Quarterly Journal of Quantitative Economics ## Journal Homepage: www.jqe.scu.ac.ir Print ISSN: 2008-5850 Online ISSN: 2717-4271 # Determinants of the changes in the elasticity of CO₂ emissions in Iran Somayeh Azami *, D Zahra Mohammadi ** - * Associate Professor of Economics, Department of Economics, Faculty of Social Sciences, Razi University, Kermanshah, Iran (Corresponding Author). - ** Master of Economics, Department of Economics, Faculty of Social Sciences, Razi University, Kermanshah, Iran. ### ARTICLE HISTORY ## Received: 07 January 2022 Revision: 05 May 2022 Acceptance: 10 June 2022 CORRESPONDING AUTHOR'S: Email: s.azami@razi.ac.ir 0000-0002-7576-5820 ### **JEL CLASSIFICATION:** Q50, Q53, Q40, C67, P28 #### **KEYWORDS:** CO₂ emission elasticity, energy consumption, Input-Output analysis, decomposition analysis Postal address: University Street, Kermanshah, Kermanshah, 6714414971, Iran. #### **FURTHER INFORMATION:** This article is taken from the master's thesis of Zahra Mohammadi under the supervision of Dr. Somayeh Azami. **ACKNOWLEDGEMENTS:** All the individuals and institutions that assisted the author in conducting this research are appreciated. **CONFLICT OF INTEREST:** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. **FUNDING:** The authors have not received any financial support for the research, authorship and publication of this article. ### **ABSTRACT** In this study, while calculating the CO₂ emission demand elasticity and CO₂ emission output elasticity of production sectors for 2001 and 2011 using Input-Output analysis, CO₂ emission elasticities are decomposed using structural decomposition analysis to identify stimuli. Findings show that the "Electricity generation, transmission, and distribution" sector has the most elasticity in these years. The "Ghosh inverse matrix" effect is a strong stimulus to the CO₂ emission elasticity of the sectors. This result indicates that the change in the share of output i, which is sold to sector j as an intermediate input, is a strong stimulus to increase the elasticity of CO₂ emissions. These changes can be due to increased economic activities and the inefficiency of production structure. Increasing the share of renewable energy in the energy consumption basket of production sectors, increasing energy efficiency (reducing energy intensity) by replacing new and advanced equipment with old and worn equipment and improving production structure can help reduce the elasticity and CO₂ emission in Iran's production sectors. The results of this study are significant for energy and environmental policymakers. #### How to Cite: Azami, Somayeh & Mohammadi, Zahra. (2022). Determinants of the changes in the elasticity of CO₂ emissions in Iran. *Quarterly Journal of Quantitative Economics(JQE)*, 19(1), 127-164. 10.22055/jge.2022.39686.2457 © 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/) ### 1- Introduction Today, the environment is one of the most challenging economic and political issues in international politics. In recent years, numerous meetings and conferences have focused on climate change and environmental challenges, reflecting the concerns of economists, politicians, and ecologists about environmental issues. In 2019, Iran is ranked sixth among world countries and fifth among Asian countries (including Russia) in terms of CO₂ emissions. Therefore, studying the CO₂ emission elasticity of the production sectors of this country is significant and important for energy and environmental policymakers. What factors influence changes in CO₂ emission elasticities? Which are the stimulants and which are the inhibitors? The answers to these questions are useful in reducing and controlling CO₂ emissions. In the present study, CO₂ emission elasticities of production sectors are calculated, and then, with the aim of identifying CO₂ emission elasticity stimuli, the changes in CO₂ emission elasticities are broken down into different components. The methodology of this research is based on Input-Output analysis and decomposition analysis. The economy of all countries of the world is composed of different sectors that in a general classification can be divided into two groups of manufacturing industries and non-manufacturing industries. Input-Output tables are widely used today in predicting and describing the environmental conditions of countries due to their inclusion of manufacturing and non-manufacturing groups. It can be said that Input-Output analysis and decomposition analysis are used in conjunction with econometric techniques, and perhaps even more econometric techniques are used to explain and describe environmental and energy issues. In recent years, Structural Decomposition Analysis (SDA) has been an important tool for breaking down and analyzing changes in physical 1 http://www.statista.com variables, such as energy consumption or CO₂ emissions, to changes in their economic and physical determinants. Structural decomposition analysis is a static comparative technique in which the structural term refers to the inclusion of output and demand structure by Input-Output tables (Rormose, 2011). In the analysis of the complex interaction between the economy and the environment, it is very important to obtain all the details of the consumption and production structure obtained by Input-Output tables. The novelty of this paper is to determine and calculate the components of changes in CO₂ emission elasticities using SAD. Guo et al. (2018) have presented a method for calculating CO₂ emission elasticities based on the Input-Output analysis. CO₂ emission demand elasticity is the percentage change in CO₂ emissions of the economy as a result of a 1% change in the final demand of sector and CO₂ emission output elasticity is the percentage change in sectoral CO₂ emissions as a result of a 1% change in the final demand of all sectors. In this study, first CO₂ emission elasticities calculated based on Input-Output analysis and then decomposed based on the structural decomposition analysis with the aim of identifying the stimuli of CO₂ emission elasticities. In this study, unlike Guo et al. (2018), it takes two years (not one year) for the purpose of the study, and by having two times, the components of the changes in CO₂ emission elasticities are calculated (Guo, Zhang, & Zhang, 2018). Based on the decomposition analysis, we have identified the effect of "changing the Ghosh inverse matrix", the effect of "changing the share of final demand in the total output of sector" and the effect of "changing the share of CO_2 emission of sectors" for changes in CO_2 emission demand elasticity and the effect of "changing the Ghosh inverse matrix" and the effect of the "changing the share of final demand in the total output of sectors" and the effect of the "changing the share of CO_2 emission of sector" for changes in the production elasticity of CO_2 emissions. The organization of the article is as follows: the literature review is presented in the second section. Methodology and data analysis are explained in the third section. Experimental findings and discussion are dedicated to the fourth and fifth sections, respectively. Finally, conclusions and recommendations are the subjects of section six. ### 2- Literature Review In the 1970s, oil shocks coupled with the recession led economists to focus on energy input. At the same time, due to the importance and role of energy consumption in economic growth, environmental concerns were raised and the quality of the environment was considered by economists and politicians. Since then, extensive research has been conducted on environmental quality and emissions of pollutants. The answer to the question of what factors affect CO₂ emissions has always been of interest to energy and environmental researchers and policymakers. Some research studied Environmental Kuznets (Ahmadian, Abdoli, hypothesis Jabalameli. Shabankhah. Khorasani, 2019; Apergis & Ozturk, 2015; Azomahou, Laisney, & Van, 2006; Chen & Chen, 2015; Grossman & Krueger, 1991, 1995; Selden & Song, 1994; Shafik & Bandyopadhyay, 1992; Stern, 2015; Tao, Zheng, & Lianjun, 2008) and examined the impact of economic growth on emissions and some research studied Pollution Haven hypothesis (Cole, 2004; Guzel & Okumus, 2020). The pollution haven hypothesis posits that, when large industrialized nations seek to set up factories or offices abroad, they will often look for the cheapest option in terms of resources and labor that offers the land and material access they require. However, this often comes at the cost of environmentally unsound practices. Some studies focused on econometric methods and examined the impact of effective factors technological factors, financial (economic growth, international trade factors and political factors) on CO2 emissions (Adams & Klobodu, 2018; Al-Mulali & Ozturk, 2015; Gorus & Aslan, 2019; Nasreen, Anwar, & Ozturk, 2017; Ozcan, Tzeremes, & Tzeremes, 2020; Pandey & Rastogi, 2019; Salahuddin, Alam, Ozturk, & Sohag, 2018; Y. Zhang & Zhang, 2018). Numerous studies have been conducted since the early 1990s on the relationship between economics and the environment using Input-Output analysis and decomposition analysis (structural decomposition analysis and index decomposition analysis). In this group of studies, the factors affecting CO₂ emissions are examined (Chang, Lewis, & Lin, 2008; Kim, Yoo, & Oh, 2015; Lim, Yoo, & Kwak, 2009; Paul & Bhattacharya, 2004; Su, Ang, & Li, 2017; Tunc, Türüt-Asık, & Akbostancı, 2007; Wang, Chen, Zhang, & Niu, 2015; Yabe, 2004; Yu, Zheng, Ba, & Wei, 2016; Y.-J. Zhang, Bian, Tan,
& Song, 2017; Y.-J. Zhang & Da, 2015). Some researchers in the coming years have tried to use the concept of elasticity to link CO2 emissions and economic activity. Heutel (2012), Klarl (2015 and 2020), Azami and Angazbani (2020) estimated elasticity of CO₂ emissions with respect to GDP by use of DSGE, MSDR and MSAR, respectively (Azami & Angazbani, 2020; Heutel, 2012; T Klarl, 2015; Torben Klarl, 2020). They showed there is a difference between elasticity of CO₂ emissions during expansions and elasticity of CO₂ emissions during recessions. A group of studies such as Rafaty et al. (2020) investigated the impact of carbon pricing on elasticity of CO₂ emissions (Rafaty, Dolphin, & Pretis, 2020). Another group of studies has tried to link CO2 emissions and economic activity using Input-Output analysis and elasticity (Guo et al., 2018; Hondo, Sakai, & Tanno, 2002; Morán & del Río González, 2007; Tarancón & Del Rio, 2007). Guo et al. (2018) examine the key sectors that save energy and reduce CO₂ emissions in China by using the Input-Output analysis and calculating emission elasticities. We also look for determinants of elasticity changes by decomposing elasticities. This study seeks to determine the changes in CO₂ emission elasticities of the production sectors by calculating and decomposing elasticities (Guo et al., 2018). #### Methodology and Data 3- ## 3-1- Methodology Following Guo et al. (2018), we calculate the elasticity of CO₂ emissions (Equations 1-7) (Guo et al., 2018). The output equation of production sectors is considered as Equation (1). $$(1) X = (I - A)^{-1}Y$$ Where X is total output, Y is the final demand and $(I - A)^{-1}$ is the Leontief inverse matrix. I is unit matrix and A is technical coefficient matrix. CO₂ emissions of production sectors are calculated according to the CO₂ emissions intensity and the total output as Equation (2). $$(2) X = f'(I-A)^{-1}Y$$ Where E is a row vector whose elements represent the total CO₂ emissions of each sector in the production activity system and f' is a row vector whose elements represent the CO₂ emissions caused by per unit of output in each sector. According to the purpose of CO₂ emission elasticity calculation, the following changes in CO₂ emission are calculated: $$\Delta E = f'(I - A)^{-1} Y \theta$$ $\Delta E = f'(I - A)^{-1}Y\theta$ Where θ is the proportion of changes in the final demand. According to $S = \widehat{X}^{-1}Y$: $$\Delta E = f'(I - A)^{-1} \hat{X}S\theta$$ Where the symbol ^ represents the corresponding vector diagonalisation. S is a column vector whose elements represent the shares of the final demand of each sector in the total output. According to the purpose of CO₂ emission elasticity calculation, both sides of equation (4) are divided by E: 134 (5) $$E^{-1}\Delta E = E^{-1}f'(I-A)^{-1}\widehat{X}S\theta$$ According to: $f' = E\beta'\widehat{X}^{-1}$ (6) $$E^{-1}\Delta E = \beta' \hat{X}^{-1} (I - A)^{-1} \hat{X}S\theta$$ β' is a row vector whose elements represent the shares of CO₂ emissions in each sector in the total CO₂ emissions caused by the final use of all sectors. According to $\hat{X}^{-1}(I-A)^{-1}\hat{X}=(I-\vec{A})^{-1}$, the equation for calculating CO₂ emission elasticity is summarized as Equation (7): (7) $$E^{y} = \hat{\beta}' (I - \vec{A})^{-1} \hat{S} = \hat{\beta}' (I - B)^{-1} \hat{S}$$ According to Equation (7), the matrix E^y is written as Equation (8): (8) $$E^{y} = \begin{bmatrix} \beta_{1}g_{11}\frac{y_{1}}{x_{1}} & \beta_{1}g_{12}\frac{y_{2}}{x_{2}} & \cdots & \beta_{1}g_{1n}\frac{y_{n}}{x_{n}} \\ \vdots & \vdots & & \vdots \\ \beta_{n}g_{n1}\frac{y_{1}}{x_{1}} & \beta_{2}g_{n2}\frac{y_{2}}{x_{2}} & \cdots & \beta_{n}g_{nn}\frac{y_{n}}{x_{n}} \end{bmatrix}$$ g_{ij} is matrix elements of $(I-B)^{-1}$. $B = \frac{x_{ij}}{x_i}$ is the direct output coefficients matrix and shows the proportions that each sector i sells to every other sector j out of its total output and $(I-B)^{-1}$ is the Ghosh inverse matrix and show the direct and indirect sales that sector j must encourage to every other sector i. $A = \frac{x_{ij}}{x_j}$ is the technical coefficients matrix, the proportion of each good i that each sector j uses in as input to produce a product and $(I-A)^{-1}$ is the Leontief inverse matrix and shows the direct and indirect requirements of inputs produced by sector i per unit of output produced sector j. In the following TI_j and DI_i are rewritten according to Equation (8): (9) $$TL_{j} = \sum_{i} E_{ij}^{y} = \sum_{i} \beta_{i} g_{ij} \frac{y_{j}}{x_{j}} = \frac{y_{j}}{x_{j}} \sum_{i=1}^{n} \beta_{i} g_{ij}$$ (10) $$DI_{i} = \sum_{j} E_{ij}^{y} = \sum_{j} \beta_{i} g_{ij} \frac{y_{j}}{x_{j}} = \beta_{i} \sum_{j=1}^{n} \frac{y_{j}}{x_{j}} g_{ij}$$ TI_j indicates the percentage change in CO_2 emissions of the economy as a result of a 1% change in the final demand of sector. This elasticity shows the effect of demand structure on CO_2 emissions of the whole economic system. DI_i indicates the effect of one percent change in the final demand of all economic sectors on the CO_2 emissions of sector i. DI_i indicates the percentage change in sectoral CO_2 emissions as a result of a 1% change in the final demand of all sectors. This elasticity shows the effect of production structure on CO_2 emissions of the whole economic system. Based on the structural decomposition approach, the increase in ${\bf TI_i}$ over a specific period can be decomposed as follows: (11) $$\Delta TI_{j} = \Delta \left(\frac{y_{j}}{x_{j}}\right) \sum_{i} \beta_{i} g_{ij} + \Delta \left(\sum_{i} \beta_{i} g_{ij}\right) \frac{y_{j}}{x_{j}}$$ $$= \Delta \left(\frac{y_{j}}{x_{j}}\right) \sum_{i} \beta_{i} g_{ij} + \frac{y_{j}}{x_{j}} \left(\sum_{i} \beta_{i} \Delta g_{ij}\right) + \frac{y_{j}}{x_{j}} \left(\sum_{i} g_{ij} \Delta \beta_{i}\right)$$ According to the decomposition ΔTI_j and based on Equation (11), ΔTI_j is decomposed into three factors; "changing the share of final demand in the total output of sector", "changing the Ghosh inverse matrix" and "changing the share of CO_2 emission of sector". The interpretation of "change in the Ghosh inverse matrix" is derived from the matrix of production coefficients (or allocation coefficients); A change in the share of industry i production that is sold to industry j as an intermediate input. Based on the structural decomposition approach, the increase in DI_i over a specific period can be decomposed as follows: (12) $$\Delta DI_{i} = \Delta(\beta_{i}) \sum_{j} (\frac{y_{j}}{x_{j}}) g_{ij} + \Delta(\sum_{j} \frac{y_{j}}{x_{j}} g_{ij}) \beta_{i}$$ $$= \beta_{i} (\sum_{j} g_{ij} \Delta(\frac{y_{j}}{x_{j}})) + \beta_{i} (\sum_{j} \frac{y_{j}}{x_{j}} \Delta g_{ij}) + \Delta \beta_{i} \sum_{j} \frac{y_{j}}{x_{j}} g_{ij}$$ According to the decomposition of ΔDI_i and based on Equation (12), ΔDI_i is decomposed into three effects; "changing the share of final demand in the total output of sectors", "changing the Ghosh inverse matrix" and "changing the share of CO_2 emission of sector". It should be noted that the effect of "changing the Ghosh inverse matrix" on elasticity decomposition of TI_j $(\beta_i(\sum_j \frac{y_j}{x_j}\Delta g_{ij}))$ is different from this effect on elasticity decomposition of DI_i ($\frac{y_j}{x_j}(\sum_i \beta_i \Delta g_{ij})$). #### 3-2- Data The Statistics Center of Iran and the Central Bank of Iran publish input-output tables for Iran. In this study, we have used input-output tables published in 2001 and 2011 by the Statistics Center of Iran²I To accurately calculate the share of CO₂ emissions of production sectors, we need to eliminate the influence of inflation. Therefore, the input -output tables of 2001 and 2011 with the price of 2011 are converted into input-output tables with a constant price. Due to the differences in the sector classification of the input-output tables of 2001 and 2011, we match some production sectors and finally take into account the 65 unified sectors. Also, for price indices, the 82-sectors table of the statistics center has been used, which has been aggregated into 65 sectors. In order to calculate the CO₂ emission of each production sector, we first obtain the total consumption of each energy for each year from the Iranian energy balance sheet, and then we allocate each energy consumption to production sectors and single household sector, according to input-output tables and the share of production sectors and the share of the household sector (Kim et al., 2015). Then, using the 1996 IPCC guidelines and according to the emission factors of each energy source, we calculate the CO₂ emissions of each sector (Eggleston, Buendia, Miwa, Ngara, & Tanabe, 2006). The types of energy source used in Iran's production sectors and the details of CO₂ emissions related to each source are reported in Tabel 1. **Tabel 1.** CO₂ emission factors of different energy sources Source: Research calculations | Code | Energy source | kton CO ₂ /Pj | |------|---------------|--------------------------| | 1 | furnace oil | 76.593 | | 2 | gas oil | 73.326 | | 3 | kerosene | 71.148 | _ ² This article is taken from the master's thesis that was defended in 2021 and data was collected in 2020, which at that time the last published input -output table was table of 2001. Recently, the input -output table of 2016 has been published. | 4 | gasoline | 68.607 | |----|----------------|---------| | 5 | natural gas | 55.820 | | 6 | liquefied gas | 62.436 | | 7 | light jet fuel | 68.244 | | 8 | heavy fuel jet | 75.785 | | 9 | coal | 92.500 | | 10 | electricity | 148.333 | | 11 | coke | 100.842 | | 12 | solid fuel | 92.5 | Fuels used to generate electricity include natural gas, kerosene, gas oil, gasoline, and fuel oil. Blast furnace gas, coke, coke gas, and tar are also products obtained from coal and due to lack of access to their emission factor, the amount of carbon dioxide emissions is
calculated for coal in general. Firewood, charcoal, and animal waste have been used as energy in Iranian industries and their CO₂ emissions have been calculated based on solid fuels in the 1996 IPCC guidelines due to their lack of emission factors. ## 4- Experimental findings Aim of this paper is to investigate the factors affecting CO_2 emission elasticities, CO_2 emission demand elasticity and CO_2 emission production elasticity. In the first step, the elasticities are calculated; TI_j is the percentage change in CO_2 emissions of the whole economic system compared to one percent change in final demand of sector j (CO_2 emission demand elasticity) and DI_i is the percentage change in CO_2 change in sector j to one percent change in final demand of all production sectors (CO_2 emission output elasticity). In the second step, changes of elasticities are decomposed. ## 4-1- Calculating the TIj and DIi elasticities of Iran's production sectors Using Equations (9) and (10), the TI_j and DI_i elasticities are calculated for 65 production sectors in Iran in 2001 and 2011. S_i is the share of final demand in output and β_i is the share of emissions in sector i. $\textbf{Tabel 2.} \ \, \text{Calculation of } TI_{j} \ \, \text{and } DI_{i} \ \, \text{elasticities of Iran's production sectors in 2001 and 2011} \\ \, \text{Source: Research calculations}$ | | Sectors | | | 2001 | | | | 2011 | | |------------------------|---|--------------|-------------------|---------------------------|-----------------|--------------|----------------------------|---------------------------|-----------------| | Sec
tor
cod
e | Sector
name | TI_{j} | $\mathrm{DI_{i}}$ | \mathbf{S}_{i} | eta_{i} | TI_{j} | DI_{i} | \mathbf{S}_{i} | eta_{i} | | 1 | agricultur e and horticultur e | 0.024
169 | 0.022
358 | 0.66881
7273 | 0.03163
2245 | 0.032
376 | 0.025
564 | 0.66543
2594 | 0.02379
0262 | | 2 | agricultur e, forestry and animal husbandry | 0.008
118 | 0.009
153 | 0.31243
1256 | 0.02302
7219 | 0.012
143 | 0.017
091 | 0.23171
8609 | 0.01638
5703 | | 3 | fishing | 0.001
621 | 0.001
409 | 0.81573
8129 | 0.00169
9211 | 0.003
082 | 0.001
603 | 0.83975
4298 | 0.00158
9667 | | 4 | crude oil extraction, natural gas and mining support services | 0.055 | 0.054
327 | 0.88161
9465 | 0.06156
8594 | 0.061
104 | 0.101 | 0.57015
2987 | 0.09924
1779 | | 5 | extraction
of other
mines | 4.65E
-05 | 0.000
353 | 0.00893
1604 | 0.00481
4287 | 0.002
222 | 0.006
609 | 0.17329
943 | 0.00530
0576 | | 6 | productio n of food and beverage products | 0.038
296 | 0.035
055 | 0.71800
13 | 0.04747
8129 | 0.085
693 | 0.036
965 | 0.77135
6538 | 0.03558
251 | | 7 | productio | 0.000 | 0.000 | 0.96308 | 0.00057 | 0.000 | 0.000 | 0.98729 | 0.00051 | ## $\begin{array}{c} 140 & Determinants \ of \ the \ changes \ in \ the \ elasticity \ of \ CO_2 \\ emissions \ in \ Iran \end{array}$ | | l c | 60.6 | ~~~ | 0202 | 6001 | 020 | 506 | 1,000 | 41.47 | |----|------------|-------|-------|------------|----------|-------|-------|---------|---------| | | n of | 686 | 556 | 9382 | 6881 | 939 | 526 | 1699 | 4147 | | | tobacco | | | | | | | | | | | products | | | | | | | | | | | and | | | | | | | | | | | Tobacco | | | | | | | | | | 8 | textiles | 0.006 | 0.002 | 0.64329 | 0.00427 | 0.010 | 0.005 | 0.60021 | 0.00452 | | 0 | textiles | 692 | 952 | 686 | 4092 | 219 | 019 | 0012 | 8578 | | 9 | ommono! | 0.003 | 0.002 | 0.81592 | 0.00335 | 0.009 | 0.005 | 0.93853 | 0.00530 | | 9 | apparel | 18 | 804 | 6481 | 3599 | 842 | 891 | 1423 | 3402 | | | Productio | | | | | | | | | | | n of | | | | | | | | | | | leather | 0.001 | 0.000 | 0.75836 | 0.00115 | 0.004 | 0.002 | 0.87670 | 0.00243 | | 10 | and | 238 | 915 | 8905 | 2444 | 603 | 804 | 3238 | 3833 | | | related | | - | 42 | 4 | 7 | | | | | | products | |)- | 7 | 7 | | | | | | | wood and | _ | < | - T | 750 | | | | | | 11 | wood | 7.2E- | 6.71E | 0.04283 | 0.00144 | 0.000 | 0.003 | 0.04739 | 0.00254 | | | products | 05* | -05 | 7402 | 9739 | 44 | 491 | 0807 | 2956 | | | paper and | | | 7,102 | 47 | | | | | | | paper | | | | | | | | | | 12 | products, | 0.000 | 0.000 | 0.11769 | 0.00236 | 0.001 | 0.004 | 0.16710 | 0.00285 | | 12 | • | 404 | 488 | 6168 | 5285 | 51 | 872 | 9134 | 4148 | | | printed | 0 | | ال ومقالقا | 1 3-0 | 1.2 | | | | | | paper | | | 11-11 | 0 = 61 1 | | | | | | | coke, oil | 0.055 | 0.060 | 0.73742 | 0.07456 | 0.090 | 0.054 | 0.78862 | 0.05207 | | 13 | refining | 123 | 31 | 8595 | 9839 | 275 | 433 | 4651 | 9401 | | | products | | | | | | | | | | | chemicals | | | | | | | | | | 14 | and | 0.019 | 0.026 | 0.38479 | 0.04975 | 0.033 | 0.029 | 0.47895 | 0.02365 | | | chemical | 567 | 007 | 3177 | 4163 | 408 | 175 | 7502 | 4668 | | | products | | | | | | | | | | | rubber and | 0.001 | 0.001 | 0.18465 | 0.00510 | 0.002 | 0.007 | 0.09546 | 0.00598 | | 15 | plastic | 2 | 349 | 774 | 3125 | 0.002 | 913 | 5441 | 8283 | | | products | | 577 | ,,,, | 3123 | 0.5 | 713 | 3771 | 0203 | | 16 | other non- | 0.002 | 0.002 | 0.17579 | 0.00897 | 0.010 | 0.011 | 0.24174 | 0.01045 | | mineral products mineral products mineral products mode | | metallic | 304 | 312 | 0716 | 8067 | 656 | 116 | 3218 | 1951 | |--|----|------------|-------|----------|-----------|----------|-------|-------|---------|---------| | 17 | | mineral | | | | | | | | | | 17 | | products | | | | | | | | | | 17 | | productio | 0.001 | 0.002 | 0.00500 | 0.01.622 | 0.006 | 0.025 | 0.07420 | 0.01054 | | Productio Prod | 17 | n of base | | | | | | | | | | 18 | | metals | 905 | 317 | 9532 | /833 | 299 | 061 | 4868 | 4194 | | 18 | | productio | | | | | | | | | | 18 except machinery and equipment 939 494 3637 5988 423 583 104 733 733 19 productio n of computer, electronic and optical products, electrical equipment 184 719 0008 1745 612 913 1447 0428 20 productio n of machinery and equipment 184 719 0008 1745 612 913 1447 0428 21 producto n of motor vehicles 495 968 2345 6902 667 307 7828 4345 4345 100.013 0.01408 0.013 0.031 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 0.025 | | n of metal | | | | | | | | | | 18 | | products | 0.007 | 0.007 | 0.40590 | 0.01575 | 0.020 | 0.010 | 0.47220 | 0.01600 | | machinery and equipment machinery and equipment mode | 18 | except | | | | | | | | | | equipment productio n of computer, electronic and optical products, electrical equipment productio n of machinery and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 0.012 equipment not elsewhere classified productio n
of motor o.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 0.02546 0.063 0.031 0.59489 0.02521 0.053 0.0546 0.063 0.075 0.015 0.016 0.02521 0.0252 | | machinery | 939 | 494 | 3637 | 5988 | 423 | 583 | 104 | /33 | | 19 productio n of computer, electronic and optical products, electrical equipment 20 and ont and equipment 184 719 0008 1745 612 913 1447 0428 | | and | | | | 1 | | | | | | 19 | | equipment | | | X | 7 | | | | | | 19 | | productio | | 1 | 40 | 4 | 7 | | | | | 19 | | n of | | 1 | 7 | 3 | | | | | | 19 and optical products, electrical equipment 20 and 0.013 0.012 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified 21 productio n of motor vehicles 495 968 2345 6902 667 307 7828 4345 | | computer, | | | 35 | 35 | | | | | | 19 and optical products, electrical equipment 20 and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified 21 productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | | electronic | | | | | | | | | | optical products, electrical equipment productio n of machinery and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 productio n of motor classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | 19 | and | | - Aleman | ()~S) | ~ I _ | 3 | | | | | electrical equipment productio n of machinery and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 productio n of elsewhere classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | | optical | 377 | 509 | 2725 | 5834 | 822 | 1 | 2543 | 8969 | | 20 equipment not elsewhere classified 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 21 productio n of motor vehicles 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 21 vehicles 495 968 2345 6902 667 307 7828 4345 | | products, | | | | | | | | | | 20 productio n of machinery and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 4345 | | electrical | | . 11. | | | | | | | | 20 and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | | equipment | 1 1 | -3 11 | أرومطالها | وعلوهرات | 100 | 2- | | | | 20 machinery and 0.013 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified productio n of motor vehicles 495 968 2345 6902 667 307 7828 4345 | | productio | 0 | | | | | | | | | 20 and equipment not elsewhere classified 0.012 0.77138 0.01468 0.017 0.021 0.65975 0.01310 21 productio n of motor vehicles 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 | | n of | | | 110/10 | 0201-1 | per . | | | | | 20 equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified 21 productio n of motor vehicles 495 968 2345 6902 667 307 7828 4345 | | machinery | | 6 | 100 | 00 | 1 | | | | | equipment 184 719 0008 1745 612 913 1447 0428 not elsewhere classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | 20 | and | 0.013 | 0.012 | 0.77138 | 0.01468 | 0.017 | 0.021 | 0.65975 | 0.01310 | | elsewhere classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | 20 | equipment | 184 | 719 | 0008 | 1745 | 612 | 913 | 1447 | 0428 | | classified productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 vehicles 495 968 2345 6902 667 307 7828 4345 | | not | | | | | | | | | | productio n of motor vehicles productio 21 productio n of motor 0.024 0.022 0.86534 0.02546 0.063 0.031 0.59489 0.02521 4345 | | elsewhere | | | | | | | | | | 21 | | classified | | | | | | | | | | 21 vehicles 495 968 2345 6902 667 307 7828 4345 | | productio | | | | | | | | | | vehicles 495 968 2345 6902 667 307 7828 4345 | 21 | n of motor | 0.024 | 0.022 | 0.86534 | 0.02546 | 0.063 | 0.031 | 0.59489 | 0.02521 | | | 21 | vehicles | 495 | 968 | 2345 | 6902 | 667 | 307 | 7828 | 4345 | | and other | | and other | | | | | | | | | # Determinants of the changes in the elasticity of CO₂ emissions in Iran | | T | | 1 | ı | | | 1 | | | |----|---|--------------|--------------|-----------------|-----------------|--------------|--------------|-----------------|-----------------| | | transport | | | | | | | | | | | equipment | | | | | | | | | | 22 | productio
n of
furniture | 0.002
587 | 0.002
416 | 0.95558
0291 | 0.00252
3266 | 0.007
966 | 0.003
377 | 0.84422
3587 | 0.00327
1084 | | 23 | Productio
n of other
products | 0.001
786 | 0.001
815 | 0.60416
2515 | 0.00280
7355 | 0.003
158 | 0.003 | 0.56945
0965 | 0.00256
8658 | | 24 | Productio n, transmissi on and distributio n of electricity | 0.063
811 | 0.080
058 | 0.22410
9681 | 0.27247
0858 | 0.088
833 | 0.336
381 | 0.24132
5604 | 0.30188
0684 | | 25 | Productio n and distributio n of natural gas | 0.001
361 | 0.001
496 | 0.07567
6308 | 0.01787
1298 | 0.018
418 | 0.028
059 | 0.60521
4025 | 0.02606
6716 | | 26 | Water supply, Waste managem ent, Wastewat er and treatment activities | 0.000
896 | 0.000
766 | 0.34927
8115 | 0.00188
8975 | 0.002
751 | 0.001
962 | 0.26317
0897 | 0.00187
3434 | | 27 | Residentia
1 buildings | 0.019
642 | 0.018
848 | 0.91324
6671 | 0.02005
1175 | 0.059
116 | 0.018
416 | 0.87399
8891 | 0.01836
9022 | | 28 | Other
buildings | 0.029
724 | 0.027
015 | 0.86710
1611 | 0.03073
4564 | 0.096
652 | 0.031
323 | 0.90714
507 | 0.03116
1826 | | | Wholesale | | | | | | | | | |----|------------------|-------|-------|-----------|-------------|-------|-------|---------|---------| | | and retail, | | | | | | | | | | 29 | Repair of | 0.052 | 0.049 | 0.78637 | 0.05958 | 0.087 | 0.058 | 0.64453 | 0.05635 | | | motor | 939 | 043 | 6588 | 4274 | 055 | 989 | 0666 | 773 | | | vehicles | | | | | | | | | | | Repair | 0.004 | 0.003 | 0.98934 | 0.00359 | 0.005 | 0.004 | 0.48619 | 0.00411 | | 30 | services | 984 | 888 | 5732 | 6716 | 184 | 346 | 9333 | 8131 | | | Transport | | | | | | | | | | | ation | | | | | | | | | | 21 | Quoted | 0.001 | 0.001 | 1.04000 | 0.00122 | 0.000 | 0.001 | 0.29810 | 0.00097 | | 31 | from | 349 | 346 | 3977 | 9232 | 78 | 076 | 0285 | 3077 | | | Intercity | | | | 1 | | | | | | | rail | | | K | M | | | | | | | other land | 0.013 | 0.012 | 0.43159 | 0.02723 | 0.021 | 0.026 | 0.48137 | 0.02434 | | 32 | transportat | 39 | 865 | 6614 | 5504 | 625 | 186 | 7662 | 1375 | | | ion | | 002 | 001. | 350. | 020 | 100 | 7002 | 10,0 | | | pipeline | 0.000 | 0.000 | 0.56858 | 0.00038 | | 0.001 | | 0.00094 | | 33 | transportat | 27 | 223 | 4842 | 4295 | 0 | 01 | 0 | 5491 | | | ion | | | M | X | | | | | | | water | 0.002 | 0.001 | 0.60028 | 0.00276 | 0.004 | 0.002 | 0.59925 | 0.00192 | | 34 | transportat | 727 | 83 | 923 | 7792 | 384 | 377 | 9983 | 112 | | | ion | - 0 | 100 | ل ومطالعا | وعلوهم السا | 5-19 | 1 | | | | 25 | air | 0.002 | 0.001 | 0.79560 | 0.00139 | 0.002 | 0.006 | 0.44102 | 0.00320 | | 35 | transportat | 41 | 153 | 0972 | 3523 | 623 | 868 | 8935 | 4695 | | | ion
warehousi | | | | | ¥ | | | | | | ng and | | | | | | | | | | | transportat | 0.000 | 0.001 | 0.27792 | 0.00276 | 0.001 | 0.003 | 0.20800 | 0.00261 | | 36 | ion | 877 | 179 | 154 | 9185 | 324 | 242 | 9695 | 4209 | | | support | 077 | 117 | 154 | 7103 | 324 | 272 | 7073 | 7207 | | | activities | | | | | | | | | | | post and | | | | | | | | | | 37 | courier | 0.013 | 0.014 | 1.26739 | 0.01074 | 0.015 | 0.009 | 0.54243 | 0.00901 | | | activities | 897 | 085 | 3397 | 7794 | 515 | 264 | 4139 | 1625 | | | | | | | | | | | | # Determinants of the changes in the elasticity of CO₂ emissions in Iran | | accommo | 0.000 | 0.000 | 0.44996 | 0.00101 | 0.003 | 0.005 | 0.76746 | 0.00308 | |----|--|--------------|--------------|-----------------|-----------------|--------------|--------------
-----------------|-----------------| | 38 | dation | 643 | 477 | 0364 | 8178 | 429 | 455 | 7178 | 9822 | | 39 | service activities related to Food & Beverage (Restaura nts, etc.) | 0.006
131 | 0.005
202 | 0.75738
724 | 0.00677
1503 | 0.015
289 | 0.007
767 | 0.89546
7135 | 0.00751
8823 | | 40 | Informatio
n and
Communi
cation | 0.001
207 | 0.001
302 | 0.93009 283 | 0.00128
4961 | 0.000
951 | 0.000
889 | 0.55675
3349 | 0.00070
8219 | | 41 | Banks and Financial Institution | 0.004
046 | 0.004
722 | 0.40314
3973 | 0.00970
259 | 0.006 | 0.009 | 0.34014
1749 | 0.00946
5134 | | 42 | Other Financial and Insurance Services | 0.000 | 0.000
216 | 0.07827
7766 | 0.00244
7236 | 0.000
167 | 0.002
948 | 0.05909
8486 | 0.00222
7565 | | 43 | Insurance | 0.001
101 | 0.001
523 | 0.49966
1185 | 0.00215
4759 | 0.000
825 | 0.002
171 | 0.27066
1127 | 0.00205
8544 | | 44 | Private Housing Services | 0.009
081 | 0.008
063 | 0.30835
9064 | 0.02614
7926 | 0.028
682 | 0.025
205 | 1 | 0.02520
463 | | 45 | Rental
Housing
Services | 0.003
207 | 0.003
104 | 0.26526
7678 | 0.01169
9654 | 0.012
602 | 0.011
311 | 0.99741
3504 | 0.01130
7296 | | 46 | Non-
Housing
Services | 8.22E
-06 | 0.000
243 | 0.00168
2709 | 0.00462
6629 | 0 | 0.007
287 | 0 | 0.00690
2426 | | 47 | Brokers | 0.001 | 0.001 | 0.71555 | 0.00230 | 0.001 | 0.001 | 0.61779 | 0.00141 | | | Services | 708 | 696 | 7892 | 5136 | 551 | 532 | 7838 | 205 | |----|--|--------------|--------------|-----------------|-----------------|--------------|--------------|-----------------|-----------------| | 48 | Research
and
Developm
ent | 0.001 | 0.001
77 | 1.13227
5398 | 0.00152
7756 | 0.001
853 | 0.001
352 | 0.69364
1498 | 0.00131
9611 | | 49 | Other profession al, scientific and technical activities | 0.002
167 | 0.002
642 | 0.40249
0058 | 0.00520
2588 | 0.003
631 | 0.004 | 0.35043
571 | 0.00380
8887 | | 50 | veterinary
activities | 0.000
248 | 0.000
245 | 1.26421
6432 | 0.00018
8283 | 0.000
217 | 0.000
184 | 0.61573
2103 | 0.00018
1086 | | 51 | public administra tion, social services | 0.013
042 | 0.012 | 1.15538
2433 | 0.01056
7067 | 0.024
259 | 0.012
573 | 0.87487
9153 | 0.01239
8222 | | 52 | defense | 0.013
147 | 0.012
353 | 1.29465
3816 | 0.00954
0971 | 0.021
73 | 0.009
467 | 0.99696
3278 | 0.00945
3737 | | 53 | law
enforceme
nt | 0.002 | 0.001
889 | 0.59936
7724 | 0.00315
0259 | 0.004
743 | 0.003
039 | 0.93853
4293 | 0.00303
6529 | | 54 | compulsor
y social
security | 0.001
353 | 0.001
273 | 1.86456
9088 | 0.00068
2556 | 0.002
488 | 0.000
751 | 1 | 0.00075
0761 | | 55 | public
primary
education | 0.004
562 | 0.004
351 | 1.14925
1955 | 0.00378
5761 | 0.004
912 | 0.003
633 | 1 | 0.00363
3281 | | 56 | private
primary
education | 0.000
287 | 0.000
264 | 1.59104
7 | 0.00016
5868 | 0.000
362 | 0.000
135 | 1 | 0.00013
5404 | | 57 | general | 0.005 | 0.005 | 1.04368 | 0.00499 | 0.009 | 0.004 | 1 | 0.00479 | | | and | 491 | 216 | 1595 | 7979 | 623 | 799 | | 8736 | |----|------------|-------|----------|-----------|---------|----------|----------|---------|---------| | | technical | .,,1 | 210 | 10,0 | ,,,, | 028 | | | 0,50 | | | secondary | | | | | | | | | | | education | | | | | | | | | | | public | | | | | | | | | | | vocational | | | | | | | | | | | education | | | | | | | | | | | and | 0.000 | 0.000 | 1.37786 | 0.00040 | 0.000 | 0.000 | | 0.00037 | | 58 | Technical | 619 | 558 | 3112 | 4721 | 871 | 37 | 1 | 0.00037 | | | Vocationa | 019 | 336 | 3112 | 4/21 | 0/1 | 31 | | 0292 | | | 1 High | | | | | | | | | | | Schools | | | | , | | | | | | | | | | | 1 | | | | | | | Public | 0.003 | 0.002 | 0.93528 | 0.00292 | 0.005 | 0.002 | 0.99999 | 0.00295 | | 59 | Higher | 079 | 738 | 9839 | 7643 | 863 | 956 | 9976 | 6368 | | | Education | | X | Mr. | 2.0 | | | | | | | Private | 0.004 | 0.004 | 1.20972 | 0.00352 | 0.003 | 0.002 | 0.99999 | 0.00242 | | 60 | Higher | 315 | 264 | 1972 | 2258 | 93 | 422 | 9964 | 2069 | | | Education | | | HO | 1 | | | | | | 61 | Adult | 0.001 | 0.000 | 0.75530 | 0.00105 | 0.001 | 0.001 | 0.78296 | 0.00117 | | | Education | 161 | 815 | 9195 | 7805 | 383 | 203 | 4508 | 0764 | | | Human | | 1/2 | | | 160 | 2. | | | | | Health | 0.013 | 0.012 | 0.84559 | 0.01429 | 0.024 | 0.013 | 0.97476 | 0.01357 | | 62 | and Social | 626 | 108 | 1547 | 5481 | 647 | 604 | 72 | 965 | | | Welfare | 020 | 100 | لومراتبان | ارواسح | | 001 | , 2 | 703 | | | Activities | | | / | 0.0 | 4 | | | | | | Arts, | 0.006 | 0.006 | 1.25583 | 0.00501 | 0.007 | 0.002 | 0.93851 | 0.00288 | | 63 | Entertain | 469 | 344 | 4845 | 2846 | 643 | 913 | 2261 | 8534 | | | ment | 409 | 344 | 4643 | 2640 | 043 | 913 | 2201 | 6334 | | | Religious | | | | | | | | | | | Organizati | | | | | | | | | | | ons and | 0.001 | 0.000 | 0.66078 | 0.00096 | 0.001 | 0.000 | 0.61934 | 0.00065 | | 64 | Member | 446 | 653 | 0284 | 748 | 432 | 678 | 616 | 9839 | | | Organizati | | | | | | | | | | | ons | | | | | | | | | | | l | L | <u> </u> | | | <u> </u> | <u> </u> | l | | | | Other | | | | | | | | | |-----|------------|-------|-------|---------|---------|-------|-------|---------|---------| | C.5 | Personal | 0.002 | 0.002 | 1.12531 | 0.00237 | 0.004 | 0.001 | 0.97594 | 0.00166 | | 65 | Service | 871 | 788 | 2149 | 3077 | 569 | 684 | 6756 | 5714 | | | Activities | | | | | | | | | ^{*} Negative numbers are due to negative inventory in these sectors. As can be seen from **Tabel 2**, the sector "Electricity generation, transmission and distribution" has the highest amount of DI_i elasticity and the highest amount of emission share in 2001 and 2011 and the highest amount of TI_j elasticity in 2001. This is due to the high share of CO_2 emissions and the share of final demand in the total output of this sector. The highest amount of TI_j elasticity in 2011 is allocated to the sector "Coke production, products of oil refining" and "Other buildings". This is due to the high share of final demand in the total output of these sectors and the inefficiency of production structure. ## 4-2- Decomposition of TI_j and DI_i elasticities of Iran's production sectors in 2001-2011 In this section, TI_j changes are decomposed using Equation (11) and DI_i elasticity changes are decomposed using Equation (12). Tabel 3. Decomposition of TI_j and DI_i elasticities of Iran's production sectors Source: Research calculations | Sector code | | dTI | إعلوم السابي | 2000 | dDI | | |-------------|---|---|--|---|---|---| | | $\frac{y_{j}}{x_{j}}(\sum_{i}\beta_{i}\Delta g_{ij})$ | $\Delta(\frac{y_j}{x_j}) {\sum_i} \beta_i g_{ij}$ | $\frac{y_{j}}{x_{j}}(\sum_{i}g_{ij}\Delta\beta_{i})$ | $\beta_i(\sum_j \frac{y_j}{x_j} \Delta g_{ij})$ | $\beta_i(\sum_j g_{ij}\Delta(\frac{y_j}{x_j}))$ | $\Delta\beta_i \sum_j \frac{y_j}{x_j} g_{ij}$ | | 1 | 0.015383883 | -0.000164676 | -0.00701235 | 0.011591229 | 4.16082E-05 | -0.00842659 | | 2 | 0.011607778 | -0.004229631 | -0.00335288 | 0.016118988 | -0.001254246 | -0.00692731 | | 3 | 0.001538102 | 8.81448E-05 | -0.00016555 | 0.000249123 | 5.49495E-05 | -0.00011044 | | 4 | 0.005727596 | -0.03338007 | 0.033625919 | 0.026405223 | -0.017966919 | 0.038405323 | | 5 | 6.09641E-05 | 0.00210718 | 7.04705E-06 | 0.005203221 | 0.00044593 | 0.000606322 | | 6 | 0.057106705 | 0.005927472 | -0.01563714 | 0.011415015 | 0.002853563 | -0.01235787 | | 7 | 0.000318905 | 2.30284E-05 | -8.8732E-05 | 1.797E-05 | 1.6474E-05 | -6.4221E-05 | | 8 | 0.004980494 | -0.00073355 | -0.00072021 | 0.001962908 | -0.000178467 | 0.000282026 | | 9 | 0.003781825 | 0.001285754 | 0.001595054 | 0.000581417 | 0.000339866 | 0.002166008 | | 10 | 0.001646922 | 0.000621232 | 0.001096198 | 0.000260589 | 0.000152186 | 0.001476252 | | 11 | -
0.000245834 | 0.000836906 | -7.9532E-05 | 0.001819257 | 0.000103816 | 0.001500749 | | 12 | 0.000566982 | 0.000446527 | 9.2526E-05 | 0.003685177 | -0.000135409 | 0.000834551 | |----|-------------|--------------|-------------|--------------|--------------|-------------| | 13 | 0.034241159 | 0.005860513 | -0.00494934 | 0.014244989 | 0.003384758 | -0.02350674 | | 14 | 0.01842944 | 0.006568078 | -0.01115635 | 0.031408149 | 0.003950146 | -0.03219033 | | 15 | 0.003056091 | -0.001914849 | -0.00029214 | 0.00629099 | -0.000897345 | 0.001169596 | | 16 | 0.004800556 | 0.002907077 | 0.000643642 | 0.006417979 | 0.000818459 | 0.001567585 | | 17 | 0.005364646 | -0.001813238 | 0.000843083 | 0.028561157 | -0.002587183 | 0.005769977 | | 18 | 0.022550714 | 0.005416081 | 0.002517987 | 0.011203998 | -0.000544726 | 0.001430213 | | 19 | 0.014080297 | -0.007827754 | 0.000193235 | 0.008381448 | -0.003377421 | -0.00041302 | | 20 | 0.008059784 | -0.002979922 | -0.00065206 | 0.016720827 | -0.004882339 | -0.00264504 | | 21 | 0.066196235 | -0.028943229 | 0.001918374 | 0.022542625 | -0.013890518 | -0.00031358 | | 22 | 0.005094059 | -0.001050771 | 0.001335619 | 0.000574822 | -0.000385699 | 0.000772115 | | 23 | 0.001752794 | -0.000192495 | -0.00018842 | 0.001835261 | -0.000228389 | -0.00029099 | | 24 | 0.010834215 | 0.006337262 | 0.007850753 | 0.245067126 | -0.02151473 | 0.032770944 | | 25 | 0.000268031 | 0.016114624 | 0.0006744 | 0.008106734 | 0.00963448 | 0.008821765 | | 26 | 0.002511585 | -0.000900043 | 0.000243404 | 0.00157467 | -0.000362529 | -1.6271E-05 | | 27 | 0.041406405 | -0.002654655 | 0.0007223 |
0.00177474 | -0.000519785 | -0.00168648 | | 28 | 0.058502186 | 0.004266423 | 0.004159377 | 0.002760769 | 0.001118061 | 0.000429475 | | 29 | 0.050786308 | -0.019158761 | 0.002488479 | 0.022999921 | -0.009676295 | -0.0033772 | | 30 | 0.004943753 | -0.005364398 | 0.000620073 | 0.00180311 | -0.001894977 | 0.000550316 | | 31 | 0.001624431 | -0.001941413 | -0.00025145 | 0.001071111 | -0.001057447 | -0.00028328 | | 32 | 0.007329967 | 0.002236361 | -0.00133063 | 0.015913002 | 0.000520782 | -0.00311343 | | 33 | 0.000719872 | -0.00140755 | 0.000417587 | 0.000269792 | -8.25408E-05 | 0.000599505 | | 34 | 0.002049795 | -7.52987E-06 | -0.00038467 | 0.001717198 | -0.00012296 | -0.00104752 | | 35 | 0.000770286 | -0.002108559 | 0.001551413 | 0.002454895 | -0.000621638 | 0.003881366 | | 36 | 0.000865608 | -0.000444997 | 2.59129E-05 | 0.002958093 | -0.000702573 | -0.00019219 | | 37 | 0.023748802 | -0.020735508 | -0.00139575 | 0.008482754 | -0.011518433 | -0.0017848 | | 38 | 0.000398934 | 0.001418415 | 0.000967867 | 0.001085957 | 0.000234911 | 0.00365771 | | 39 | 0.006595622 | 0.002357582 | 0.000205446 | 0.000949742 | 0.000843304 | 0.000771982 | | 40 | 0.000868271 | -0.000637383 | -0.00048786 | 0.000977099 | -0.000666356 | -0.00072381 | | 41 | 0.003317586 | -0.001159442 | 5.57378E-05 | 0.006507368 | -0.00115295 | -0.0002466 | | 42 | 3.47073E-05 | -5.41809E-05 | -1.5414E-05 | 0.003275222 | -0.000252066 | -0.00029073 | | 43 | 0.000475179 | -0.000697716 | -5.3411E-05 | 0.001402647 | -0.000652984 | -0.00010149 | | 44 | 1.14593E-05 | 0.019837466 | -0.00024868 | 11 4 6 0 | 0.018084976 | -0.0009433 | | 45 | 0.000241736 | 0.009250268 | -9.708E-05 | 3.45819E-05 | 0.008564196 | -0.00039247 | | 46 | 7.90369E-06 | -2.01429E-05 | 4.0241E-06 | 0.005398163 | -0.000756322 | 0.002402623 | | 47 | 0.000685129 | -0.000245507 | -0.00059658 | 0.00105464 | -0.000248501 | -0.00096926 | | 48 | 0.00145965 | -0.001171722 | -0.00023453 | 0.000527441 | -0.000732679 | -0.00021325 | | 49 | 0.002408534 | -0.00053939 | -0.00040511 | 0.003897353 | -0.00066317 | -0.00157409 | | 50 | 0.000242179 | -0.000229044 | -4.3581E-05 | 7.22308E-05 | -0.000125683 | -7.33E-06 | | 51 | 0.015576766 | -0.007777818 | 0.003417677 | 0.001600404 | -0.003096903 | 0.001856967 | | 52 | 0.015500231 | -0.006488506 | -0.00042845 | 4.09859E-05 | -0.002839923 | -8.7353E-05 | | 53 | 0.000895092 | 0.001714047 | -7.5876E-05 | 0.000252582 | 0.001011705 | -0.00011383 | | 54 | 0.002916431 | -0.002150989 | 0.000369629 | 0 | -0.000590117 | 6.82057E-05 | | 55 | 0.001217944 | -0.000733118 | -0.00013518 | 0 | -0.000565032 | -0.00015248 | | 56 | 0.00033704 | -0.000214022 | -4.8293E-05 | 0 | -9.80357E-05 | -3.0464E-05 | | 57 | 0.004351307 | -0.000420334 | 0.000200529 | 0 | -0.00021832 | -0.00019924 | | 58 | 0.000625138 | -0.000329195 | -4.3473E-05 | 0 | -0.000152929 | -3.4428E-05 | | 59 | 0.002350312 | 0.000379369 | 5.39759E-05 | 9.13744E-11 | 0.000189448 | 2.87252E-05 | | 60 | 0.001777497 | -0.000824277 | -0.00133806 | -2.75225E-06 | -0.000738695 | -0.00110019 | | 61 | 9.91609E-05 | 4.88399E-05 | 7.35799E-05 | 0.000271499 | 4.63064E-07 | 0.000116049 | | 62 | 0.008533433 | 0.003266233 | -0.00077841 | 0.000353336 | 0.001860605 | -0.00071713 | | 63 | 0.006241388 | -0.00258431 | -0.00248241 | 0.000356245 | -0.001644729 | -0.00214236 | | 64 | 0.000247439 | -9.57975E-05 | -0.00016586 | 0.000433929 | -9.2504E-05 | -0.00031627 | |----|-------------|--------------|-------------|--------------|--------------|-------------| | 65 | 0.003039617 | -0.000699217 | -0.00064269 | -1.79222E-05 | -0.000370015 | -0.00071531 | As can be seen from **Tabel 3**, the highest amount of incremental changes in TI_j and DI_i elasticity in the period 2001-2011 are related to the "Electricity generation, transmission and distribution" and "Other Buildings" sectors, respectively. In the period 2001-2011, out of 65 production sectors, 42 sectors have experienced an increase in TI_j elasticity and DI_i elasticity, 13 sectors an increase in TI_j elasticity and a decrease in DI_i elasticity, 5 sections a decrease in TI_j elasticity and an increase in DI_i elasticity, and 5 sectors a decrease in TI_j elasticity and a decrease in DI_i elasticity. #### 5- Discussion In the previous section, the elasticities and their changes for each sector were calculated. Based on the elasticity decomposition, the demand elasticity is affected by the three effects of "changing the Ghosh inverse matrix", "changing sectoral final demand share" and "changing the share of CO_2 emission of sectors", and the output elasticity is influenced by the three effects of "changing the Ghosh inverse matrix", "changing final demand share of sectors" and "changing sectoral share of CO_2 emissions". In the following, the sectors should be divided to 4 groups according to the changes of DI_i and TI_j . The aim is to investigate what factor in the production sectors of Iran is the determining factor in explaining the changes in CO_2 emission elasticity. In this regard, according to Tabel 4 industries are divided into two groups once based on changes in TI_j (dTI_j): $dTI_j > 0$ and $dTI_j < 0$, and also once based on changes in DI_i (dDI_i) into two groups: $dDI_i > 0$ and $dDI_i < 0$. **Tabel 4.** A summary of the situation of production sectors in terms of the components of elasticity decomposition Source: Research calculations | | | | The components of TI _j elasticity decomposition | | | | |------------------|---------------------|------------------------------------|--|--|--|--| | | Group | Number of industries in each group | changing the
Ghosh inverse
matrix | changing
sectoral final
demand share | changing the
share of CO ₂
emission of
sectors | | | | | | In 54
industries, it
has increased
TIj | In 24
industries, it
has increased
TIj. | In 28
industries, it
has increased
TIj | | | dTI _i | dTI _j >0 | 55 | In 46 industries, it has the greatest impact on growth. | In 7 industries,
it has the
greatest
impact on
growth. | In 2 industries,
it has the
greatest
impact on
growth | | | ulij | | $\prec > 0$ | 108% | -11.4% | 2.6% | | | | | 4 | It has not reduced TIj in any industry. | In 10 industries, it has reduced TIj. | In 8 industries, it has reduced TIj. | | | | $dTI_{j}\!\!<\!\!0$ | 10 | In no industry,
has the | In 7 industries, it has the | In 3 industries, it has the | | | | | طالعات فرشجني | greatest effect
on reducing
TIj. | greatest
impact on
reduction . | greatest
impact on
reduction. | | | | | 1101 | -333%
The componen | ts of DI _i elasticity | decomposition | | | | | Nameh an a C | The componen | as of Differential | asticity accomposition | | | | Group | Number of industries in each group | changing the
Ghosh inverse
matrix | changing final
demand share
of sectors | changing
sectoral share
of CO ₂
emissions | | | | | | In 46 industries, it has increased | In 20 industries, it has increased | In 24 industries, it has increased | | | זעו | dDL > 0 | 47 | DIi. | DIi. | DIi. | | | dDI_i | $dDI_i > 0$ | 4/ | In 33 | In 6 industries, | In 8 industries, | | | | | | industries, it | it has the | it has the | | | | | | has the | greatest | greatest | | | | | | greatest | impact on | impact on | | | | | | impact on | growth | growth | |--|---------------------|----|---|---|--| | | | | growth. | | | | | | | 100% | -6.8% | 6.8% | | | dDI _i <0 | 18 | In 2 industries, it has reduced DIi. | In 16
industries, it
has reduced
DIi. | In 17
industries, it
has reduced
DIi | | | | | In no industry,
it has the
greatest effect
on reducing
DIi. | In 10 industries, it has the greatest effect on reducing DIi. | In 8 industries,
it has the
greatest effect
on reducing
DIi. | | | | | -120% | 79% | 141% | 55 industries from 65 industries, 85% of industries, are placed in the group $dTI_j>0$. In general, in this group, the effect of "changing the Ghosh inverse matrix", "changing sectoral final demand share" and "changing the share of CO_2 emission of sectors" with a share of 108%, -11.4% and 2.6%, respectively have played a role in increasing TI_j elasticity. 10 of the 65 industries, 15% of the industries, are placed in the group $dTI_j<0$. In general, in this group, the effect of "changing the Ghosh inverse matrix", "changing sectoral final demand share" and "changing the share of CO_2 emission of sectors" with a share of -333%, 307% and 126%, respectively, have played a role in reducing TI_i . 47 out of 65 industries, 72% of the industries are placed in the group $dDI_i > 0$. In general, in this group, the effect of "changing the Ghosh inverse matrix", "changing final demand share of sectors" and "changing sectoral share of CO_2 emissions" with a share of 100%, -6.8% and 6.8%, respectively have played a role in increasing DI_i elasticity. 18 out of 65 industries, 28% of the industries are in the group $dDI_i < 0$. In general, in this group, the effect of "changing the Ghosh inverse matrix", "changing final demand share of sectors" and "changing sectoral share of CO_2 emissions" with a share of -120%, 78% and 140%, respectively played a role in reducing DI_i elasticity. ## 5-1- Analyzing the role of "the Ghosh inverse matrix" in elasticity changes: an inhibitory factor or a stimulus factor "The Ghosh inverse matrix" is one of the factors of decomposition of the elasticity of CO₂ emissions. TI_i elasticity is the effect of a 1% change in the final demand of sector i on the CO₂ emissions
of the whole economy. As a result of a 1% change in the final demand of sector j, sector j changes its purchases from other sections to meet the final demand, so the effect of "the Ghosh inverse matrix" on the TI_i elasticity decomposition indicates a change in the share of sales of sectors (as intermediate input) to sector i (change in the purchase share of sector j from the production of other sectors). DI_i elasticity is the effect of a one percent change in the final demand of all sectors on the CO₂ emissions of sector i. As a result of a 1% change in the final demand of all sectors, all sectors change their purchases from sector i, so the effect of "the Ghosh inverse matrix" on DI_i elasticity indicates a change in the output share of sector i as an intermediate input to other sectors (change the share of purchasing parts from sector i). As can be seen from Tabel 4, "the Ghosh inverse matrix" effect increased TI_i elasticity in all sectors of the group dTI_i> 0 except for sector 10 and decreased TI_i elasticity in all sectors of the group dTI_i<0. This effect in the group dDI_i> 0 in 46 of the 47 sectors helped to increase the DI_i elasticity and in the group dDI_i<0 in 16 of the 18 sectors helped to increase the DI_i elasticity. Thus, as shown in Tabel 4 and Figure 1, "the Ghosh inverse matrix" in sectors that have experienced an increase in TI_i and DI_i as well as in sectors that have experienced decrease in in TI_i and DI_i is a strong stimulus to increase in TI_i and DIi. But what do these results mean? The strong stimulus of the "the Ghosh inverse matrix" effect on TI_j elasticity indicates a change in the share of output of sectors that are sold to sector j as an intermediate input (increasing the purchase share of sector j from the output of other sectors). The strong stimulus of "the Ghosh inverse matrix" effect on DI_i elasticity indicates a change in the share of output of sector i, which sells as an intermediate input to all sectors (increasing the share of purchases of other sectors from sector i). **Figure 1.** The contribution of "the Ghosh inverse matrix" in the decomposition of elasticity in the production sectors of Iran in the period 2001-2011 Source: Research calculations # 5-2- Analyzing the role of "final demand share" in elasticity changes: an inhibitory factor or a stimulus factor The share of final demand in the output is one of the factors that break down the elasticity of CO_2 emissions. As can be seen from **Tabel 4**, "the sectoral final demand share" factor reduced TI_j in 31 of the 55 sectors of the group $dTI_j > 0$ and in all sectors of the group $dTI_j < 0$. The reason for this result is that the share of final demand in the output of these 31 sectors has decreased from 55 sectors of the group $dTI_j > 0$ and all sectors of the group $dTI_j < 0$ in the period 2001-2011. "The share of final demand of sectors" has helped to reduce the DI_i elasticity in 27 of the 47 sectors of the group $dDI_i > 0$ and in 16 of the 18 sectors of the group $dDI_i < 0$. Therefore, "Changing the share of final demand in output" effect has helped to reduce the TI_j in 41 of the 65 sectors (63% of the industries) and reduce the DI_i in 43 of the 65 sectors (66% of the industries). **Figure 2** shows the share of final demand in the output in the decomposition of elasticity of Iran's production sectors in the period 2001-2011. **Figure 2.** The share of final demand in the output in the decomposition of elasticity of Iran's production sectors in the period 2001-2011 Source: Research calculations ## 5-3- Analyzing the role of "CO₂ emission share" in elasticity changes: an inhibitory factor or a stimulus factor CO₂ emission share is one of the factors in the decomposition of CO₂ emission elasticity. As can be seen from Tabel 4, "the share of CO₂ emission of sectors" factor increased TI_i in 28 of 55 sectors of the group dTI_i> 0 and decreased the TI_i in 8 of the 10 sectors of the group dTI₂<0. The effect of "sectoral share of CO₂ emissions" increased in 24 of the 47 sectors of the group dDI_i> 0 and decreased the DI_i in 17 of the 18 sectors of the group dDI_i<0. The reason for this result is that the share of CO₂ emission of these 24 out of 47 sectors in the group dDI_i> 0 and 17 out of 18 sectors in the group dDI_i<0 increased and decreased in the period 2001-2011, respectively. Therefore, as shown in Tabel 4 and Figure 3, the CO₂ emission share has been able to increase TI_i and DI_i elasticity in the groups dTI_i> 0 and dDI_i> 0 and in the groups dTI_i<0 and dDI_i<0 act as an inhibitory factor to increase the TI_i and DI_i elasticity. Therefore, "Changing CO₂ emission share" effect has helped to reduce the TI_i in 35 of the 65 sectors (54% of the industries) and reduce the DI_i in 40 of the 65 sectors (61.5% of the industries). This result is mainly due to the declining share of CO₂ emission of sectors that have experienced a decline in DI_i. Figure 3 shows the share of CO_2 emissions in the decomposition of elasticity of Iran's production sectors in the period 2001-2011. Figure 3. The share of CO₂ emissions in the decomposition of elasticity of Iran's production sectors in the period 2001-2011 Source: Research calculations ## 6- Conclusions and policy recommendations In 2019, Iran ranks sixth in the world and fifth in Asia in terms of CO₂ emissions. The purpose of this article is to investigate the factors affecting the CO₂ emission demand elasticity and CO₂ emission output elasticity, and we seek to answer the question of what factors are able to explain the changes in these elasticities. What are the factors that stimulate and inhibit the elasticity of CO₂ emissions in Iran? We try to answer this question by decomposition of the CO₂ emission elasticities. We have calculated these two elasticities for all production sectors of Iran (65 sectors) in 2001 and 2011 and also based on the decomposition analysis and with the aim of identifying the drivers of CO_2 emission elasticities determined and calculated the components of changes in CO_2 emission elasticities. Based on the formula $E^y = \hat{\beta}'(I-B)^{-1}\hat{S}$ introduced by Guo et al. (2018), two types of CO_2 emission elasticities can be introduced for each sector; Final demand elasticity of CO_2 emissions (TI_j) and developmental elasticity of CO_2 emissions (DI_i). TI_j elasticity is the effect of one percent change in the final demand of sector j on CO_2 emissions of the whole economy and DI_i elasticity is the effect of one percent change in the final demand of all sectors on CO_2 emissions of sector i. Based on the decomposition approach, CO_2 emission demand elasticity changes are decomposed to three effects: "changing the Ghosh inverse matrix", "changing the share of final demand in the total output of sector" and "changing the share of CO_2 emission of sectors", and CO_2 emission output elasticity changes are decomposed to three effects: "changing the Ghosh inverse matrix", "changing the share of final demand in the total output of sectors" and "changing the share of CO_2 emission of sector". Due to the lack of access to CO_2 emission data of production sectors in Iranian information and data sources, we have calculated the CO_2 emissions of production sectors through the energy consumption of sectors. The results indicate that the sector "Electricity generation, transmission and distribution" in 2001 and 2011 had the highest amount of DI_i elasticity and the highest amount of CO_2 emission share and the highest amount of TI_j elasticity in 2001. The highest amount of TI_j elasticity in 2011 is allocated to "Coke production, products of oil refining" sector and "Other buildings" sector. The highest amount of incremental changes in TI_j and DI_i elasticities in the period 2001-2011 are related to the "Electricity generation, transmission and distribution" and "Other Buildings" sectors, respectively. These two types of elasticities have increased in this time interval for 47 out of 65 industries. Now, the important question is why these elasticities have increased and what is the most important stimulus in this increase? "Changing the share of final demand in output" effect has helped to reduce the TI_j in 41 of the 65 sectors (63% of the industries) and reduce the DI_i in 43 of the 65 sectors (66% of the industries). "Changing CO_2 emission share" effect has helped to reduce the TI_j in 40 of the 65 sectors (61.5% of the industries) and reduce the DI_i in 35 of the 65 sectors (54% of the industries). The results indicate that the most important stimulus to increase TI_j elasticity and DI_i elasticity is the effect of the "changing the Ghosh inverse matrix". In other words, the increase in the share of output of sector i, which is sold as an intermediate input to industry j, is a strong driver of CO_2 emission elasticity in Iran in the period 2001-2011. These changes can be due to increased economic activities and the inefficiency of production structure. "Electricity generation, transmission and distribution" sector should be considered by energy and environmental policy makers due to having the highest amount and changes in CO₂ emission elasticity than other sectors. Increasing the share of renewable energy in the energy consumption basket of production sectors, increasing energy efficiency (reducing energy intensity) by replacing new and advanced equipment with old and worn equipment and improving production structure can help reduce the CO₂ elasticity and CO₂ emission in Iran's production sectors. The results of this study are significant for energy and environmental policymakers. Finally, due to the high of CO₂ emission elasticities in the "Electricity generation, transmission and distribution" sector, future research can focus on this area and suggest solutions to increase production efficiency and energy efficiency. Also, future
research can focus on the production structure of production sectors and provide solutions to improve the production structure of Iran's production sectors. ### References - Adams, S., & Klobodu, E. K. M. (2018). Financial development and environmental degradation: does political regime matter? *Journal of cleaner production*, 197, 1472-1479. - Ahmadian, M., Abdoli, G., Jabalameli, F., Shabankhah, M., & Khorasani, S. A. (2019). Extracting The Dynamic Curve of the Kuznets Environment. *Quarterly Journal of Quantitative Economics*, 16(2), 1-36. - Al-Mulali, U., & Ozturk, I. (2015). The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region. *Energy*, 84, 382-389. - Apergis, N., & Ozturk, I. (2015). Testing environmental Kuznets curve hypothesis in Asian countries. *Ecological indicators*, 52, 16-22. - Azami, S., & Angazbani, F. (2020). CO2 response to business cycles: new evidence of the largest CO2-Emitting countries in Asia and the Middle East. *Journal of cleaner production*, 252, 119743. - Azomahou, T., Laisney, F., & Van, P. N. (2006). Economic development and CO2 emissions: A nonparametric panel approach. *Journal of Public Economics*, 90(6-7), 1347-1363. - Chang, Y. F., Lewis, C., & Lin, S. J. (2008). Comprehensive evaluation of industrial CO2 emission (1989–2004) in Taiwan by input–output structural decomposition. *Energy Policy*, *36*(7), 2471-2480. - Chen, L., & Chen, S. (2015). The estimation of environmental Kuznets curve in China: nonparametric panel approach. *Computational Economics*, 46(3), 405-420. - Cole, M. A. (2004). Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages. *Ecological economics*, 48(1), 71-81. - Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). IPCC guidelines for national greenhouse gas inventories. - Gorus, M. S., & Aslan, M. (2019). Impacts of economic indicators on environmental degradation: evidence from MENA countries. *Renewable and Sustainable Energy Reviews, 103*, 259-268. - Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American free trade agreement. In: National Bureau of economic research Cambridge, Mass., USA. - Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. *The Quarterly Journal of Economics*, 110(2), 353-377. - Guo, J., Zhang, Y.-J., & Zhang, K.-B. (2018). The key sectors for energy conservation and carbon emissions reduction in China: evidence from the input-output method. *Journal of cleaner production*, 179, 180-190. - Guzel, A. E., & Okumus, İ. (2020). Revisiting the pollution haven hypothesis in ASEAN-5 countries: new insights from panel data analysis. *Environmental Science and Pollution Research*, 27(15), 18157-18167. - Heutel, G. (2012). How should environmental policy respond to business cycles? Optimal policy under persistent productivity shocks. *Review of Economic Dynamics*, 15(2), 244-264. - Hondo, H., Sakai, S., & Tanno, S. (2002). Sensitivity analysis of total CO2 emission intensities estimated using an input–output table. *Applied Energy*, 72(3-4), 689-704. - Kim, Y.-G., Yoo, J., & Oh, W. (2015). Driving forces of rapid CO2 emissions growth: A case of Korea. *Energy Policy*, 82, 144-155. - Klarl, T. (2015). The response of CO2 emissions to the business cycle: New evidence for the US based on a Markov-switching approach. Retrieved from - Klarl, T. (2020). The response of CO2 emissions to the business cycle: New evidence for the US. *Energy Economics*, 85, 104560. - Lim, H.-J., Yoo, S.-H., & Kwak, S.-J. (2009). Industrial CO2 emissions from energy use in Korea: a structural decomposition analysis. *Energy Policy*, *37*(2), 686-698. - Morán, M. A. T., & del Río González, P. (2007). A combined input—output and sensitivity analysis approach to analyse sector linkages and CO2 emissions. *Energy Economics*, 29(3), 578-597. - Nasreen, S., Anwar, S., & Ozturk, I. (2017). Financial stability, energy consumption and environmental quality: Evidence from South Asian economies. *Renewable and Sustainable Energy Reviews*, 67, 1105-1122. - Ozcan, B., Tzeremes, P. G., & Tzeremes, N. G. (2020). Energy consumption, economic growth and environmental degradation in OECD countries. *Economic Modelling*, 84, 203-213. - Pandey, K. K., & Rastogi, H. (2019). Effect of energy consumption & economic growth on environmental degradation in India: A time series modelling. *Energy Procedia*, *158*, 4232-4237. - Paul, S., & Bhattacharya, R. N. (2004). CO2 emission from energy use in India: a decomposition analysis. *Energy Policy*, 32(5), 585-593. - Rafaty, R., Dolphin, G., & Pretis, F. (2020). Carbon pricing and the elasticity of CO2 emissions. - Rormose, P. (2011). *Structural decomposition analysis: Sense and sensitivity*. Paper presented at the 19th International Conference on Input-Output Techniques. - Salahuddin, M., Alam, K., Ozturk, I., & Sohag, K. (2018). The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. *Renewable and Sustainable Energy Reviews*, 81, 2002-2010. - Selden, T. M., & Song, D. (1994). Environmental quality and development: is there a Kuznets curve for air pollution emissions? *Journal of Environmental Economics and management*, 27(2), 147-162. - Shafik, N., & Bandyopadhyay, S. (1992). *Economic growth and environmental quality: time-series and cross-country evidence* (Vol. 904): World Bank Publications. - Stern, D. (2015). The rise and fall of the environmental Kuznets curve. World Development, 32 (8): 1419–1439. https://doi.org/10.1016/j.worlddev. 2004.03. 004. - Su, B., Ang, B., & Li, Y. (2017). Input-output and structural decomposition analysis of Singapore's carbon emissions. *Energy Policy*, 105, 484-492. - Tao, S., Zheng, T., & Lianjun, T. (2008). An empirical test of the environmental Kuznets curve in China: a panel cointegration approach. *China Economic Review*, 19(3), 381-392. - Tarancón, M. Á., & Del Rio, P. (2007). CO2 emissions and intersectoral linkages. The case of Spain. *Energy Policy*, *35*(2), 1100-1116. - Tunc, G. I., Türüt-Aşık, S., & Akbostancı, E. (2007). CO2 emissions vs. CO2 responsibility: an input-output approach for the Turkish economy. *Energy Policy*, *35*(2), 855-868. - Wang, G., Chen, X., Zhang, Z., & Niu, C. (2015). Influencing factors of energy-related CO2 emissions in China: A decomposition analysis. *Sustainability*, 7(10), 14408-14426. - Yabe, N. (2004). An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. *Energy Policy*, 32(5), 595-610. - Yu, S., Zheng, S., Ba, G., & Wei, Y.-M. (2016). Can China realise its energy-savings goal by adjusting its industrial structure? *Economic Systems Research*, 28(2), 273-293. - Zhang, Y.-J., Bian, X.-J., Tan, W., & Song, J. (2017). The indirect energy consumption and CO2 emission caused by household consumption in China: an analysis based on the input—output method. *Journal of cleaner production*, 163, 69-83. - Zhang, Y.-J., & Da, Y.-B. (2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. *Renewable and Sustainable Energy Reviews*, 41, 1255-1266. - Zhang, Y., & Zhang, S. (2018). The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions. *Energy Policy*, 120, 347-353. ر ال جامع علوم ان انی پرتال جامع علوم ان انی