
Adv. Math. Fin. App., 2023, 8(3), P. 935-949 

 Advances in Mathematical Finance & Applications 
www.amfa.iau-arak.ac.ir 

Print ISSN: 2538-5569 

Online ISSN: 2645-4610 

Doi: 10.22034/AMFA.2022.1943236.1664 
 

 
 

 
*Corresponding author Tel.: +98 9123890554 

E-mail address: k_fathi@iau-tnb.ac.ir 

  
© 2023. All rights reserved.    

  Hosting by IA University of Arak Press                 

 

 

  Applied-Research Paper 
 

Optimization of Estimates and Comparison of Their Efficiency 

under Stochastic Methods and Its Application in Financial 

Models 
 
Kianoush Fathi Vajargah a.∗, Hamid Mottaghi Golshan b, Abbas Arjomandfar c  
 
 𝑎 Department of Statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran  

 𝑏 Department of Mathematics, Shahriar Branch, Islamic Azad University, Shahriar, Iran  

 𝑐 Department of Mathematics, Yadegar-e-Imam Khomeini (RAH), Shahrerey Branch, Islamic Azad University, Tehran, 

Iran  

 
 

ARTICLE INFO 

Article history:  

Received 2021-12-06 

Accepted 2022-04-04 

 

Keywords: 

Stochastic differential equation, 

random sequence, 

Quasi-random sequence, 

(Quasi) 

 Monte Carlo simulation 

 
 

ABSTRACT 

In this paper, we first introduce stochastic differential equations and provide the 

definition and basic theories of Monte Carlo and quasi-Monte Carlo methods. 

We specifically focus on Sobel and Halton sequences. We utilize simulations 

under these methods to compare their efficiency in obtaining solutions. The re-

sults indicate that the approximation achieved by the Sobel sequence is signifi-

cantly superior to other stochastic methods. 

Next, we examine the efficiency of random and quasi-random methods, consid-

ering both geometric Brownian movement and the price index of the Tehran 

stock (equal weight and weight-value). Our findings demonstrate that the quasi-

Monte Carlo method outperforms other approaches in terms of efficiency. 

 

 

1 Introduction and Preliminaries 
 

The study of basic concepts and tools required for stochastic methods, including the calculation and 

estimation of answers and approximations in financial models, as well as stochastic differential equa-

tions, has been extensively explored by numerous authors [1, 7, 9, 11, 15, 14]. Many of these phenom-

ena involve random factors, which necessitates modeling using random differential equations. These 

random factors manifest in the form of white noise. In order to analyze these equations, they are typi-

cally expressed in the form of integrals. However, the integration of white noise cannot be computed 

using Riemann and Lebesgue integrals. Ito's integral is necessary to address this issue. 

In recent years, the most effective and widely used methods for solving these types of simulation equa-

tions have involved discrete-time approximation of sample paths using computers. This method relies 

on discretizing the time frame [0, T] into discrete intervals and generating approximate values for sam-

ple paths step by step at these discrete time points. Therefore, this method aims to obtain the best pos-

sible answers using random methods based on Markov chain simulation [13]. Monte Carlo simulation 
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is a widely used and valuable method that finds applications in various scientific fields, including ap-

plied mathematics, biological mathematics, finance, economics, and others [3, 4, 5, 6, 7, 9, 11, 13, 16, 

17]. In the following sections, we provide a brief overview of relevant results and definitions related to 

the theory of stochastic methods. For more detailed explanations, refer to [2, 18]. This paper consists 

of four sections. The second section covers the literature review and theoretical background of option 

pricing, including an explanation of the main methods such as Monte Carlo models. In the third section, 

we outline the methodology employed in our study and present the results of our tests. Finally, the 

fourth section discusses the results and draws inferences based on them. In the third section, we ex-

plained the methodology of our study and we demonstrated the results of our tests, and finally, in the 

fourth section, we discussed the results and inference regarding them. 

  

1.1 Stochastic Differential Equations with 𝒎 Independent Noise 

 Definition 1.1 (see [15]). Let (𝑃. 𝜔. 𝐴) be a probability space and 𝑑 ∈ ℕ. The random process 𝑊𝑡: 𝛺 →

ℝ. 0 ≤ 𝑡 ≤ 𝑇 is a called the 𝑑-dimension Brownian motion whenever the following properties are es-

tablished:  

    1.  For all 𝜔 ∈ Ω, then 𝑡 →   𝑊𝑡(𝜔) be a continuous function on [0. 𝑇].  

    2.  Each group intervals {𝑊(𝑡0). 𝑊(𝑡1) − 𝑊(𝑡0). 𝑊(𝑡2) − 𝑊(𝑡1). … . 𝑊(𝑡𝑘) − 𝑊(𝑡𝑘−1)}, where 0 ≤ 𝑡0 <

𝑡1 < ⋯ < 𝑡𝑘 = 𝑇 be independent.  

    3.  𝑊(𝑡) − 𝑊(𝑠) has a normal distribution with mean 0 and variance (𝑡 − 𝑠)𝐼𝑑, where 0 is the null 

vector of order 𝑑 and 𝐼𝑑 is the 𝑑 × 𝑑 identity matrix.  

 In general, a vector can be considered as a column or a row vector. Consider a 𝑚-dimensional wiener 

process 𝑊 = {𝑊𝑡: 𝑡 ∈ [0. 𝑇]} with 𝑊𝑡
1. 𝑊𝑡

2. … . 𝑊𝑡
𝑚 components that separate wiener processes. Now 

consider a 𝑑-dimensional vector function 𝑎: [𝑡0. 𝑇] × ℝ𝑑 → ℝ𝑑  and a matrix 𝑑 × 𝑚 in form 

𝑏: [𝑡0. 𝑇] × ℝ𝑑 → ℝ𝑑×𝑚 and put the diffusion coefficient  𝑡 ∈ [0. 𝑇]. Now a 𝑑-dimensional random 

differential equation is in form:  

 𝑑𝑋𝑡 = 𝑎(𝑡. 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡. 𝑋𝑡)𝑑𝑊𝑡 . 

 which can also be expressed in the following form:  

 𝑋𝑡 = 𝑋𝑡0
+ ∫

𝑡𝑎

𝑡0
𝑎(𝑠. 𝑋𝑠)𝑑𝑠 + ∫

𝑡𝑏

𝑡0
𝑏(𝑠. 𝑋𝑠)𝑑𝑊𝑠 . 

 with the initial value of 𝑋𝑡0
∈ ℝ𝑑, in which the integral of Ito and Lebesgue are counted as components. 

 

1.2 Monte Carlo Algorithms and Methods 

 Nowadays, the use of a variety of simulation methods in different sciences such as economics, finance, 

risk management, etc. is generalized [3, 4, 6, 7, 13, 18]. Among different simulation methods, Monte 

Carlo method is more suitable for research and financial calculation than other methods. The tendency 

to use Monte Carlo methods increases when it is impossible to calculate the exact response using de-

finitive algorithms. Simulation is a method through which a behavior similar to the random component 

of the designed pattern can be created and thus, it is possible to make the prediction with its degree of 

reliability calculated. Assuming that we want to set an estimate by Monte Carlo method for parameter 

𝜆 from the given 𝑀 community. In this method, we must first find a 𝑇(𝑋) estimator, in which 𝑋 is a 

random variable with probability density function 𝑓𝑋(𝑥) so that this estimator applies to the following 

two basic conditions: 
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     1.  The estimator 𝑇 is skewed, i.e. 𝐸(𝑇(𝑋)) = 𝜆,  

    2.  The estimator 𝑇 estimator has finite variance, i.e. Var(𝑇(𝑋)) = 𝜎2 < ∞.  

 Then, we consider random variables 𝑋1..... 𝑋𝑛 distribution 𝑓𝑥 which  

𝜃𝑛(𝑋1. . . . 𝑋𝑛) =
1

𝑛
∑

𝑛

𝑖=1

𝑇(𝑋𝑖). (1) 

 Obviously, 𝐸(𝜃𝑛) = 𝜃 and Var(�̂�𝑛)Ì‚ =
1

𝑛
𝜎2 < ∞. Therefore 𝜃𝑛 can be considered as a Monte Carlo 

estimator. This estimator has the following properties (See [2]):  

    1.  𝜃𝑛 is convergent in probability to 𝜃, i.e. lim𝑛→∞𝑝(|𝜃𝑛 − 𝜃| ≥ 𝜀) = 0, for all 𝜀 > 0,  

    2.  The mean convergence has a second order to the parameter 𝜃, i.e. lim𝑛→∞𝐸(|𝜃𝑛 − 𝜃|2) = 0.  

 Consider the following value:  

𝑚𝑀 =
1

𝑀
∑

𝑀

𝑟=1

𝑋𝜔𝑟
. (2) 

 Here 𝑋(𝜔𝑟) is the random process sample path of the 𝑋 random process. According to the central limit 

(1) it has almost normal distribution with average 𝜇 and variance 𝜎2 in which 𝜇 = 𝐸(𝑋) and the big 

numbers rule states that 𝜎2 = Var(𝑋) and  

𝑚𝑀 → 𝜇 = 𝐸(𝑋)        as        𝑀 → ∞. (3) 

 Thus (1) can be used for the approximation of 𝐸(𝑋). Simply put, the sample path is calculated from 𝑋 

and expresses the mean of the sample as an approximation for the mathematical values of 𝑋. We know 

that for approximation (1) (see [11]) we have:  

|𝑚𝑀 − 𝐸(𝑋)| = 𝑂(
1

√𝑀
). (4) 

 Therefore, the Monte Carlo method is convergent with the 
1

√𝑀
 order. In other words, the main idea of 

Monte Carlo’s method is to estimate a certain value by calculating the mathematical values for a large 
number of independent simulated routes. The basis of this method is based on the law of large numbers 

and states that the average number of large enough of the samples is almost equal to their average. 

Monte Carlo’s method consists of two steps:   
    1.  We simulate a large number (up) of 𝑋 samples using random number generators to calculate 

independent random variables that are also distributed with 𝑋.  

    2.  We approximate the average using the equation (1).  

 In the following, we present a general concept of simulating the values of expectation for an answer 

from the random differential equation 𝑋 with a given function 𝑔. In general, the approximate error has 

two parts: statistical error and time discrete error. Estimation of statistical error is related to the central 

limit issue and estimating the time discrete error from Euler method is directly related to the assumption 

of the Fymman-Kac theorem.  

 

1.3 The Equation of Random Differentiation and Monte Carlo Method 

Consider 

𝑑𝑋(𝑡) = 𝑏(𝑡. 𝑋(𝑡))𝑑𝑡 + 𝜎(𝑡. 𝑋(𝑡))𝑑𝑊(𝑡). (5) 

 where 𝑡0 ≤ 𝑡 ≤ 𝑇. We want to calculate the value 𝐸[𝑔(𝑋(𝑇))]. Monte Carlo’s approach to approxi-
mation.  
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𝐸(𝑔(𝑋(𝑇))) = ∑

𝑁

𝑗=1

𝑔(�̂�(𝑇. 𝑊𝑗))

𝑁
 (6) 

It is stated that here �̅� is approximately 𝑋 of the Euler method. Error in Monte Carlo method is as 

follows  

𝐸(𝑔(𝑋(𝑇))) − ∑

𝑁

𝑗=1

𝑔(�̂�(𝑇. 𝑊𝑗))

𝑁

= 𝐸[𝑔(𝑋(𝑇)) − 𝑔(�̂�(𝑇))] − ∑

𝑁

𝑗=1

(𝑔(�̂�(𝑇. 𝑊𝑗)) − 𝐸[𝑔(�̂�(𝑇))])

𝑁
.

 (7) 

 

On the right is the first part of the time discrete error and the second part is the statistical error.  

Statistical Inference of Monte Carlo Estimator 

 Random integration by Monte Carlo approximation method in form 𝜃𝑛(𝑋) =
1

𝑛
∑𝑛

𝑘=1 𝜙(𝑋𝑘) and the 

exact value  

𝜃 = ∫
Ω

𝑔(𝑥)𝑑𝑥 = ∫
Ω

𝑔(𝑥)

𝑓(𝑥)
𝑓(𝑥)𝑑𝑥 = 𝐸[𝜙(𝑋𝑘)]. (8) 

 Consider 𝜙(𝑥) = 𝑔(𝑥)/𝑓(𝑥) as well as 𝑋1....,𝑋𝑛 a random sample with density function 𝑓(⋅) and 

Var[𝜙(𝑋𝑘)] = 𝜎2. Because absolute error |𝜃𝑛 − 𝜃| is a random quantity, so it is not possible to find the 

exact error bound. So the construction of a confidence interval is required, in which we calculate the 

average and variance of 𝜃𝑛:  

𝐸[𝜃𝑛] = 𝐸[
1

𝑛
∑

𝑛

𝑘=1

𝜙(𝑋𝑘)] =
1

𝑛
∑

𝑛

𝑘=1

𝐸[𝜙(𝑋𝑘)] =
1

𝑛
. 𝑛𝜃 = 𝜃 (9) 

 𝜃𝑛 is an estimator unbiased so:  

Var[𝜃𝑛] = 𝐸[(
1

𝑛
∑

𝑛

𝑘=1

𝜙(𝑋𝑘) − 𝐸[
1

𝑛
∑

𝑛

𝑘=1

𝜙(𝑋𝑘)])2]

=
1

𝑛2
𝐸[∑

𝑛

𝑘=1

(𝜙(𝑋𝑘) − 𝐸[𝜙(𝑋𝑘)])2] =
1

𝑛2
∑

𝑛

𝑘=1

Var[𝜙(𝑋𝑘)] = 𝜎2/𝑛.

 (10) 

 According to Chebyshev’s inequality we get 

𝑃(|𝜃𝑛 − 𝜃| ≤ 𝜎/√𝜀𝑛) ≥ 1 − 𝜀. (11) 

 Therefore (𝜃𝑛 − 𝜎/√𝜀𝑛. 𝜃𝑛 + 𝜎/√𝜀𝑛) is a confidence interval at the level of 1 − 𝜀 for 𝜃, in which the 

error bound is 𝜎/√𝜃𝑛 and obviously decreases with the increase of 𝑛 or decrease 𝜎 the error. Of course, 

according to the central limit theorem, a confidence interval at the level of 95% for 𝜃 is (𝜃𝑛 −

1/96𝜎/√𝑛. 𝜃𝑛 + 1/96𝜎/√𝑛), which is better than the bound obtained through the inequalities of Che-

byshev. 

Errors in Quasi-Monte Carlo Method 

The difference has a major role in determining the boundary of error in quasi- Carlo method. Koksma’s 
inequality [10] in multidimensional case is expressed in the Hardy-Krause’s variation as follows:  
Definition 1.2 (Variation in the Hardy-Krause's Sense)  For every 1 ≤ 𝑘 ≤ 𝑠 and 1 ≤ 𝑗1 <. . . <

𝑗𝑘 ≤ 𝑠, define  
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𝑉(𝑓) = ∑𝑠
𝑘=1 ∑1≤𝐽1≤...≤𝑗𝑘≤𝑠 𝑉(𝑘)(𝑓,𝑗1,...,𝑗𝑘) ( 

12) 

 

 where  

 𝑉(𝑘)(𝑓. 𝑗1..…𝑗𝑘) = ∫
1

0
. . . ∫

1

0
|

𝜕𝑠𝑓

𝜕𝑥1...𝜕𝑥𝑘
| 𝑑𝑥1. … 𝑑𝑥𝑘, (13) 

This case results in a quasi-Monte Carlo estimation error bound for functions with bounded variations.  

Theorem 1.3 ([2, 8, 12]). If 𝑓 has bounder 𝑉(𝑓) changes in the Hardy-Krause definition, we have 𝑝 =

𝑋1..... 𝑋𝑠 of [0.1]𝑠 for each set  

|
∑𝑁

𝑛=1 𝑓(𝑋𝑛)

𝑁
− ∫

[0.1]

𝑓(𝑥)𝑑𝑥| ≤ 𝑣(𝑓)𝐷𝑁
∗ (𝑝). (14) 

 This inequity states that sequences with low-differences lead to lower errors [8].  

Random Numbers 

 Suppose 𝐴 is a random variable with a uniform continuous distribution function on the interval (0,1) 

and 𝑈1..... 𝑈𝑛 random variables are independent and also distributed. If these random variables have real 

values 𝑢1..... 𝑢𝑛, then these numbers are called random numbers. But whenever we generate numbers 

by specific mathematical functions and the numbers generated in statistical tests apply, then these num-

bers are called quasi-random. Sobol, Zarmba, Halton and Fore sequences are some examples of quasi-

random number generating sequences (see [2]).  

Halton Sequence 

 The Halton sequence is in high dimension cube [0.1]𝑠. The 𝑛’th element of the Halton sequence in 
[0.1]𝑠 is defined as follows 

𝑥𝑛 = (𝜙𝑏1
(𝑛). … . 𝜙𝑏𝑠

(𝑛)).        𝑛 = 0.1. …. 

 
(15) 

where 𝑏𝑠 represents 𝑠’th prime number.  
 

1.4 Sobel Sequence 

 In 1967 the Sobel trail was presented. In the Sobel sequence, the constant value of binary digits is used 

for all dimensions. So the Sobel sequence is much faster and simpler. This feature produces random 

numbers with less convergence in high dimensions. To create this sequence, we first write 𝑛 in binary 

digits 𝑛 = ∑𝑀
𝑖=0 𝑎𝑖2𝑖. so that 𝑀 is the smallest number greater than or equal to log2

𝑛 and 𝑎𝑖 are zero or 

one values. We consider the 𝑞 degree primitive polynomial 𝑥𝑞 + 𝑐1𝑥𝑞−1 + ⋯ + 𝑐𝑞−1𝑥 + 1, where 

𝑐𝑖. 𝑖 = 1. … . 𝑞 − 1 are zero and one and 𝑚𝑖 are produced using coefficients 𝑐𝑖 as follows  

𝑚𝑖 = 2𝑐1𝑚𝑖−1 ⊕ 22𝑐2𝑚𝑖−2 ⊕ ⋯ ⊕ 2𝑞−1𝑐𝑞−1𝑚𝑖−𝑞+1 ⊕ 2𝑞𝑐𝑞𝑚𝑖−𝑞 . (16) 

 So ⊕ is a bitwise exclusive operator that we have 1 ⊕ 0 = 0 ⊕ 1 = 1. 0 ⊕ 0 = 1 ⊕ 1 = 0. The val-

ues 𝑚𝑖 are odd integers in the interval [1. 2𝑖 − 1], then, generate 𝑣(𝑖) with 𝑣(𝑖) = 𝑚𝑖/2𝑖, and finally 

the elements of the Sobel sequence is produced as follows 

𝜙(𝑛) = 𝑎0𝑣(1) ⊕ 𝑎1𝑣(2) ⊕ ⋯ ⊕ 𝑎𝑛𝑣(𝑛). (17) 

  Grey code encryption is used to speed up the production of the Sobol sequence, whose algorithm is 

𝜙(𝑛) = 𝑛 ⊕ 𝑛/2. Now the modified model is 𝜙(𝑛 + 1) = 𝜙(𝑛) ⊕ 𝑣(𝑖). As the dimension increases, 

the convergence of the Halton sequence increases and loses its random trend. The Sobol sequence per-

forms better than other quasi-random sequences because it uses base 2 for all dimensions, resulting in 
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less convergence and higher velocity.  
 

Geometric Brownian Motion (GBM) 

 As long as Brownian motion can capture negative values, its direct use for stock market pricing is 

questionable. Therefore, we introduce a non-negative type of Brownian motion called geometric 

Brownian motion. Geometric brown motion is always positive because the exponential function takes 

positive values. We define geometric brown motion as follows:  

𝑆(𝑡) = 𝑆0𝑒𝑋𝑡 = 𝑆0𝑒𝜇𝑡+𝜎𝑊(𝑡). (18) 

 where 𝑋(𝑡) = 𝜇𝑡 + 𝜆𝑊𝑡 is a brownian motion with deviation 𝑆(0) = 𝑆0 > 0. Get a logarithm of the 

above relation:  

𝑋(𝑡) = ln(𝑠(𝑡)/𝑆0) = ln(𝑠(𝑡)) − ln(𝑆0) ⇒ ln(𝑠(𝑡)) = ln(𝑆0) + 𝑋(𝑡) (19) 

 So ln(𝑠(𝑡)) has a normal distribution with mean ln(𝑆0) + 𝜇𝑡 and variance 2𝑡𝜎. Therefore, for every 

𝑡. 𝑠(𝑡) has a normal log distribution. If we put = 𝜇 + 𝜎2/2�̅�. 𝐸(𝑠(𝑡)) = 𝑒 �̅�𝑡𝑆0. In this case 𝑟 << �̅�. 

Because 𝑟 is the share growth rate in risk-free conditions, such as investing in banks, and �̅� is the share 

growth rate in risky conditions, such as investing in the stock market. The share growth rate in risky 

conditions must be much higher than in risk-free conditions in order to encourage investors to invest.  

Theorem 1.4 At constant time 𝑡, geometric brownian motion has a normal log distribution with average 

𝑙𝑛(𝑆0) + 𝜇𝑡 and variance 𝑡𝜎2.  
 

 Stochastic Differential Equation 

 If a geometric Brownian motion is defined by the following differential equation:  

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊.                𝑆(0) = 𝑆0. (20) 

 Then Brownian geometric motion is equal to:  

𝑆(𝑡) = 𝑆0exp((𝑟 −
1

2
𝜎2)𝑡 + 𝜎𝑊(𝑡)). (21) 

 At any time, geometric Brownian motion has a normal log distribution with ln(𝑆0) + 𝑟𝑡 − 𝜎
1

2
𝑡 and 

𝜎2𝑡 parameters. Brownian geometric mean motion is equal to 𝑆0exp(𝑟𝑡) and its variance is equal to the 

following formula: 

Var(𝑆(𝑡)) = 𝑆0
2exp(2𝜇𝑡 + 𝜎2𝑡)exp(𝜎2𝑡). (22) 

 If the main subject of geometric Brownian motion is 𝑆(𝑡) = 𝑆0exp(𝜇𝑡 + 𝜎), then the formula of its 

random differential equation is 𝑑𝑆 = (𝜇 + 𝜎2)𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊. 𝑆(0) = 𝑆0. At any time, geometric 

brownian motion has a normal log distribution with ln(𝑆0) + 𝜇𝑡 and 2𝜎𝑡 parameters. Brownian geo-

metric mean motion and its variance are as follows:  

𝜇𝑆(𝑡) = 𝑆0exp (𝜇𝑡 +
1

2
𝜎2𝑡) .        Var(𝑆(𝑡)) = 𝑆0

2exp(2𝜇𝑡 + 𝜎2𝑡)exp(𝜎2𝑡). (23) 

The Relationship Between Monte Carlo and Quasi-Monte Carlo Simulations in Pricing 

Models 

 Suppose that common stock 𝑆(𝑡) is described by GBM and we have:  

𝑆(𝑡) = 𝑆0exp((𝑟 − 𝜎2/2)𝑡 + 𝜎𝑊(𝑡)). (24) 

 for all 𝑡 > 0. 𝑊(𝑡) is Brownian motion. According to the values of the given parameters, the following 

simulation is due to the Monte Carlo method.  
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Fig.1: Simulation under Monte Carlo method with 𝑆0 = 42. 𝑟 = 0.1. 𝜎 = 0.2 and 𝑁 = 1000 over the six-month 

period 

  In fact, the main goal is to find the distribution of the final values of 𝑆(𝑇), so there is no need to 

produce sample paths, instead using the fact that 𝑊(𝑇) ∼ 𝑁[0. 𝑇] to generate some common prices of 

𝑆(𝑇) at the time of expiration or final 𝑇.  

 
Fig.2: Simulation of possible stock behavior under Sobol sequence with 𝑆0 = 42. 𝑟 = 0.1. 𝜎 = 0.2 and 𝑁 = 1000 

 
Fig.3: Simulation of possible stock behavior under Halton sequence with 𝑆0 = 42. 𝑟 = 0.1. 𝜎 = 0.2 and 𝑁 = 1000 

 

  In the following, we use classical time series prediction methods and try to predict stock prices using 

Monte Carlo and quasi-Monte carlo methods and compare these two methods. In the following, we will 

first mention the terms of the exchange and then compare the efficiency of the two Monte Carlo and 

quasi-Monte Carlo methods. Although the indices calculated in the world’s stock exchanges are very 
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diverse, this variation is more related to their scope of inclusion than the calculation method. In fact, 

the methods of calculating the index, especially the price index, are very similar and only have a differ-

ence in detail. The most important price indices are the price index (weighted-value), the price index 

(homogeneity), which is used in the market and the investigation of market volatility as well as the 

stock price. In this paper, we use relative prediction error (RE) criteria such as mean absolute relative 

error (MARE), mean square relative error (MSRE), mean absolute error percentage (MAPE) and mean 

square error percentage (MSPE).  

 

2 Comparison of Monte Carlo and Quasi-Monte Carlo Methods (Sobol and Halton 

Sequences) from Data Related to Stock Indices 

 We compare the two models of Markov chain Monte Carlo and quasi-Monte Carlo (Sobol and Halton) 

from the data related to price index (weight-value) and price index (weight-value) of Tehran Stock 

Exchange. The following figures show the amount of level changes and efficiency associated with each 

series (Figure 4 to Figure 7).  

 
Fig.4: Changes in the levels related to the price index (weight-value) during 1900 days of the Tehran Stock Ex-

change 

 
Fig.5: Efficiency related to price index (weight-value) during 1900 days of Tehran Stock Exchange 
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Fig.6: Changes in levels related to the price index (equal weight) during 580 days of the Tehran Stock Exchange 

 
Fig.7: Efficiency related to price index (equal weight) of during 580 days Tehran Stock Exchange 

    

 The statistical specifications related to the efficiency of these two-time series are listed in the following 

table:   

Table 1: Statistical Specifications Related to Two Time Series 
   Max   Min   Kurtosis   Skewness   Variance   Mean  

Price index 

(weight-value)  

 0.0540   −0.0551   7.4621   0.2662   5.8737𝑒 − 05   6.2537𝑒 − 04  

Price index (equal 

weight)  

 0.0270   −0.0203   4.7451   0.6423   4.2448𝑒 − 05   2.2939𝑒 − 04  

 

  Carefully in the table above, we find that the kurtosis for the yields is high, and shows that the distri-

bution for these indices is far from normal, and so we use the Monte Carlo and quasi-Monte Carlo 

methods. We use Monte Carlo, because these methods do not require normal distribution. By perform-

ing the Monte Carlo method and using the geometric Brownian motion model for the price index 

(weight-value) and (equal weight), for 1000 routes and during a period of 20 days, we reached Figure 

8 to Figure 13.   
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Fig.8: 1000 simulated routes for price index (weight-value) during 20 days using Monte Carlo method (with 𝑆0 = 26482) 

 
Fig.9:  1000 simulated routes for price index (equal weight) during 20 days using Monte Carlo method (with 𝑆0 = 10880) 

    

 The above calculations were performed using the Monte Carlo method and the same parameters.   

 
Fig.10:  1000 simulated routes for price index (weight-value) during 20 days using quasi-Monte Carlo method 

(Sobol sequence) (with 𝑆0 = 26482) 
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Fig.11: 1000 simulated routes for price index (equal weight) during 20 days with quasi-Monte Carlo method (Sobol se-

quence) (with 𝑆0 = 10880) 

    

 The above calculations were performed using the quasi-Monte Carlo method (with the Sobol and Hal-

ton sequence, respectively) and the same parameters.   

 
Fig.12:  1000 simulated routes for price index (weight-value) during 20 days using quasi-Monte Carlo method 

(Halton sequence) (with 𝑆0 = 26482) 

 
Fig.13: 1000 simulated routes for price index (equal weight) during 20 days with quasi-Monte Carlo method 

(Halton sequence) (with 𝑆0 = 10880) 
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3 Comparison of Stock Price Forecast Efficiency under Monte Carlo Method 

quasi-Monte Carlo Method (Sobol and Halton Sequence) 

 To compare the two methods, we used the evaluation criteria mentioned in the previous sections. The 

actual value was compared with the simulated value and the highest error of the predicted paths was 

considered as the evaluation criterion. The results of this evaluation are given in the table below.   

Table 2: The results of comparison of Monte Carlo and quasi-Monte Carlo methods in stock price forecasting 

   Method   MARE   MSRE   MAPE   MSPE  

*Price index 

(weight-value)  
 MC   0.0181   3.5327   1.8059   3.5327  

  QMC-Sobol   0.0173   3.2108𝑒 − 04   1.7308   3.2108  

  QMC-Halton   0.0167   2.9906𝑒 − 04   1.6680   2.9906  

Least error (best method)    QMC-Halton   QMC-Halton   QMC-Halton   QMC-Halton  

*Price index 

(equal weight) 

 MC   0.0246   6.6286𝑒 − 04   2.4639   6.6286  

  QMC-Sobol   0.0229   5.7810𝑒 − 04   2.2916   5.7810  

  QMC-Halton   0.0241   6.3423𝑒 − 04   2.4130   6.3423  

Least error (best method)   QMC-Sobol   QMC-Sobol   QMC-Sobol   QMC-Sobol  

 

  As we can see in Table 2, in the price index (weighted-value) the quasi-Monte Carlo method (with 

The Halton sequence) performed better than the other two methods, but in the price index (homogene-

ity) the quasi-Monte carlo method (with sobol sequence) was the best method. In both indicators, monte 

carlo method has performed poorly compared to quasi-Monte Carlo, and this is due to random numbers 

selected. The results of the best prediction along with the actual trend of the data in Figure 14 and Figure 

15 are known.  

  

 
Fig.14: 1000 simulated routes for price index (equal weight) during 20 days with quasi-Monte Carlo method 

(Sobol sequence) (with 𝑆0 = 10880) 
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Fig.15:  1000 simulated routes for price index (weight-value) during 20 days using quasi-Monte Carlo method 

(Halton sequence) (with 𝑆0 = 26482) 

   The above calculations were performed using the quasi-Monte Carlo method (with the Halton se-

quence) and the same parameters. 

 

4 Conclusion 

 In this article, the predicted values of the total index of Tehran Stock Exchange are discussed by two 

methods, Monte Carlo and quasi-Monte Carlo sequences. The quasi-monte Carlo method, or the low 

difference method, is a method that potentially has a better convergence rate, and the basic idea of this 

method is to move a random sample in the Monte Carlo method with certain points. The selection 

criteria for these points are such that the sequence at [0.1]𝑠 has a better uniformity than a random se-

quence. 

As can be seen in the figures, the predictions made by quasi-monte Carlo method and the Sobol se-

quence are much closer to the actual values of the total stock index than the Monte Carlo method. 

Especially in certain time intervals, the predictions made by the Sobol sequence are very reliable and 

according to the results obtained on the comparison of the efficiency of random and quasi-random 

methods, the geometric Brownian movement and the price index of Tehran stock (equal weight and 

weight-value), the quasi-Monte Carlo method has better and efficient results than the Monte Method 

Carlo method and Sobel sequence is the most efficient method among all random and quasi-random 

methods. 
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