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A B S T R A C T  

Corner detection, crucial for many computer vision tasks due to corner's distinct structural properties, often 

relies on traditional intensity-based detectors developed before 2000. This paper introduces a novel intensity-

based corner detector that surpasses existing methods by solely analyzing pixel intensity within a 3×3 

neighborhood. Our approach leverages a unique corner response function derived from intensity sorting and 

difference calculations. We conduct a comprehensive evaluation comparing our detector to seven established 

algorithms using five benchmark images with ground truth corner locations. The evaluation encompasses 

detection accuracy, localization error under varying noise levels, and repeatability under transformations and 

degradations. This assessment utilizes 28 diverse images without ground truth data. Experimental results 

demonstrate the proposed detector's superior overall performance by 3%. It achieves better accuracy in corner 

localization and reduces both missed detections and false positives. Furthermore, requiring only one parameter 

for adjustment, it offers computational efficiency and real-time processing potential. Additionally, the 

generated corner response map holds promise for integration with deep learning architectures, opening 

possibilities for further exploration. 
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1. Introduction 

The corners of objects in an image are important 
local features in many computer vision tasks such as 
3-D reconstruction, image matching, motion 
estimation, object tracking, etc. [1]. For instance, [2] 
proposed a new camera calibration method based on 
chessboard corners. [3] extracted corners in aerial 
images of the city for building detection. Some works 
used corners integrated with optical flow for tracking 
[4–6].  

One of the fundamental types of interest points 
are corner points. An interest point is a point in an 
image that has a well-defined position and is invariant 
to rotation, translation, intensity, and scale changes 
[7]. Other potential interest points include isolated 
regions of local intensity maxima or minima, line 
intersections on edges, and local maximums of 
curvature on blobs, etc. [8]. Corner points are still not 
completely defined mathematically. A point that has 
two dominant and dissimilar edge directions in its 
immediate vicinity is referred to as a corner. Another 

definition of a corner is the point where two or more 
edge curves meet or the local maximum of curvature 
on the edge contour [9]. 

Corners are very effective, because they offer a 
very simple location map and are more accurate than 
edges and color maps, especially in some tasks like 
tracking [3-5]. They also significantly reduce the 
mmoun  of dtt   hh eee rtt ii ning hh  imag’’ s faauure 
information, which is vital for real-time tasks. In 
many cases, the response of a corner detector is a map 
of candidate locations, and it is necessary to do a local 
analysis of detected points to identify which of these 
are true corners [10]. 

As a fundamental tool for image processing, 
corner detection has received a lot of attention. In 
general, there are three groups of corner detectors: 
intensity-based techniques, contour-based 
algorithms, and model-based methods. 

Intensity-based approaches can directly detect 
corners by generating a corner response function that 
assesses image pixel values in such a way that corners 
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are recognized as points with low self-similarity in an 
image [11]. Moravec [12] discovered that there is 
little difference in intensity between neighboring 
pixsss aoong an edge or in nn mmage’s uniform araa. 
Meanwhile, there is a significant intensity variation 
nn all dircciions tt  .he corner. To deeermnne a point’s 
self-similarity, we can use the sum of squared 
differences (SSD) between corresponding image 
patches from two images. This is the foundation for 
many corner detectors. Harris and Stephens [13] built 
on Morvvcc’s idea by using th  gradient eggnnvll uss 
of the local auto-correlation matrix in different 
directions to detect corners. As stated by Noble [14], 
the reliability of the Harris corner detector is limited 
to “L-type  corners only. Therffore, Sh  and Tomiii  
[15] enhanced the original detector by adjusting the 
threshold value used to estimate the smallest 
eigenvalue values. The smallest uni-value segment 
with an assimilating nucleus (SUSAN) was 
developed by Smith and Brady [16] to detect the 
corners of a gray-level image using a gradient 
convolution of a circle mask known as the USAN 
region. Currently, the majority of studies have 
improved upon the tried-and-true Harris [13], 
SUSAN [16], and Hessian [17] corner-detection 
techniques. 

Contour-based detectors consist of three major 
steps: edge detection, contour extraction, and corner 
classification. Wang and Brady [18] introduced a 
technique for computing image curvature based on 
edge strength and the rate of change in direction along 
the edges. Their method involves taking the inverse 
of the edge strength multiplied by an additional factor 
related to the curvature at the edge intersection points. 
Mokhtarian and Suomela [19] proposed a Curvature 
Scale Space (CSS) corner detector. In these 
approaches, the authors first use single- or multi-scale 
Gaussian filters to smooth the curves. They then 
calculate the curvature of the smoothed curves at each 
point. For corner detection, the absolute maximum 
curvature points at single or multiple scales are 
integrated. It indicates the three primary issues with 
the current CSS corner detectors. First, noise or local 
variations in contours can affect the curvature 
estimator. Second, there is a problem with Gaussian 
scale selection. The setting of the threshold is the 
third step. Zhang et al. [20] suggested corner 
detection based on the angle difference between the 
directions of anisotropic Gaussian directional 
derivatives (ANDDs) on curves. A chord length and 
an angle are the two factors used by Afrin et al. [21] 
to create an efficient multi-chord corner identification 
method. In order to evaluate the response of contour 
points utilizing Manhattan distance and Euclidean 
distance, Lin et al. [22] introduced two unique corner 
detectors based on the second-order difference of 
contour (SODC) distribution features. To identify 
corners robustly, Liu et al. [23] suggest measuring the 
linear fitting error rather than estimating the discrete 

curve directly. They follow a three-step procedure. 
Initially, a small curve segment is parameterized into 
two curves. Next, minimum linear fitting errors with 
respect to these curves are estimated via the least-
squares fitting technique. Finally, the obtained errors 
serve as the local bending strength for corner 
detection. Forstner [24] identifies the corners in a 
given window as the points that are closest to all of 
the tangent lines of the corner. The algorithm is a 
least-square solution and is based on the assumption 
that tangent lines intersect at a single location for an 
ideal corner. 

In general, edge detection had a significant impact 
on how well edge-based corner detectors performed. 
Also, edge contours close to junctions are frequently 
unpredictable, making it challenging for edge-based 
corner detectors to precisely define the junction [8]. 

Model-based detectors extract corner points by 
comparing the image patches to a predefined corner 
model and estimating their similarity. Rosten et al. 
[25] used a decision tree to improve the performance 
of corner detection by introducing the FAST 
(Features from Accelerated Segment Test) algorithm. 
Shui et al. [26] introduces a novel corner detector and 
classifier based on anisotropic directional derivative 
(ANDD) representations. This method characterizes 
the local directional grayscale variation at each pixel, 
leveraging both contour and intensity information for 
improved accuracy. The detection process involves 
obtaining an edge map using the Canny detector, 
calculating normalized ANDD representations for 
pixels on contours, and applying non-maximum 
suppression and thresholding to identify corners. 
Additionally, the method includes a classifier to 
distinguish between simple corners, Y-type corners, 
and higher-order corners. 

Gao et al. [27] focus on template-based methods, 
which are computationally efficient and 
straightforward to implement. They introduce two 
new algorithms designed to enhance robustness in 
detecting corners, crucial for applications like robot 
navigation. The paper developed two template-based 
corner detection algorithms by taking into account 
optimal corners with at least two pixels in length on 
the corner arm directions, which reduces the False-
Positive corners.  

Xing et al. [28], introduces a novel corner 
detection method that uses a filled circle and outer 
ring mask. This method first applies an adaptive 
threshold to distinguish non-corner regions such as 
image noise, object edges, corner neighborhoods, and 
flat regions. The detection process then uses a 
complex response function that combines the margins 
of the inner filled circle and the outer ring to identify 
corner candidates.  

The development of a universal corner detection 
model remains unsolved due to its limited coverage 
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for various image kinds and distinctive scenery 
attributes. This challenge hinders adaptability and 
flexibility in corner detection processes across 
diverse scenarios. Recently, the more powerful and 
accurate deep learning models employed for corner 
detection task [29–32]. 

Zhang et al. [29], introduces a novel deep 
learning-based algorithm is introduced to detect the 
corners of quadrilateral objects in real-time. The 
proposed method leverages convolutional neural 
networks (CNNs) to extract features and predict 
corner positions, achieving high accuracy and speed, 
which is essential for applications like autonomous 
driving and augmented reality. In [30], Yoon et al. 
present a deep learning framework for detecting 
chessboard corners with high precision. The method 
utilizes multitask learning to simultaneously address 
corner detection and classification, enhancing the 
robustness and accuracy of the detection process. By 
integrating spatial context and geometric constraints 
into the learning process, the authors achieve 
significant improvements in detection performance, 
which is particularly beneficial for applications in 
camera calibration and 3D reconstruction. Ercan and 
Wang [31] explore the application of deep learning 
techniques for precise corner detection in industrial 
inspection systems. The proposed method combines 
CNNs with domain-specific knowledge to accurately 
identify and localize corners in various inspection 
tasks. The authors validate their approach through 
rigorous testing on real-world datasets. 

Wang et al. [32] proposes a hybrid approach to 
count wheat ears using Fully Convolutional 
Networks (FCN) and Harris corner detection. This 
method leverages the strengths of FCNs in 
segmenting wheat ears and the precision of Harris 
corner detection to accurately count them in field 
conditions. In their work [33], Wang et al. use Faster 
R-CNN to first locate the target region. Subsequently, 
they apply an adaptive version of the Harris corner 
detection algorithm within this region to detect corner 
points. The repeatability and light robustness of 
interest point detecting were improved in [30] using 
feature pyramids, FCN network architectures, cell 
boundary drift, and metric learning. Reliable feature 
points were then filtered away by non-maximum 
suppression. 

Although deep learning models show better 
performance in many areas of image processing 
tasks, they require access to a vast amount of data to 
be effective, and the main problem in corner detection 
tasks is the lack of a large specific dataset. 

1.1. Objective and Contributions 

Intensity-based methods, in addition to their 
simplicity and lower computational cost, can easily 
be integrated into other corner detection methods like 
deep learning-based detectors. This work introduces 

a novel and computationally efficient intensity-based 
corner detector inspired by the Moravec corner 
criterion [12]. This theory posits that a corner point 
exhibits significant intensity variations in all 
directions. We extend this concept by proposing a 
novel, simplified function that emphasizes the 
intensity differences at potential corner locations. 
This function generates a rich corner response map, 
facilitating the extraction of accurate corner points. 
Existing intensity-based detectors, such as Harris 
[13], Shi-Tomasi [15], and FAST [25], rely on 
eigenvector analysis of image intensity for corner 
detection. 

The main contributions of our method are: 

1. A novel corner response function 
emphasizing intensity variations at potential 
corner locations. 

2. Superior corner localization accuracy and 
robustness against noise and local intensity 
variations. 

3. Comprehensive performance evaluation 
against established algorithms (Moravec 
[12], Harris [13], Shi-Tomasi [15], SUSAN 
[16], FAST [25], Förstner [24], and Kitchen-
Rosenfeld [34]) using benchmark images and 
diverse scenarios. 

We analyze the properties of our proposed corner 
representation map, which forms the foundation for 
our novel corner detection method. We compare the 
performance of our detector with seven established 
algorithms: Moravec [12], Harris [13], Shi-Tomasi 
[15], SUSAN [16], FAST [25], Förstner [24], and 
Kitchen-Rosenfeld [34]. Our evaluation 
demonstrates that the proposed technique achieves 
superior corner localization accuracy and robustness 
against noise and local intensity variations. This 
assessment includes detection rate and localization 
error under varying noise levels (including noise-free 
conditions) using five benchmark images with 
ground truth corner locations. Additionally, 
repeatability is evaluated using 28 diverse images 
under affine transformations, JPEG compression, and 
noise degradation. The experimental results confirm 
the superior overall performance of the proposed 
detector. 

The remaining sections of this article are 
organized as follows: Section II discusses the issues 
with current intensity computation algorithms, and 
Section III presents our cutting-edge corner detection 
method. The experimental results are presented and 
discussed in Section IV. Finally, Section V presents 
our conclusions and feature works. 

2. Related Works 

Intensity-based detectors are the oldest approach 
to finding interest points. These approaches look for 
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areas in images that produce significant changes in 
intensity when slightly altered horizontally or 
vertically. Thus, detectors like the first or second 
derivative are suitable for identifying them. A corner 
detection method based on a differential operator was 
proposed by Kitchen and Rosenfeld [34] and 
performed by computing the first and second partial 
derivatives of an image and determining corners as 
local maxima. Intensity-bssed approahh’’’  seoond-
order derivatives are noise-sensitive and rarely 
employed in the literature [35]. 

Intensity-based detectors are built upon the fact 
that there is little difference between neighboring 
pixels along an edge or in a uniform area of the image. 
Meanwhile, at the corner, the difference is noticeably 
large in all directions. As a result, the sum of squared 
differences (SSD) between their associated image 
patches in the vertical and horizontal directions can 
be used oo ccccuttt     point’s sfff-similarity. Allow a 
window to be centered at a position (x, y). The pixel 
intensity at this location is I(x,y). The intensity of the 
pixel at this location will be I(x+u,y+v) if this 
window is slightly shifted to a new location with 
displacement (u,v). As a result, the difference in 
intensities of the window shift will be 
[I(x+u,yvv)−I(x,y)]. Thss differ. nc  w    b  qu...  
large for a corner, so we look for windows that have 
a maximum variation. As a result, we maximize this 
term by differentiating it along the X and Y axes. Let 
W(x,y) represent the weights of pixels across a 
rectangular or Gaussian window. Then E(u,v) is 
defined as Equ(1): 

𝐸(𝑢, 𝑣) = ∑ 𝑊(𝑥, 𝑦)(𝑥,𝑦) [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2    (1) 

Since (1) is very slow, therefore Taylor series 
expansion, only the first order, is employed Equ(2): 

𝑇(𝑥, 𝑦) ≈ 𝑓(𝑢, 𝑣) + (𝑥 − 𝑢)𝑓𝑥(𝑢, 𝑣) + (𝑦 − 𝑣)𝑓𝑦(𝑢, 𝑣) + ⋯      (2) 

So, rewriting the shifted intensity with Equ(2) 
yields: (Equ(3)) 

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) ≈ 𝐼(𝑥, 𝑦) +
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
𝑢 +

𝜕𝐼(𝑥,𝑦)

𝜕𝑦
𝑣    (3) 

On the other hand, 
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
= 𝐼𝑥  and 

𝜕𝐼(𝑥,𝑦)

𝜕𝑦
= 𝐼𝑦   

are image derivatives in the X and Y directions 
respectively, then: (Equ(4-6)) 

𝐸(𝑢, 𝑣) = ∑ 𝑊(𝑥, 𝑦)(𝑥,𝑦) [𝐼(𝑥, 𝑦) + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 − 𝐼(𝑥, 𝑦)]2         (4) 

𝐸(𝑢, 𝑣) = ∑ 𝑊(𝑥, 𝑦)(𝑥,𝑦) [𝐼𝑥𝑢 + 𝐼𝑦𝑣]2               (5) 

𝐸(𝑢, 𝑣) = ∑ 𝑊(𝑥, 𝑦)(𝑥,𝑦) [𝐼2
𝑥𝑢2 + 𝐼2

𝑦𝑣2 + 2𝐼𝑥𝐼𝑦𝑢𝑣]     (6) 

Now in (6), taking u,v out and re-writing in 
matrix notation gives us Equ(7): 

  𝐸(𝑢, 𝑣) = (𝑢, 𝑣)𝑀 [
𝑥
𝑦]         (7) 

and matrix M is Equ(8): 

    𝑀 = 𝑊(𝑥, 𝑦) [
∑ 𝐼2

𝑥(𝑥,𝑦) ∑ 𝐼𝑥𝐼𝑦(𝑥,𝑦)

∑ 𝐼𝑥𝐼𝑦(𝑥,𝑦) ∑ 𝐼2
𝑦(𝑥,𝑦)

]         (8) 

The matrix M is a local auto-correlation matrix of 
intensity variations, so the difference between corner 
and non-corner pixels is reflected in M. The corner 
score is derived from the local auto-correlation 
mtt rix’s wwo ii genvll uss. aa rrss [13] defined hhis 
score for classifying into flat region/edge/corner as 
Equ(9): 

           𝑅 =  𝑑𝑒𝑡(𝑀) − 𝐾[𝑡𝑟𝑎𝑐𝑒(𝑀)]2        (9) 

Where, dtt (M) = λ1λ2, and rrcc((M) = λ1 + λ2. the 
λ1 and λ2 are eigenvalues of M, and K is an empirical 
constant value between 0.04 and 0.06. as shown in 
Figure 1, depending on the value of R, the window is 
classified as flat, edge, or corner. A high R-value 
indicates a corner, while a negative R-value indicates 
an edge. 

Th  .. rrss decccoor ssn’  invrr ian  oo scll   nnd 
works best for L-type corners [36]. Its performance 
also depends on how the corner response suppression 
is chosen, impacting overall accuracy. Addressing 
these shortcomings, Shi and Tomasi [15] improved 
the Harris detector with better corner scoring using 
minmmll  eggenvll ue vll u   R   min(λ1λλ2), resulting 
in higher accuracy. If R is greater than a threshold, 
ssss ll sssifeed ss a corner. Addttoonally, thss mtt hod 
allows us to locate the top N corners, which may be 
usefu  ff w  don’t wnnttto idenfffy lll  corners. 

 

Figure. 1. The Harris Corner Detector detects a corner when 

both eigenvalues are large. 
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Foerstner algorithms [24] goal is to find corners 
defined as crossings of image edges using matrix M 
as Equ(10-11): 

  𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =  𝑡𝑟𝑎𝑐𝑒(𝑀)         (10) 

  𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠 =
𝑡𝑟𝑎𝑐𝑒(𝑀)2

4∗det (𝑀)
       (11) 

The roundness of a corner is determined by how 
similar the gradients that form it are. Only windows 
having a strength threshold higher than strength and 
a roundness threshold higher than corner quality are 
taken into consideration. Then the non-maximum 
suppression on the window roundness is applied, and 
the windows candidate for the corner is determined at 
last. It is accomplished by reducing the square 
distances, which are weighted by gradient lengths, to 
all tangent lines within the window that are 
perpendicular to gradients. 

The SUSAN detector proposed by Smith and 
Brady [16] uses the number of pixels similar to the 
center pixel in the circular template called USAN, as 
the corner measure, which fails for some corner 
types, such as X-shapes. As shown in Figure 2, the 
USAN area is greatest when the nucleus is in a flat 
region of the image, but it drops to half of that value 
very close to a straight edge and even lower when 
inside a corner. Bae et al. [37] improved the SUSAN 
detector by replacing the circular mask with a pair of 
oriented cross operators. 

Rosten et al. [25, 38] proposed the FAST 
(Features from Accelerated Segment Test) algorithm, 
which first considers an appropriate intensity 
threshold value. Then it selects candidate interest 
points, and then it chooses pixel P as the corner based 
on a circle of 16 pixels around the current candidate 
pixel. Each pixel in the circle is labeled from 1 to 16 
in a clockwise direction, if there is a set of n 
contiguous pixels in the circle (of 16 pixels) that are 
all outside of the threshold ± pixel intensity bounds. 
The case depicted in Figure 3. The FAST corner 
detector is very suitable for real-time image 
processing applications because of its high-speed 
performance. In order to execute the high-speed test 
for excluding non-corner points, 4 sample pixels 1, 9, 
5, and 13 are examined. Since there should be at least 
12 contiguous pixels that are either all brighter or all 
darker than the candidate corner, at least three of 
these four sample pixels should also be either all 
brighter or all darker. 

All the basic corner detection methods mentioned 
above received several improvements [39–47]. Gray-
scale methods may suffer from noise sensitivity and 
might not accurately locate the exact corner point 
position, but they are faster. 

3. Proposed Corner Detector  

This section provides a comprehensive 
explanation of our novel intensity-based corner 
detector. We begin by establishing the theoretical 
foundation upon which our approach is built. The 
overall workflow of the proposed corner detection 
method outlined in Figure 4. We first extract a map 
highlighting potential corners using our proposed 
corner detection function. Next, we identify the actual 
corner points by applying non-maximum suppression 
to the local maxima in the corner response map. This 
removes any weak corners and keeps only the most 
prominent ones. 

 

Figure. 2.  Showing a dark rectangle on a white background. At 

five image positions, a circular mask with a center pixel 

designated as the nucleus is displayed [16]. 

 

Figure. 3.  Corner detection in a 12-point test picture patch 
using the FAST is displayed [38]. The pixels used for corner 

detection are shown as highlighted squares. The center of a 

potential corner is the pixel at position p. The circle is denoted 
by the line passing through 12 consecutive pixels that are 

brighter than p in addition to the threshold. 

 

Figure. 4. Corner The overall workflow of our corner detection 
method. First corner response map extracted using the proposed 

corner function. Then corner points extracted by applying the 

non-maximum suppression on Local maximas. 
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Corner points, as described in [12], exhibit 
significant variations in intensity across all directions. 
This characteristic stands in stark contrast to the 
intensity profiles of neighboring pixels along edges 
or within uniform regions of an image. Recognizing 
this principle, researchers have developed various 
corner detection algorithms, each possessing unique 
advantages and limitations (e.g., [13, 15, 16, 24, 34, 
38]). For instance, the Harris corner detector [13] may 
exhibit shortcomings in its ability to effectively 
identify certain corner types compared to the Shi-
Tomasi detector [15]. However, the Shi-Tomasi 
detector might introduce a higher number of false 
corner detections. 

Figure 5 serves as an illustrative example. The 
image labeled "bedroom light" showcases smooth 
variations in intensity with distinct corner points. 
These characteristics make this image particularly 
suitable for the application of our proposed method. 

We applied eight corner detectors to the image 
and magnified a small region of the image to 
demonstrate the performance of corner detection 
methods, as shown in Figure 6. In this region, there 
are four corner points, one with an angle less than 90 
degree, two with angles less than 180, and one with 
an angle greater than 180. Only one of the corners is 
detected by FAST [25] (Figure 6(a)), Kitchen-
Rosenfeld [34] (Figure 6(c)), and Moravec [12] 
(Figure 6(d)). Foerstner [24] (Figure 6(b)), Harris 
[13] (Figure 6(e)), Shi-Tomasi [15] (Figure 6(f)), and 
SUSAN [16] (Figure 6(g)) all identify two corners, 
but our method surprisingly identified three of four 
(Figure 6(h)). 

Furthermore, most of them have very high false 
corners. Because, in addition to the unwanted hidden 
noise in the image, the border regions do not always 
have homogeneous values at the pixel level. Also, the 
corner response function of some methods, like 
Kitchen-Rosenfeld [34] Figure 6(c) and Moravec 
[12] Figure 6(d), are unstable to small changes in 
intensity levels. 

In Figure 7, the corner response maps of the 
fforemeniioned mtt hods ar  shonn . It’s essy to see 
why there are so many false corners in some methods, 
so we need a robust corner response function, while 
the proposed corner response function generates a 
very clear corner response map. 

 

Figure. 5. The intensities in the bedroom light image change 

smoothly in most areas. 

 

Figure. 6. The result of eight corner detectors on Figure 5. (a) FAST[25], (b) Forstner[24], (c) Kitchen-Rosenfeld[34], (d) 

Moravec[12], (e) Harris[13], (f) Shi-Tomasi[15], (g) SUSAN[16], and the proposed detector (h). 
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Figure. 7. The corner response map of eight corner detectors on Figure 5. (a) FAST[25], (b) Forstner[24], (c) Kitchen-Rosenfeld[34], 

(d) Moravec[12], (e) Harris[13], (f) Shi-Tomasi[15], (g) SUSAN[16], and the proposed detector (h). 

Since corners are defined by sharp changes in 
intensity from all directions within a small area, we 
introduce a new function to identify these regions. 
This function works by transforming the image's 
intensity values into a new domain where corners 
have higher values. As illustrated in Figure 8, for each 
pixel in the image, we consider its surrounding 3×3 
neighborhood and sort the pixel intensities within it. 
Then, we calculate the difference between the sum of 
the three brightest and the three darkest pixels. This 
difference forms the heart of our proposed corner 
response function. 

Figure 8(b) illustrates a key aspect of our corner 
detection function. If the intensity values of pixels p7, 
p8, and p9 in the image window are similar, then the 
absolute difference 'u' calculated in the function (and 
similarly 'd' in Algorithm 1) will be small. This small 
difference reflects the similarity of intensity values 
within a non-corner region. Conversely, when the 
window encompasses a corner, the intensity values 
will exhibit significant variation. In such cases, 
relying solely on the maximum and minimum values 
within the window might be susceptible to noise or 
unwanted variations in pixel intensities. To address 
this issue and achieve greater generalization, we 
propose calculating the difference between the 
intensity of the upper third of the sorted pixel values 
and the intensity of the lower third. This approach 
ensures that even if pixels p8 and p9 have similar 
intensities, the significant difference between p7 and 
p9 can still contribute to the corner detection. Notably, 
by sorting the pixels based solely on intensity and 
disregarding their spatial location, we effectively 
compute the maximum intensity difference across 
various directions within the window. This strategy 
enhances the generalization and robustness of the 
corner definition compared to Moravec's approach 
[12]. Furthermore, as detailed in Algorithm 1, the  

 

Figure. 8. The proposed corner response function. (a) The 3*3 
kernel. (b) The kernel sorted incrementally to get extrema 

differences. 

Algorithm. 1. Proposed Corner Response 

Function 

Input: Gray Scale Image 

Output: Corner Response Map 

for everyPixel in inputImage do  

1. W   geeeegghboorhood   3 ∗ 3(pixel)  

2. p = sortIncremental(W)  

3. u = (p9   p8) ∗ (p9 ppp7)  

4. d = (p1   p2) ∗ (p1 ppp3) 

5. cornerResponseMap[pixel] = u2 ddd2 

end for 

return cornerResponseMap 

proposed method is computationally efficient, 
making it suitable for real-time applications. 

Following the generation of the corner response 
map, we proceed to extract the most prominent corner 
candidates as the final results. Similar to other corner 
detection methods, we employ non-maximum 
suppression with a predefined window size. This 
window size parameter plays a crucial role in 
determining the corner resolution, which essentially 
refers to the minimum separation distance between 
two detectable corners. It means how precisely two 
adjacent corners can be distinguished. While it's true 
that the novel corner point definition we introduced 
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deviates slightly from the traditional definition, the 
effectiveness of our approach will be demonstrably 
validated in the subsequent section. 

4. Experiments and Results 

The results of a detailed performance evaluation 
of the suggested corner detector are reported in this 
section. First, the proposed method is compared to 
seven basic corner detectors in terms of the number 
of missed and false corners as well as the localization 
errors of corners that were correctly recognized, 
using five images with ground truths. Then, the 
Average Repeatability (AR) of the detectors during 
noise degradation, JPEG compression, and image 
affine transformations is assessed using 28 images. 

4.1. Datasets 

For corner detection performance evaluation, we 
used three free noise test images from well-known 
repositories and two natural test images from the 
internet containing various scenes and noises. Our 
GitHub provides access to all codes and data. Figure 
9 depicts the ground truths for the five test images. 

Th  ’Texture’ mmgge Figure 9(a) has 33 ground 
truth corner points, and unlike the other images, its 
oorners have diffrren  shapss. Th  ’Block’ image 
Figure 9(b) oontii ns 60 cornrr  poinss, the ’Boxss’ 
image Figure 9())  h44446 ll aar oorners, th  ’Wooden 
fenc’’  image Figure 9(d) contains 70 corners, and the 
’Bcckyard fnnee’ Figure 9(e) has 69 corner points. 
For evaluating the AR of our proposed corner 
detector, we employed 28 images (Figure 10) which 
gathered from the MSCOCO [48] dataset and [49]. 

4.2. Average localization errors 

According to the [9], the DC = (xi,yi), i = 1,2,...M1 
and GT = (xj,yj), j = 1,2,...M2 represents, 
respectively, the corners that a corner detector has 
correctly identified and the true corners in the ground 
truth images. The shortest distance from set DC is 
determined for a corner (xj,yj) in set GT. The corner 
(xj,yj) is considered to have been appropriately 
recognized if the shortest distance does not exceed the 
predefined hhrsshold (here, hhrhhhold     4). 
Therefore, the detected corner in set DC and the 
corner (xj,yj) in set GT constitute a matched pair. 
Otherwise, the (xj,yj) corner marks as a missed corner. 
Similarly, we determine the minimum distance from 
set GT for a corner (xi,yi) in set DC. A corner (xi,yi) 
is regarded as a false corner if the minimal distance 
exceeds the threshold. 

The average distance between all matched pairs is 
used to calculate the localization error as  Equ(12): 

      𝐴𝐿𝑒 = √
1

𝑁
∑ [(�̂�𝑘 − 𝑥𝑘)2 + (�̂�𝑘 − 𝑦𝑘)2]𝑁

𝐾=1          (12) 

The k = 1, 2, ..., N in ALe(xˆk,yˆk),(xk,yk) are the 
matched corner pairs in sets GT and DC. For the other 
seven detectors, Moravec [12], Harris [13], Shi-
Tomasi [15], SUSAN [16], FAST [25], Foerstner 
[24], and Kitchen-Rosenfeld [34], we used the Scikit-
image library in Python. The corner resolution search 
nnndo  siee nn thss paper ss α   7, so seiiing   = 4 ss 
oorrcc   ttt ually, th  α wss used for loaa  pekk 
selection as initial corner candidates. Also, all of the 
dtt ccoors’ uunbbee parameeers rr   stt  to therr default 
values. For our detector, there is no specific 
parameter except one for thresholding corner 
response map, whose default value is 0.001, however 
we demonstrate the effect of this single parameter on 
our detector performance in Figure 11. 

 

Figure. 9.  The five test images with red dots in their true 

corner   ’ee xture’ (a), ’. lock’ (b), ’Boxe’’ (c), ’Wooden fence’ 
(d), ’Backyard fence’ (e). 

 

Figure. 10. Twenty-eight test images from various scenes. 

 

Figure. 11. The impact of adjusting only the thresholding 

parameters T on the corner detection algorithm. 
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Because the first three images are noise-free, we 
consider missed and false corners to have the same 
effect on detector loss. However, because two fence 
images are natural and contain noise, they have a 
higher potential for false corners, so we assign a 
higher weight on loss to missed corners in these two. 
It can be seen that the proposed detector with 
threshold T = 0.005 has the highest overall decrease 
ratio in terms of missed and false corners. 

4.3. Average Repeatability 

Since the number of test images with ground 
truths is limited, evaluating the performance of corner 
detectors solely on these images is insufficient. For 
the evaluation of corner detectors, the average 
repeatability under affine transformations, JPEG 
compression, and noise degradation was proposed [9, 
20, 26]. The average repeatability (13) counts the 
number of corner points that are consistently detected 
in the same location between the original and 
transformed images. Actually, it measures the 
geometrical stability of the detected corners between 
the original and transformed images, so a better 
performance is indicated by a higher average 
repeatability. Furthermore, because the ground truth 
of images is not required for the computation of 
repeatability, evaluation can be done on a large 
number of images; with this approach, our dataset 
images exceed 10000. 

  𝐴𝑅 =
𝑁𝑟

2
(

1

𝑁𝑜
+

1

𝑁𝑡
)          (13) 

Where No and Nt denote the number of detected 
corners in the original and transformed images, 
respectively, and Nr denotes the number of corners 
that are repeated between them within a threshold δ 
pixels. 

4.4. Detection Evaluation with Ground Truth 

Images 

First, we use five ground truth images as shown 
in Figure 9 to compare the eight detectors. Figures 12, 
13, 14, 15 and 16 show the results of the eight 
detectors. Table 1 contains the localization error, the 
number of missed corners, and the number of false 
corners for each detector. We use the total number of 
missed and false corners of test images to compare 
detector performance in Figure 17. The ratio of the 
total number of missed and false corners in ground 
truth to the total number of true corners, according to 
[9], can be used to quantitatively evaluate detection 
performance. Furthermore, in Table 2, we calculate 
the F-SCORE measure of detectors for a fair 
performance comparison.(Equ(14-16)) 

          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝐶𝑜𝑛𝑒𝑟𝑠

𝑇𝑟𝑢𝑒𝐶𝑜𝑟𝑛𝑒𝑟𝑠+𝐹𝑎𝑙𝑠𝑒𝐶𝑜𝑟𝑛𝑒𝑟𝑠
                        (14) 

                𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝐶𝑜𝑛𝑒𝑟𝑠

𝑇𝑟𝑢𝑒𝐶𝑜𝑟𝑛𝑒𝑟𝑠+𝑀𝑖𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑛𝑒𝑟𝑠
                  (15) 

                            𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (16) 

 

Figure. 12. Detection results on the test image Texture. (a) 

FAST[25], (b) Forstner[24], (c) Harris[13], (d) Kitchen-
Rosenfeld[34], (e) Moravec[12], (f) Shi-Tomasi[15], (g) 

SUSAN[16], and (h) Proposed. 

 

Figure. 13. Detection results on the test image Blocks. (a) 

FAST[25], (b) Forstner[24], (c) Harris[13], (d) Kitchen-
Rosenfeld[34], (e) Moravec[12], (f) Shi-Tomasi[15], (g) 

SUSAN[16], and (h) Proposed. 

 

Figure. 14.  Detection results on the test image Boxes. (a) 

FAST[25], (b) Forstner[24], (c) Harris[13], (d) Kitchen-
Rosenfeld[34], (e) Moravec[12], (f) Shi-Tomasi[15], (g) 

SUSAN[16], and (h) Proposed. 

 

Figure. 15. Detection results on the test image Backyard fence. 

(a) FAST[25], (b) Forstner[24], (c) Harris[13], (d) Kitchen-
Rosenfeld[34], (e) Moravec[12], (f) Shi-Tomasi[15], (g) 

SUSAN[16], and (h) Proposed.
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Table 1. The comparison of the eight detectors' performance for test images which is measured in pixels. 

Detector 
 Missed conness (FN)   Falee conne(( (F))    oocalization error  

Teeeeee eeeeee eeeee  e nnnnn 
nnnnn 

nnnnnnnnn
eeeee 

eerrrr e Bsssss  s eees Weeee n 

fecce 

Bacaaar
  fecce 

Terrrr e Bsssss  s eees Weeee n 

fecce 

Bacaaar  
fecce 

Moravec [. ] 33 00 44 00 66 555 44 222 444 555 .. 11 .. 333 .. 999 .. 111 .. 444 

Forttner [21] 44 33 66 99 33 00 0 0 2 66 .. 8 .. 777 .. 999 .. 2222 .. 888 

Kitchen- 
Rosenfeld [32] 

33 7 7 00 55 777 55 000 000 555 .. 111 .. 777 .. 222 .. 444 .. 444 

Harri11110] 55 00 3 11 44 777 99 666 444 222 .. 11 .. 777 .. 111 .. 777 .. 88 

Shi-Tosss i [12] 77 6 5 11 00 111 99 155 999 777 .. 555 .. 111 .. 44 .. 333 .. 222 

FAST [23] 77 22 55 33 55 1 0 0 11 122 .. 111 .. 555 .. 555 .. 777 .. 666 

SUSAN [13] 55 22 33 44 66 99 11 666 666 666 .. 1 .. 888 .. 777 .. 777 .. 88 

Propoeed 
ttt hod 

33 66 55 99 99 444 99 22 444 777 .. 555 .. 777 .. 222 .. 555 .. 888 

 

Table 2. F-SCORE, localization error and ratio of them of true 

corners 

Detectoss F-
SCORE  

oocalization 
Eooor 

F-
SCORE/Localizat

ion error 

Moravec 0.219  1.74 0.126 

Foerttner 0.299  1.23 0.243 

Kitchen-
Rosenfeld 

0.284  1.38 0.206 

Harris 0.337  1.36 0.248 

Shi-Tosss i 0.35  1.28 0.273 

FAST 0.263  1.69 0.156 

SUSAN 0.316  1.44 0.219 

Propoeed 
Method 0.366  1.41 0.260 

As can be seen, the proposed detector achieves the 
highest F-SCORE, meaning the best detection 
performance, in the images. It is worth noticing that 
two images are not free of noise. Furthermore, in 
Table 2, corner localization error is an important 
criterion for evaluating detectors, and while our 
method's performance on the localization error 
criterion falls within the average range, it excels in 
efficiency. In fact, it achieved the second-highest 
ratio of detection performance to localization error.  

4.5. Average Repeatability Performance under 

Affine transformation 

The Average Repeatability (AR) measures 
detected corner points in the same position between 
the original and transformed images. For evaluating 
the AR of our proposed corner detector, we applied 
the following six different transformations on each 
original image of Figure 10 images: 

• Rotations: The original image was rotated at 
18 different nnglss ii hhnn [−π/2, π/2] at 10 
degrees apart. 

• Uniform scaling: The original image was 
scaled with scale factors Sx = Sy in [0.5, 2] with 
0.1 apart, excluding 1. 

 

Figure. 16. Detection results on the test image Wooden fence. (a) 

FAST[25], (b) Forstner[24], (c) Harris[13], (d) Kitchen-
Rosenfeld[34], (e) Moravec[12], (f) Shi-Tomasi[15], (g) 

SUSAN[16], and (h) Proposed. 

 

Figure. 17.  The ratio of false and missed corners to true corners. 

• Non-uniform scaling: The scales Sx chosen by 
sampling the ranges [0.7, 1.5] and Sy from 
[0.5, 1.3] with a 0.1 interval. 

• Lossy JPEG compression: The original input 
image is compressed by a compression factor 
within [5, 100], and the interval is 5. 

• Gaussian noise: A white Gaussian noise when 
the mean is zero and the variances are in [1, 
15] with an interval of 1 is added to the 
original input image. 

0.666
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• hherr  rrnnsformaiions: The shaar fcctor ’C’ ss 
in [-1, 1], the interval is 0.1, not including 1, 
and the transformation rule is Equ(17): 

              [
𝑥𝑛𝑒𝑤

𝑦𝑛𝑒𝑤
] = [

1 𝐶
0 1

] [
𝑥
𝑦]           (17) 

For this measurement, we first detect the corners 
of the original image, then transform the image and 
extract new corners. The original corner points are 
then transformed, and matched points are collected. 
Figure 18 depicts the results of AR transformations of 
eight corner detectors under Gaussian noises, lossy 
JPEG compression, uniform scaling, non-uniform 
scaling, rotation, and shear transformation. 

Furthermore, the proposed corner detector 
conforms to previously validated works [9, 20, 26, 
50]. 

According to Figure 19, our method not only does 
not fail in the transformations, but it also has a higher 
mean average repeatability rate in the Gaussian noise, 
uniform scaling, and non-uniform scaling. The 
proposed approach performs third best when lossy 
JPEG compression and shear transformation are 
applied. Additionally, our technique performs 
comparably to others in rotation transformations. 

4.6. Average Repeatability under Pre-processing 

Pre-processing refers to fundamental 
manipulations applied to raw image data before any 
further processing takes place. Pre-processing aims to 
enhance image content by removing undesirable 
noises or modifying certain aspects of the image that 
are important for specific processing and analysis. In 
addition to providing clean image data, pre-processing 

 

Figure. 18. The Average Repeatability performance results of eight corner detectors under Gaussian noises (a), lossy JPEG compression 

(b), uniform scaling (c), non-uniform scaling (d), rotation (e), and shear transformation (f). 
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Figure. 19. The Mean Average Repeatability performance of 
eight corner detectors under (a) Gaussian noises, (b) lossy JPEG 

compression, (c) uniform scaling, (d) non-uniform scaling, (e) 

rotation, and (f) shear transformation. 

reduces model training time and increases model 
inference speed. We investigate the effect of two pre-
processing steps on corner detectors because pre-
processing is an important step in real-world machine 
vision applications. Because Gaussian blurring and 
contrast stretching are the most commonly used pre-
processing techniques, we first apply Gaussian 
blurring and then stretch the contrast of images. Table 
3 shows that the proposed corner detector is 
compatible with these pre-processing methods while 
still outperforming them in terms of localization error 
and F-SCORE measure. According to Figure 20, with 
the exception of the shear  transformation, the 
proposed detector has acceptable AR performance in 
the aforementioned transformations. 

5. Discussion 

While a universally accepted and comprehensive 
mathematical definition for corner points remains 
elusive, they are generally understood as image 
locations where the intensity variations between 
neighboring pixels reach a maximum simultaneously 
in all directions. The novel definition presented in this 
paper similarly identifies regions with significant 
intensity differences, assigning higher response 
values to such areas. 

However, unlike existing intensity-based corner 
detectors that rely on first or second-order derivatives 
[35], our proposed method employs a 
computationally simpler function. This function 

 

Figure. 20. The Mean Average Repeatability performance of 
eight corner detectors with pre-processing under (a) Gaussian 

noises, (b) lossy JPEG compression, (c) uniform scaling, (d) 

non-uniform scaling, (e) rotation, and (f) shear transformation. 

Table 3. F-SCORE, localization error and ratio of them of the 

true corners with pre-processing. 

Detectors F-
SCORE 

oocalization 
rr ror 

  F-
Score/Localization 
error 

Moravec 0.196 1.668 0.118 

Foerttner 0.437 1.354 0.323 

Kitchen-Roeenfeld 0.285 1.386 0.206 

Harris 0.425 1.356 0.313 

Shi-Tosss i 0.356 1.352 0.263 

FAST 0.430 1.694 0.254 

SUSAN 0.288 1.411 0.204 

Propoeed Method 0.446 1.316 0.339 

operates by considering a 3×3 kernel centered on 
each image pixel. The pixel intensities within this 
window are then sorted in ascending order. Finally, 
the squared difference between these sorted values is 
assigned as the final response value for the central 
pixel. Consequently, the proposed corner response 
function directly amplifies the intensity variations 
within the 3×3 window. It is important to 
acknowledge that employing such a small window 
introduces a slight spatial error, as neighboring pixel 
values are used to compute the intensity values in the 
response map. However, it's important to note that 
using kernel sizes 5 and 7 for this step can 
significantly degrade the quality of the corner response 
map. These larger kernels tend to introduce 
distortions and generate unreliable information, 
which cannot lead to true corners. 
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While our proposed method is effective for corner 
detection, it is important to note that using a small 
kernel size can limit its ability to handle impulsive 
noise, such as salt and pepper noise. To address this, 
we applied blurring and contrast stretching as pre-
processing steps for noise removal before using our 
corner detection method. The results confirm that our 
corner detector works well with these pre-processing 
techniques, outperforming them in terms of 
localization error and F-SCORE. This presents an 
opportunity for further exploration, possibly 
incorporating additional pre-processing steps to 
improve corner detection performance. 

Despite the simplicity of the proposed function, 
the resulting corner response map exhibits excellent 
detection accuracy and resolution. While derivative-
based methods utilize the relative positions of pixels 
to compute response map values, our method discards 
this spatial information during the sorting step. This 
allows for the effective utilization of neighboring 
pixel information, leading to successful corner 
detection even in noisy images. Figure 21 compares 
the F-SCORE to localization error ratio of the 
proposed method and other intensity-based methods, 
both with and without pre-processing. The proposed 
method demonstrates significantly superior overall 
performance in this metric. 

Furthermore, compared to other intensity-based 
corner detectors, the proposed method offers a 
significant advantage in terms of parameter 
efficiency. Our approach requires only a single 
parameter to configure the algorithm, whereas 
methods like Forstner [24] and SUSAN [16] 
necessitate the setting of multiple parameters, and 
selecting appropriate values for these parameters can 
significantly impact their performance. 

Unfortunately, due to the use of seven standard 
library corner detectors for performance comparison, 
a direct comparison of our algorithm's execution time 
was not feasible. However, as evident from 
Algorithm 1, the proposed method boasts a low 
computational cost due to its inherent simplicity. 

Finally, the generated corner response map 
presents the exciting possibility of fusion with 
response maps produced by other corner detection 
techniques, such as curvature-based methods [51-52]. 
This map also holds promise as a feature map within 
successful deep learning architectures. We envision 
leveraging this response map as an input for 
established detection networks like YOLO [50]. 

6. Conclusion 

This paper introduces a novel method for corner 
detection that leverages a newly developed corner 
response function. This function offers several key 
advantages. Firstly, it is remarkably simple, 
facilitating efficient computation with real-time  

 

Figure. 21. The F-SCORE to localization error ratio of the 

proposed method and other intensity-based methods. 

potential. Secondly, it generates a rich corner 
response map with high corner resolution. Notably, 
our method eliminates the need for pre-processing 
steps beyond grayscale conversion. 

Experimental evaluations demonstrate the 
superiority of our proposed framework compared to 
seven established corner detectors. Our method 
achieves in overall more than 3% lower rates of 
missed corners and incorrect detections while 
exhibiting superior accuracy in corner localization. 
Additionally, the proposed method remains 
compatible with pre-processing tools like contrast 
stretching and Gaussian blurring, which can further 
enhance performance in many scenarios. 

Looking towards future applications, the 
generated corner response map presents exciting 
possibilities. It can be fused with response maps 
obtained from other corner or edge detection 
methods. Furthermore, this map holds significant 
promise as a feature map within successful deep 
learning architectures. We envision employing this 
response map as an input to established deep learning 
models for key-point detection. 
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