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A B S T R A C T  

One of the most difficult problems in web research is security. Cryptography is the fundamental technique 

utilized in secure communication. One key element of cryptography is Public-Key Cryptography (PKC). In 

many PKCs, the Modular Exponentiation (ME) with large modulus is a crucial process. Efficient architecture 

design and hardware implementation of large integer Modular Exponentiation (ME) plays a vital role in 

computer science such as public key cryptography. Therefore, many researchers have devoted special interest 

to provide efficient architecture design and hardware implementation of large integer ME. This study presents 

and evaluates a novel architecture for the hardware implementation of ME. To achieve the maximum 

architectural and timing improvements, the critical path of the Left-to-Right (LtR) and Right-to-Left (RtL) ME 

architectures is reorganized and reordered using a modified modular multiplication. The implementation 

results on a Xilinx Virtex 5 FPGA demonstrate that the developed ME architectures have a better performance 

in comparison with other well-known ME architectures so far in the literatures. 

Keywords— Web Security, Public Key Cryptography, Modular Exponentiation Architecture, Modular 

Multiplication. 
 

1. Introduction  

Nowadays, infrastructures and industries must 
link to open access networks like the Internet. As 
such, one of the difficult issues in web research is 
security. Cryptography is the fundamental technique 
utilized in secure communication. One crucial 
element of cryptography is Public-Key Cryptography 
(PKC). In many PKCs, the Modular Exponentiation 
(ME) with large modulus is a crucial process. The 
Efficient architecture design and hardware 
implementation of large integer ME have received 
high attention in recent years due to their applications 
in computer science such as public key cryptography 
[1-4]. This operation computes C= ME mod N, where 
N and E denote modulus and exponent, respectively, 
and 0≤M<N. The ME is basically performed by 
repeating the Modular Multiplication (M2). Thus, the 
efficiency, throughput rate, and quantity of M2s 
needed determine the ME's performance completely 
[2-6]. Without the use of hardware acceleration, it is 
difficult to obtain the extremely efficient and high 
throughput rate for big integer ME. Therefore, many 

researchers [4, 5, 7-12] have devoted special interest 
to provide efficient architecture design and hardware 
implementation of large integer ME. 

The Left-to-Right (LtR) and Right-to-Left (RtL) 
ME algorithms are typical used M2 algorithms. 
Several computational techniques such as common-
multiplicand-multiplication technique [1, 9, 13-15] 
and sliding window technique [3, 8, 16] have been 
developed to reduce the number of required M2, but 
these techniques required extra area [3, 8]. So, these 
techniques are suitable for software or 
software/hardware implementation [4, 7, 9, 17]. 

On the other hand, Montgomery M2 (M3) [18] is 
a widely used M2 in the modular exponentiation. It is 
because in the M3, the trail division is replaced by 
simple right shift and addition, which are simple for 
hardware implementation [4, 5, 10]. To increase the 
efficiency of the M3, several hardware 
implementations have been developed that can be 
classified into three categories: systolic array 
architectures [19-22], high-radix architectures [4, 5, 
7, 23-27], and scalable architectures [22, 26, 28-31]. 
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A good review of hardware implementation for ME 
algorithms can be found in. [32]. 

Among them, Rezai and Keshavarzi [5] have 
proposed an efficient architecture for M2 and named 
it Compact Signed-Digit M2 (CSDM2) in which 
high-radix partial multiplication is replaced by one 
multi-bit shift and only one binary 
addition/subtraction. 

This study presents a comprehensive algorithmic 
and architectural study on ME to utilize CSDM2 as 
its building block in the RtL and LtR modular 
exponentiation. The developed architectures are 
implemented on a Xilinx Virtex 5 FPGA. The FPGA 
implementation results indicate that the proposed 
architectures have advantages in comparison with 
other well-known modified ME architectures [4, 7, 9, 
10].  

The rest of this paper is as follows: section 2 
briefly describes the preliminaries for the developed 
algorithms/architectures. Section 3 presents the 
proposed algorithms/architectures. Section 4 
provides hardware implementation results and 
discussion. Finally, section 5 concludes this paper. 

2. Preliminaries 

2.1. M2 Algorithm/Architecture 

M3 [18] is a typical used M2 in computer 
arithmetic. This operation speeds up the M2 by 
utilizing the simple right shift instead of the trial 
division [4, 5]. Algorithm 1 displays the binary 
version of M3 algorithm. 

In this algorithm, the inputs are n-bit integers X, Y 
and N. The output is S (n) =X.Y.R mod N, where xi 

denotes the ith bit of X, S(i) denotes S in the ith 
iteration, and R=2-n . This method computes its 
output in terms of n clock cycles. Thus, it is a time-
consuming process [5, 13, 33]. 

To increase the efficiency of the M3, several 
hardware implementations have been developed [4, 
5, 7, 19-21, 23, 24, 28-31]. Among them, Rezai and 
Keshavarzi  [5] have proposed the CSDM2 that is an 
efficient M2 architecture. In the CSDM2, a multi-bit 
shift and only one binary addition/subtraction is 
utilized instead of high-radix partial multiplication. 
They used a new integer representation for the 
multiplier and named it CSD representation. In this 
representation, each digit contains two parts (Typei, 
Length(i)), where Typei indicate the nonzero digit and 
Length(i) denotes the consecutive zero bits count. 
They used the canonical recoding [34, 35] and 
partitioning technique [3, 16] to increase the 
applicability of this idea. Algorithm 2 shows the 
CSDM2 algorithm. 

The inputs of this algorithm are Y, N, and XCSD, 
where Y, N and XCSD denote the multiplicand 

modulus, and CSD representation of multiplier, 
respectively. The output is S=XY2-(n+2) mod N. Using 
the CSDM2, the computation of P:=S(i)+X(i)Y  is 
simplified to P:=S(i), P:=S(i)-Y, or P:=S(i)+Y based 
on Length(i)=l+1, Length(i)≠l+1 and Typei=1, or 
Length(i)≠l+1 and Typei=0, respectively in steps 5-8 
[5]. Figure 1 shows the CSDM2 architecture [5]. 

This architecture contains a NAND gate, a 
multiplexer (Mux), two modified Barrel shifters, a 3-
bit shift register, two CSAs, two XORs, three 
registers, and a q(i).M generator [5]. 

2.2. ME algorithm 

This operation is usually implemented by 
utilizing the M3 and binary methods [1-4]. The LtR 
and RtL ME algorithms are two well-known 
algorithms in the binary methods [1-4].  

Algorithm 3 shows the LtR ME algorithm utilized 
for computing where N, E, and M<N indicates an n-
bit modulus, a ke-bit exponent, an n-bit massage. 

The value of R in algorithm 3 is 2-(n+2) or 2-n based 
on the M2 algorithm presented in [36]. In addition, 
the multiplication and square operations depend on 
the data, and the exponent bits are read from left to 
right. The LtR ME algorithm performs ME algorithm  
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Figure. 1. The CSDM2 architecture 

by using 1.5ke+2 multiplication operations on 
average [4, 7]. 

The RtL ME algorithm is also utilized to calculate  
C= ME mod N. This algorithm scans the exponent bits 
from right-to-left [4, 7]. Algorithm 4 shows the RtL 
ME algorithm. 

In this algorithm, the square and multiplication 
operations can run concurrently. As a result, area 
overhead is increased while the overall computation 
time is decreased. The RtL ME algorithm performs 
the ME algorithm by using ke+2 multiplication 
operations [4, 7]. 

3. The proposed ME Algorithm/Architecture 

In this section, a comprehensive algorithmic and 
architectural study on the ME is presented to achieve 
the maximum architectural and timing 
improvements, the critical path of the LtR and RtL 
ME architectures is reorganized and reordered using 
the CSDM2. So, the reformulation of the LtR and RtL  

 

ME algorithms are considered and then, the results 
are mapped to derive efficient ME architectures. 

3.1. The Proposed RtL CSDME 

 Algorithm 5 shows the developed RtL CSDME 
algorithm. 

In the developed RtL CSDME algorithm, R=2-(n+2), 
MCSD, and RCSD denote F and R in the CSD 
representation, respectively. It should be noted that 
the format conversion in the developed RtL CSDME 
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algorithm affects the calculation time. It is because 
the format conversion of F in the developed RtL 
CSDME algorithm is processed in parallel with 
previous step. More specifically, steps 4 and 8 are 
performed after one multiplication delay in 
comparison with steps 3 and 7, respectively. Figure 2 
shows the proposed RtL CSDME architecture. 

In the proposed RtL CSDME architecture, both 
multiplication operation and square operation are 
performed in parallel. To control the process of step 
3 and step 7 of algorithm 5, the signal Select1 is used 
as follows: when Select1=0, step 7 is executed and 
when Select1=1, step 3 is executed. To control the 
performance of step 6 and step 10 of this algorithm, 
the signal Select2 is used as follows: when Select2=0, 
step 6 is performed, and when Select2=1, step 10 is 
performed. The proposed RtL CSDME algorithm 
performs ME algorithm by using ke+4 multiplication 
operations. 

3.2. The Proposed LtR CSDME 

Algorithm 6 displays the developed LtR CSDME 
algorithm. 

In this algorithm, the format conversion 
reasonably affects the computation time. Figure 3 
shows the developed LtR CSDME architecture. 

 In the proposed LtR CSDME architecture, only 
one CSDM2 unit is used. To control the operand 1 
and operand 2 in this architecture which executes 
steps 3, 5, 8 and 12 of the CSDME algorithm, the 
signal Select is used. The developed LtR CSDME 
algorithm performs ME algorithm by using 1.5ke+4 
multiplication operations on average. 

4. Hardware Implementation and Performance 

Comparison 

In this section, the proposed RtL and LtR CSDME 
architectures have been implemented using 
synthesizable VHDL code, and synthesized, placed 
and routed to Xilinx XC5VLX20T-2FF323 FPGA by 
executing Xilinx ISE 14.1. 

The implementation results of the proposed RtL 
and LtR CSDME architectures compared to other 
well-known modified RtL and LtR ME architectures 
in [4, 7-10] for 1024-bit length modulus are displayed 
in Table 1. In this table, Method denotes the used 
method for performing modular exponentiation. fmax 
denotes the maximum frequency in terms of MHz. 
The total delay time (Time) denotes in terms of µs. 
The number of occupied slices for FPGA design is 
shown by Area. The A×D denotes the delay time by 
area measurement in slice×milisecond. The 
throughput rate is displayed in terms of Kb/s.  

Based on the results that are indicated in Table 1, 
the developed RtL CSDME architecture has the best 
performance in terms of the throughput rate, and total  

 

 

delay time in comparison with other well-known 
modified ME architectures in [4, 7] for 1024-bit 
modulus. In addition, the developed LtR CSDME 
architecture has a better performance in terms of the 
throughput rate, and total delay time compared to 
other modified LtR ME architectures in [4, 7, 9, 10] 
for 1024-bit modulus. Our developed LtR CSDME 
architecture has also better performance in terms of  
area×time complexity in comparison with LtR ME 
architectures in [8, 10] for 1024 modulus. The 
area×time complexity in our CSDME architecture is 
improved by about 58% and 24%  in comparison with 
ME architecture in[10] and [8], respectively .The 
only ME architecture that has slightly better 
performance in terms of throughput and latency in 
comparison with our CSDME architecture is the ME 
architecture presented in [8]. Although the area and 
area×time complexity in the ME architecture in [8] 
are 2 and 1.33 times bigger than our CSDME 
architecture.   

5. Conclusion 

Efficient hardware implementation of computer 
arithmetic algorithms such ME algorithms has been 
in the focal point of major research efforts for the last 
decades. This paper presented a comprehensive 
algorithmic and architectural study to improve the 
performance of the hardware implementation of the 
ME algorithm. The proposed RtL and LtR CSDME 
architectures were implemented on Xilinx virtex 5 
FPGA. The FPGA implementation results showed 
that the developed ME architectures provided an 
improvement performance in terms of throughput 
rate and total delay time compared to other modified 
exponentiation architectures in [4, 7, 9, 10]. 
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Table 1: Comparison of ME implementations for 1024- bit length of modulus in FPGA 

Reference Method Device fmax (MHz) Time (ms) Area   (Slice) A×D (Slice×ms) Throughput (kb/s) 

[4] d=1 RtL Virtex 5 526 2.98 2982 8.88 343.2 

[4] d=4 RtL Virtex 5 222 1.79 6217 11.13 572.5 

[7] RtL Virtex 5 401 1.37 6776 9.28 747.4 

This paper RtL Virtex 5 419 1.31 6757 8.85 783.2 

[4] d=2 LtR Virtex 5 385 1.38 7303 10.08 744.6 

[9] Work II LtR Virtex 5 345 3.18 3218 10.23 322 

[9] Work IV LtR Virtex 5 290 1.95 5225 10.2 525.1 

[10] LtR Virtex 5 274 3.83 7158 27.42 267.4 

[7] LtR Virtex 5 401 0.92 12716 11.70 1113 

[8] LtR Virtex 6 165 0.567 26489 15.02 1805.9 

This paper LtR Virtex 5 419 0.88 12683 11.29 1165.9 
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