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There are two approaches for simulating memory as well as learning in artificial 

intelligence; the functionalistic approach and the cognitive approach. The 

necessary condition to put the second approach into account is to provide a model 

of brain activity that contains a quite good congruence with observational facts 

such as mistakes and forgotten experiences. Given that human memory has a solid 

core that includes the components of our identity, our family and our hometown, 

the major and determinative events of our lives, and the countless repeated and 

accepted facts of our culture, the more we go to the peripheral spots the data 

becomes flimsier and more easily exposed to oblivion. It was essential to propose 

a model in which the topographical differences are quite distinguishable. In our 

proposed model, we have translated this topographical situation into quantities, 

which are attributed to the nodes. The result is an edge-weighted graph with mass- 

based values on the nodes which demonstrates the importance of each atomic 

proposition, as a truth, for an intelligent being. Furthermore, it dynamically 

develops and modifies, and in successive phases, it changes the mass of the nodes 

and weight of the edges depending on gathered inputs from the environment. 
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Introduction 

The early postulated models of human memory date back to 1976 when Tulving supposed for 

finding something in memory there is a serial search process in your brain. When you are seeking 

something for recall from the box of stor- age, you go to that particular storage box and search for 

each content at a time until you pick your desired one (Tulving, 1976). By the development of 

numerical methods to simulation of human memory, models like MINERVA 2 (Hintzman, 1984), 

CHARM (Eich, 1982), TODAM (Murdock, 1993), the Matrix model (Humphreys et al., 1989), 

and SAM (Raaijmakers & Shiffrin, 1981), found themselves strongly related to the global matching 

models (Hintzman, 1984; Humphreys et al., 1989; Kahana et al., 2005; Kelly et al., 2017; Clark & 

Gronlund, 1996). While any proposed model has its specific structure and terminology, 

resemblances in the mathematics behind these models provide evidence of a general agreement on 

this topic. In order to reach a unified theory of human memory, Matthew A. Kelly and Robert L. 

West, suggested a theoretical framework for identifying each proposed memory model within six 

key decisions namely; “(1) choice of knowledge representation scheme, (2) choice of data 

structure, (3) choice of associative architecture, (4) choice of learning rule, (5) choice of time- 

variant process, and (6) choice of response decision criteria” (Kelly & West, 2017). The 

representation scheme of human memory model starts with the LISP (List Processing) in which 

cognitive architecture ACT-R (Anderson & Lebiere, 2014) and SAM (Search of Associative 

Memory) models are represented as “storage and retrieval of discrete symbols” (Clark., 2001). 

Symbolic models are represented as “expressions of symbols and the manipulation of those 

symbols” (Clark., 2001; Kelly et al., 2017), which they are inspired by linguistics and logic (Locke 

& Phemister, 2008). In the symbolic model, “the atomic units of the model are concepts (e.g., dog, 

glowing, noun, or anger) and complex units arise from characterizing the relations between those 

concepts.” (Kelly & West, 2017). By the time of 1980 Neurally-inspired connectionist models were 

suggested in which the atomic units are “artificial neurons or simple neuron-like nodes, whereas a 

concept will have complex implementation as a pattern of activation across those units” 

(McClelland et al., 2010). In vector-based models of memory; vectors serve as a to be remembered 

item (Gayler, 2004; Plate, 1995). Vector Symbolic Architectures (VSAs) was the promoted version 

of the previous model; computational associative memories were used by cognitive psychologists 

in order to model both behavioral and neurological aspects of human memory. In that model, with 

some mathematical operations, symbols or vectors (which are representing symbolic information) 

could be modified or combined within the so-called sub-symbolic process (Kelly et al., 2013). Such 

models developed, and evolved at the same time, from semantic to syntactic types in which they 

infer the meaning of words from” how the words co-occur in a corpus” (Kelly, Reitter, et al., 2017). 

In a comprehensive sense, there are two approaches in the simulation of memory and learning in 

artificial intelligence; in the functionalistic approach, without understanding the events inside the 
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mind, a proposed model attempts to intake inputs and deliver outputs that correspond to the outputs 

delivered by the mind to those inputs (Clark., 2001). It is also important, due to the complex 

relations between inputs and outputs, to propose an algebraic system that should be capable of 

anticipating upcoming events; The operators of this algebraic system are a functionalistic 

representation of unknown events within the mind. In the simpler version of this viewpoint, one 

can create a connection between inputs and outputs only by the mean of a computational method 

without building an algebraic system (Putnam, 1988). In the model arising from this viewpoint, it 

does not matter those events within the mind have fundamental differences from the corresponding 

events in artificial intelligence. The notable point in these models is the simulation of the apparent 

function and the ultimate behavior of the mind. In fact, the mind is considered as a black box which 

its internal logic can be understood by an accurate and detailed vision throughout the relationships 

between inputs and outputs (Rouse & Morris, 1986), and in some respects, basically, the meaning 

of” understanding” is nothing but perceiving these observational relationships. Any other system 

with the same function has the equivalent internal logic. In this view, which is consistent with 

behaviorism in the realm of psychology, the mind is seen as a function whose identity is determined 

by the relationships between inputs and outputs. Subsequently, proposed algorithms establish 

mathematical relations between data which can predict the system’s behavior either 

deterministically or stochastically. The result is that this system, despite its correspondence with 

the activities of the mind, is fundamentally different from it; does not make mistakes or forget. This 

is the perfectness of simulated systems that makes us skeptical of them and gives rise to the idea 

that this is exactly why we can think, and we have the will and the emotions. which, unlike artificial 

intelligence, we are not perfect. In the functionalist approach, we seem to transcend the limitations 

of the mind and eliminate its shortcomings, but in fact, we replace the mind with something 

different. Which, although it has some of its functions, is something quite different from the mind, 

and in the strict sense of the word, we cannot talk about simulation. These inevitable constraints of 

this approach persuaded scientists to pursue a more complicated cognitive approach. In cognitive 

approach, it is not merely sufficient to simulate the relationships between inputs and outputs, but it 

is important to decode the contents of the black box of the mind using methods like introspection 

and empathy and by resorting to psychological theories like the hermeneutic method and simulate 

its internal activity in artificial intelligent. For instance, the idea of a self-learning network in which 

an artificial intelligence gathers inputs directly or in relationship with other intelligence, modifies 

its prior information over time, and thus acquires a history, has emerged from this approach. The 

cognitive approach has recently become more prominent because of the advanced progress of 

cognitive science which we have seen in the last two or three decades. 
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1. Method 

In this article, with the same cognitive approach, we try to put this memory phenomenon into 

perspective and suggest a model that can be the basis for simulating memory in artificial 

intelligence. This model, as expected, will be a dynamic model that continuously improves in 

successive phases. Due to the limitation of memory space and the necessity of differentiating 

between matters of high importance, less importance, and non-importance, some information will 

be stored permanently in long-term memory and some others forget or disappear sooner. Our 

proposed dynamic model seeks to simulate this human phenomenon. If artificial intelligence is 

supposed to make the same civilization, the imperfection of mathematics would be inevitable. 

Otherwise, we are inescapable to include emotions, feelings, complexities, and elegancies of 

humanity as initial values or the same function of them or other conditions into artificial 

intelligence. Thus, we missed simulating the most important aspect of intelligence called” volition 

and freedom”. Our goal is to propose a very simple ́etude of non- algorithms that could one day be 

the basis of creating imperfect and erroneous artificial intelligence. A forgetful artificial 

intelligence that does not progress linearly, and correctness or incorrectness of its decisions 

depends on its lifestyle and the events surrounding it, often experiences and grows, but sometimes 

it also regresses and loses some of the right components of its decision-making. And that is exactly 

why you can love or hate it because these give her feeling and freedom. To this end, we first 

introduce a novel mathematical concept that will be the basis of our proposed model. 

2. Mass-based Graph 

Since in prevailing theories, declarative memory stores propositionally. Thus, we considered the 

bricks of our model as atomic propositions in which the connections between them form a semantic 

network that represents our memory structure. Note, though, the” image” is perceived by Gestalt 

principles, but every perceived image, for understanding in the form of meaning, decomposes into 

propositions that are understood linearly and diachronic. In Wittgenstein’s words, we consider each 

atomic proposition to be equivalent to a state of affairs. On the other hand, the “meaningfulness 

unit” which was considered as a “concept” in Greek thought, is recognized as a “proposition” in 

modern philosophy (Quine, 1997). Therefore, we started our simulation from the propositional 

level. To illustrate this structure, we use the concept of graph which is conventional. But since our 

proposed model is dynamic, the regular graphs are not suitable for our model, for this purpose, we 

introduce a new graph called” mass-based graph”. 
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Figure 1: Evolution of the Dynamic Mass-based Graph from phase 1 (left hand side) to phase 3. By adding 

each node and edge, the size(mass) and thickness(weight) of nodes and edges change respectively. Initial 

mass-based values and initial weights of each node and edge have been chosen randomly from the standard 

normal distribution. 

In this graph, we assign an initial mass-based value to each node which are representing the 

degree of importance for an intelligent being. In the following, the edges make the connections 

between these nodes, in which, they already contain initial weight values regarding their 

environmental conditions. By adding any new edge, the importance and therefore the mass of the 

nodes on both sides increases, thus, this leads to an increase in the weight of all connected edges 

to these two nodes. Accordingly, the graph will have a special mode in each level (phase) in which, 

by adding each new weighted edge, there will be a great change in the next level. It should be noted 

that only one edge can be drawn between the two nodes, and we show the importance and thickness 

of that edge with its weight (Figure 1). With these explanations, we introduce the technical 

viewpoint of this mass-based graph. 

The graph in its primary state, formed by nodes and edges with initial mass and weight values. 

In our model, the initial mass-based value of each node (atomic proposition) corresponds to its 

importance to an intelligent being. We can classify these initial mass-based values and their 

importance into three main categories for the human being. The most important category of these 

propositions relates to our survival. For evolutionary reasons, all the facts that relate to our 

biological survival have special places in memory, and we rarely forget them (like sexual activity 

or intimacy (Lindau et al., 2018)). Another category of these propositions is related to our identity 

and they are becoming important to our recognition. This category of propositions is a 

psychological type of the first category of propositions, and our survival and mental health are 

based on them. While the truth about nutrition belongs to the first category, the event that led to 

our humiliation belongs to the second category of propositions and they remain as drastic and 

precise as possible in our memory. In addition to these two categories, a third category should be 

considered as a kind of cultural specialty. While this category of propositions is not capable of 
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being delivered to the natural originality of two previous categories, inevitably, the consequence 

will be a kind of fetishism. In this case, what was supposed to be a tool in line with the goals of the 

previous two categories, becomes an ultimate and independent goal and is fixed in memory for its 

own sake. This variation in the initial mass-based values provides many possible choices for 

shaping artificial intelligence ahead of us. In the next section, we will see that the initial inputs in 

the adjacency matrix are responsible for this diversification. Regarding the initial weight of the 

edges, it seems that the situation of their occurrence is a determining factor. In fact, the initial 

weights of the edges, which illustrate the causal relationships or correlations or co-occurrence of 

propositions, are situation dependent; a situation that can be emotional or cultural. Indeed, the 

repetition and attention that in the classical view should be considered as a main factor in weighting 

the edges, in our model, treated as a second-class of importance which is stemmed from the mass 

of the nodes, i.e., the importance of the relevant facts. 

Now, after the initial establishment of the graph, it is time to turn it into a dynamic graph with 

an introduction to the graph rule: 

2-1. Graph Rule: 

By adding each new edge with a certain initial weight value (which we have assigned earlier), this 

edge possesses an in- crease in its weight proportional to the average mass of its nodes. The mass 

of the nodes also increases proportional to the initial weight, and this increase in mass leads to an 

increase in the weight of all other edges associated with these two nodes. 

 
Figure 2. Mass-based Dynamic Graph after 22 phases for randomly chosen initial mass-based and wight 

values. Connections were made randomly to demonstrate the dynamicity of the graph. 

Accordingly, by adding each new weighted edge, we will encounter a great change in the state 

of the graph system, which this new state will be the basis for entering the next phase. As a result, 

a graph with the arrival of any new edge in each phase takes on a dynamic shape (Figure 2). At the 

same time, it is possible to extend the graph by defining a new node with a certain initial mass- 



209 Memory As a Mass-Based Graph: Towards A Conceptual Framework for... / Mollakazemiha 

 

 

 

based value. But this expansion in the nodes is not related to the dynamism of the graph and this is 

merely a simple expansion that can be applied to any other static graph. 

3. Introducing the Model 

Consider our graph formed by n nodes from 𝑀1, 𝑀2, ⋯ , 𝑀𝑛. We consider the values of 
𝑀0, 𝑀0, ⋯ , 𝑀0 as initial mass-based values. Because of the use of the logarithmic function, we 

1 2 𝑛 

suppose these values to be greater than 1. Then consider the zero-diagonal symmetric matrix of 

order 𝑛, called the matrix of the edge which elements represent the 

initial weight of the edge that corresponds to the related nodes. For the same reason, the values 

of the weight of the edges must be greater than 1. In this way, the inputs of the graph will be as 

follows: 

 

 
Thus, this graph has 𝑛(𝑛+1) input number greater than 1 that 𝑛 of the inputs are associated with 

2 

initial mass-based values and 𝑛(𝑛−1) of the inputs are for initial weight values. These initial inputs 
2 

are called phase zero of the graph. 

Now we get output from these inputs, which will indicate the graph state in its first phase. In 

contrast to the initial condition of phase zero, in this phase, data become meaningful. In another 

word, both nodes regarding their geopo- litical importance in this graph described as their masses 

and edges, find their appropriate weights attribute to their position in the graph as a consequence 

of determining real mass-based values of nodes. In this model, although the phases are discrete, 

they represent the variable of time. As mentioned above, it seems that the learning (storing) and 

recall (retrieve) of information in the human mind are also discrete and obtained in quantifiable 

packet level by level. The final state of the first phase is as follows: 
𝑛 

𝑀1 = 𝑀0 + ∑ 𝑓(𝑊0 ), 𝑓(0) = 0, 𝑓(𝑥) = ln 𝑥 + 𝑔(𝑥; 𝜇, 𝜎), (𝑥 > 1) 
𝑖 𝑖  

𝑘=1 

𝑘𝑖 

𝑊1 = 𝑊0 + ln(𝑀1 + 𝑀1) 
𝑖𝑗 𝑖𝑗 𝑖 𝑗 
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Where 𝑔(𝑥; 𝜇, 𝜎) is:  
1 

ln(𝑥) − 𝜇 2 

 
 
, ∀𝑥 ∈ ℝ ∣ 𝑥 > 1 

𝑥𝜋𝜎 [1 + ( 
𝜎 ) ] 

 

Which is Log-Cauchy probability density function with parameters μ and σ these two parameters 

can be arbitrary chosen or estimated. One has to choose an appropriate defined domain for this 

function after properly estimating the initial input numbers. The selected interval should ultimately 

do not have a significant impact on the next phase or two. 

The reason that why we use the logarithmic function is that the function must be monotone 

increasing on its domain while its rate of growth decreases gradually such that the repetition effect 

cannot override the fundamental im- portance including biological, psychological, and fetishism. 

We also intuitively expect that in the beginning, the repetition effect to be more impressive and 

gradually decrease with increasing repetition. Neurological studies have also shown that when the 

stimulus is repeated, the BOLD response in fMRI imagng in the second demonstration is less than 

the first time, which is called the repetition suppression effect (Gazzaniga et al., 2014). Moreover, 

the decreasing intensity in the growth rate of the logarithmic function requires the necessity of 

assigning the initial values, for both weights and masses, in not large numbers, say from 2 to 100. 

In that case, summation of the logarithms of weights of the connected edges to a specific node 

would be a reasonable value in comparison with the mass of that particular node. Additionally, it 

is necessary for each of these intelligences to have their own character, and not to have so-called 

mass production. We add this characteristic, which can indicate a lack of causation in the realm of 

the mind, to what is known as the condition for the happening of free will, with the Cauchy 

distribution function. This function, which represents the seventh level of randomness in 

Mandelbrot’s theory, is added to the formula with little effect, in order to be determinant only at 

the boundary conditions. We know that normal people in intermediate conditions, have causal and 

predictable and formulable behavior, and their differences and characteristics are often revealed in 

vague boundary conditions. It can be said that our character is drawn within our borders. The 

presence of this random function sometimes causes a small, insignificant (low mass) node to be 

deleted and forgotten in one step, and sometimes, the same node remains and its mass increases in 

other phases, and it may even become an important (high mass) node in the future. 
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𝑘𝑙 

𝑘𝑙 

 

 
 

Figure 3. Mass-based Dynamic Graph after 55 phases of randomly chosen initial mass-based and weight 

values. Notice how size of the nodes (mass-based values) and thickness of the edges (weight values) have 

changed. 

Now we determine the state of this graph in phase 𝑡(𝑡 > 1) (Figure 3). Agreeably, we define 

variable m as follows: 𝑚 = 𝑛, This variable will be used in phases where a new node is added 

instead of an edge. 

For this purpose, we consider a number greater than 1 as the input, indicating the initial weight 

of new edge. This entry is called dynamic input. Suppose this new edge connects the nodes 𝑘 and 

𝑙(1 ≤ 𝑘, 𝑙 ≤ 𝑚). 𝑊‾ 𝑡   demonstrates the initial weight value of this edge which counts as its initial 

weight. Since this is a new edge, we have the following important condition: 

∀𝑠 < 𝑡, 𝑊𝑠 = 0 

The graph state in the 𝑡 phase is calculated as follows: 

Edge weight in phase 𝑡:   𝑊𝑡  = 𝑊‾ 𝑡   + ln(𝑀𝑡 + 𝑀𝑡) 
𝑘𝑙 𝑘𝑙 𝑘 𝑙 

Mass of nodes in phase 𝑡:   𝑀𝑡  = 𝑀(𝑡−1) + 𝑓(𝑊‾ 𝑡  ) 
𝑘 𝑘 𝑘𝑙 

𝑀𝑡 = 𝑀(𝑡−1) + 𝑓(𝑊‾ 𝑡  ) 
𝑙 𝑙 𝑘𝑙 

𝑀𝑡 = 𝑀(𝑡−1)(𝑖 ≠ 𝑘, 𝑙) 
𝑖 𝑖 

The weight of the other edges associated with the nodes, due to the increase in the mass of the 

two nodes: 
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𝑘𝑝 

𝑝𝑙 

 

𝑊(𝑡−1) + ln(𝑀𝑡 − 𝑀(𝑡−1)) ; 𝑊(𝑡−1) ≠ 0, 𝑝 ≠ 𝑙 
𝑊𝑡 = { 𝑘𝑝 𝑘 𝑘 𝑘𝑝 

𝑘𝑝 
0 ; 𝑊(𝑡−1) = 0 

𝑊(𝑡−1) + ln(𝑀𝑡 − 𝑀(𝑡−1)) ; 𝑊(𝑡−1) ≠ 0, 𝑝 ≠ 𝑘 
𝑊𝑡 = { 𝑝𝑙 𝑙 𝑙 𝑝𝑙 

𝑝𝑙 
0 ; 𝑊(𝑡−1) = 0 

 

where 1 ≤ 𝑝 ≤ 𝑚. Thus, in each phase, the weight of the edges determines which connections 

are more important and vital and which will be gradually eliminated. Energy limits will determine 

the threshold of this elimination. The point is that a node which is isolated and no further edge runs 

out of it will also be deleted and involved players in the game will continue to play. Note that in 

phase 𝑡 it is plausible that a new node with an initial mass-based value of 𝑀𝑡,𝑚+1 adds into the 

graph. In this state, we won't encounter any particular change but a static development of the graph 

and the creation of new possibilities of adding new edges. Notably, with the addition of each new 

node, we have: 𝑚 = 𝑚 + 1 (Figure 4). 

 

Figure 4. Mass-based Dynamic Graph after 100 phases. Primarily nodes such as node 1, 2, 3, etc., mostly 

became dense and distinguishable. Some other marginal nodes, due to the existence of Log-Cauchy 

distribution, gained much more mass-based values and were remained as crucial nodes. 

Conclusion 

The brilliant of this model is its capability to account for being both an algorithm for 

supervised/unsupervised machine learning (such as clustering or its usage for NLP (Natural 

Language Processing) or an algorithmic tool for optimization in search engines. At the same time, 

with more stochastic ingredients, it opens a vast majority of possibilities of conducting future 

studies in the field of cognitive modeling, in particular, memory retrieval tasks. The result of such 

cognitive models could demonstrate the importance and the role of each proposition in the memory 
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network or the drift rate (i.e., the difficulty of retrieval) of each specific proposition (node). Thus, 

the mass-based graph with its dynamicity for changing the shape of itself sounds promising for 

being a conceptual framework for future studies in related fields in the hope of advancing 

technology and human civilization. 
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