the philosophical underpinnings of data interpretation 
and utilization. Public discussions should aim to demystify data points, 
opening up debates about their significance and impact on society.
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