

A Dynamic Load Balancing Architecture for Fog Computing using Tree

Base Resource Arrangement and Flexible Task Prioritization

Bikash Sarma

Department of Computer Science & Engineering, National Institute of Technology Nagaland,

Nagaland, India. E-mail: bikash.sarma2010@gmail.com

R. Kumar*

*Corresponding Author, Department of Electronics and Instrumentation Engineering, National

Institute of Technology Nagaland, Nagaland, India. E-mail: rajagopal.kumar4@gmail.com

Themrichon Tuithung

Department of Computer Science and Engineering, National Institute of Technology Nagaland,

Nagaland, India. E-mail: t_tuithung@yahoo.com

Abstract

A greater community of researchers widely studies fog computing as it reduces the massive

data flow to the existing cloud-connected network and performs better for real-time systems

that expect a quick response. As the fog layer plays a significant role in a fog-cloud system,

all of the devices participating in fog computing must be balanced with appropriate load to

upstretched the system performance. The proposed method is founded on a tree-based

dynamic resources arrangement mechanism that refreshes the fog clusters created using Fuzzy

C Mean (FCM) to increase the speed of resource allocation. With the help of Fuzzy rule-

based load calculation and intra-cluster job allocation, the load inside the group is maintained.

The system also has the facility of inter-cluster job forwarding, which works on demand. A

novel load balancing strategy, Real-Time Flexi Forwarded Cluster Refreshing System

(RTFRS) is proposed by which all the tasks can be handled efficiently within the fog cloud

system. The proposed system is designed so that overall complexity is not upraised and

becomes suitable for fog computing architecture with low processing capacity by maintaining

the quality of service. Experimental results show that the proposed model outperforms

standard methods and algorithms used in fog computing concerning average turnaround time,

average waiting time, resource utilization, average failure rate, and the load on the gateway.

Keywords: Fog Computing; Cloud Computing; Load Balancing; Fuzzy System; Clustering.

https://orcid.org/0000-0001-7972-2417
https://orcid.org/0000-0002-0462-5628
https://orcid.org/0000-0002-9996-770X

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 44

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, pp. 43-66 Received: December 22, 2022

Published by University of Tehran, Faculty of Management Received in revised form: January 15, 2023

doi: https://doi.org/ 10.22059/jitm.2023.91567 Accepted: February 20, 2023

Article Type: Research Paper Published online: March 15, 2023

© Authors

Introduction

The extensive growth and development of smart devices and intelligent systems make humans

more reliant. They do not require human intervention or require much less involvement while

collecting data, processing the collected data, and making the critical decision for that

processed data (Fizza et al., 2021). The Internet of Things (IoT) is advancing with all these

facilities and comfort in its application field (Donassolo et al., 2019). The reason behind this

growth is its diversification in various applications, which includes simple smart home

applications (Lin & Bergmann, 2016). IoT systems produce helpful and precise output by

enabling device-to-device and human-to-device communication, maintaining the required

real-time behaviour (Lee & Lee, 2015) The main components of IoT include sensors and end

devices, connectivity, data processing units, and user interfaces. Sensors collect complex

multidimensional data every minute, which are then forwarded to the proper data processing

unit, the cloud system, over the internet. The required output is produced convincingly with

the help of a user interface (Zaidan et al., 2018).

Clouds ensure the availability and reliability of IoT systems by enabling the central

computing facility. An important decision is the critical point of a flourishing industry. It can

be achieved using proper analysis of previous data where the cloud shows leading behavior

with its service like Infrastructure as a Service (IaaS). Other standard services provided by

cloud are Platform as a Service (PaaS) and Software as a Service (SaaS) which outfit the

intention of achieving Anything as a Service (Alhaddadin et al., 2014). Accessibility,

scalability, flexibility, Quality of Service (QoS), Pay as you use are the key attributes that

make cloud computing very different from traditional computing (Höfer & Karagiannis,

2011). The scalability feature of the cloud makes the IoT system more robust, and the

accessibility creates a confidence layer before deploying any IoT application. The concept of

pay per use gives more economic strength and establish confidence in industries and

individual using IoT application.

Cloud as a computing, storage and analytic engine with IoT would create an impeccable

blend unless the real-time, latency-sensitive application started using IoT. Latency-sensitive

applications are those where delays in response are not accepted at all. The required answers

must come back within the stipulated period; otherwise, the entire transaction will be

discarded. Real-time systems are of three types – complex real-time systems, firm real-time

https://doi.org/10.22059/jitm.2023.91567
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 45

systems, and soft real-time systems (Buttazzo, 2006). In the case of a firm's real-time system,

once in a while deadline may miss but the cause of degraded quality of service with no use of

delayed output. The soft real-time system may use delayed production but, of course, at the

cost of compromising the quality of service and overall performance. Cloud resides

geologically far away from IoT applications for which the latency-sensitive applications

suffer as the expected results take time to get delivered because of network and other

communication delays.

Moreover, the amount of data transferred over the network is growing exponentially, and

the overall growth of connected devices is expected to be 27 billion by 2024 (Shin &

Ramanathan, 1994). A vast number of devices sending continuous data will lead to a

congested network which affects the latency-aware applications by not getting the responses

in time, causing the degraded quality of service expected to be high in today's competitive

world (Sarkar & Misra, 2016).

To handle latency-sensitive applications, a new concept called fog computing was

introduced by researchers of Cisco Systems (Bonomi et al., 2012). Unlike cloud systems, fog

computing is not a centralized computing facility. Fog computing is a decentralized

computing mechanism where devices with computing capacity and storage facilities are used

to participate (Ni et al., 2017). These devices work in between the massive cloud system and

tiny end devices. The entire concept of fog computing is to use all the devices responsible for

sending the data from end devices to the cloud system, along with some other dedicated

computing systems such as Cloudlet (Yi et al., 2015). These devices work for a stable

network system and a better computing facility near the end devices. The ideal resources near

the end devices can contribute to the entire processing system by reducing the network delay,

usually occurring while sending the data to the cloud system. Under any circumstances, fog

cannot replace the typical cloud system as fog can provide limited processing and storage

facilities compared to cloud computing. Still, it can extend similar behavior by enriching

computing facilities and improving the overall quality of service. Usually, once a device

sends a data packet, it will get forwarded from switch to router, then router to router and

finally reach the destination. While giving the response, the data packet must also pass

through a similar set of devices. As a result, the entire data packet has to suffer from a

communication delay along with its processing delay. The overall idea of fog computing is to

stop flooding the available bandwidth with end-user data and to do the required processing of

individual requests near the request generator to reduce the communication delay in getting

the response (Dadashi Gavaber & Rajabzadeh, 2021).

For that, nearby devices should be equipped enough to handle such requests. Nowadays,

almost all devices have high computing and storage facilities compared to the olden systems.

The software used in those devices is also competent and ready to connect or support such

add-on activities. Even though fog computing can help latency-sensitive applications by

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 46

deducting the communication delay from the total delay, it also has some challenges to

consider.

Literature Review

Presently many researchers are contributing to the field of fog computing and its

improvisation. Here in this section, a brief discussion is presented about a few previous efforts

in fog computing which enlighten us to construct our proposed model. Clustering is a

beneficial old technique used in many research directions.

Sun et al., (2018) the author presented the scheduling of resources for fog computing in

two stages. In the first stage, they identified a fog cluster among a pool of collections by

considering the proximity, available resources, and communication delay. After selecting the

fog cluster, they initialize the process of selecting the appropriate resource for that particular

job request inside the selected cluster. Choosing the proper help is considered a multi-

objective optimization problem in fog computing as they try to minimize the service latency

and maximize the system's overall stability. They have used improved non-dominated sorting

genetic algorithm II (NSGA-II) to do this intracluster resource scheduling. Pertinent resource

allocation is crucial to fog computing as the system has limited resources. Appropriate

resource allocation may increase the system's overall performance, which in turn offers a

better QoS.

Alqahtani et al., (2021) did resource scheduling based on the type of service request.

Based on the kind of request, the appropriate resources are getting allocated. Resources are

arranged concerning their reliability rate to give the higher reliable resources to the real time

service request. They also maintain the order of algorithms so that if a higher-order algorithm

deteriorates to allocate resources, the request passes on to the lower-order algorithm,

imbalance load on resources used to pull the system to the back foot concerning the

performance.

Singh et al., (2020) devised software to define a traffic splitter with the help of a fuzzy

load balancer for a fog computing environment. They have discussed different levels of fuzzy

load balancer design and also did tuning of fuzzy controllers. Their research introduced three

design categories: three levels, five levels, and seven levels. These levels are the output values

of the Fuzzy system. While designing the fuzzy load balancer, they considered traffic load,

delay sensitivity, energy consumption, and link saturation as input variables. Finally, they

conclude that the 3-level design is most effective as it reduces overhead and fewer intervals in

innovation and gives better responses. Heterogeneous behavior concerning processing power,

available memory, and network bandwidth are the key characteristics of fog nodes.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 47

Beraldi et al., (2020) introduced two load-balancing algorithms for resource management

in the fog computing environment. These algorithms are distributed as each node can decide

whether to execute the job locally or offload it to neighboring nodes. The key idea of the first

algorithm is to achieve the job request locally as soon as it arrives, but while doing so,

forwarded jobs may remain abundant as the system load might reach its threshold limit. They

also established a correlation between the mathematical model and simulation work. A

vehicular ad-hoc network is also contributing to the betterment of the fog computing

environment.

Hameed et al., (2021) proposed distributed fog computing system with vehicles as fog

nodes. They make the cluster vehicle by considering its current position, speed, and direction.

For efficient dynamic clustering, they predicted the vehicle's future position as once a car

moves out from one cluster, it may be suitable for another collection. Each group will have a

cluster head to communicate with the gateway to receive job requests and replies. After

constructing the cluster, they used a capacity-based load-balancing algorithm to balance the

load inside the group and among the clusters (vehicular cluster). While designing the load

balancing algorithm, the author considers processing power, residual energy, and queue

length as capacity parameters. The trustworthiness of fog servers plays a vital role in fog

computing as fog nodes are mostly dynamic concerning latency, availability, and reliability.

Rahman et al., (2020) the author emphasizes the trustworthiness of each fog node with the

help of a broker, which helps fulfil the job assigned to that fog node. While evaluating the

trustworthiness, they consider availability, Quality of Service (QoS), user feedback, and cost

involved. The fog server and the user will have their information registered with the broker

before any transaction between them. Li et al., (2018) discusses a self-similarity-based load-

balancing algorithm for a large-scale fog computing environment. The author considers the

run time characteristics while addressing the load balancing issue in the fog environment.

They infuse the concept of a centralized and decentralized system by empowering each fog

node for their own decision of task scheduling. Fog nodes are clustered into cells; each cell

has one seed responsible for communication among cells. They calculated the load limit of

each cell by using a threshold policy. Once the load exceeds its limit, task distributing and

task grasping algorithms take charge of the overall improvement of the system. Utilization of

load balancing concerning energy consumption in the intelligent factory is essential.

Wan et al., (2018) the author discussed an energy-aware load balancing model in an

intelligent factory considering the energy consumed by the device and the workload on the

device. In this load balancing system, they initially built an energy consumption model for the

equipment concerning the workload using fog nodes. An improved Particle Swarm

Optimization (PSO) algorithm is devised to get the optimal energy consumption combination

and prioritize them according to the output of the PSO model. Finally, they introduced a

multi-agent-based dynamic scheduling system to distribute the workload. They also did a case

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 48

study for their proposed method in a prototype of a candy packaging unit. A secure load

balancing mechanism for fog computing is addressed by Puthal et al., (2018). They consider

the Edge Data Centers (EDCs) to respond to the edge request while authenticating other

EDCs with the help of the cloud. They did the load balancing among the EDCs in a

decentralized manner even though the cloud is involved for security purposes only. While

sharing the load information among EDCs, each EDC is used to authenticate the incoming

request before giving any response in the system. In their proposed system, jobs will not

move around to get executed as the parent EDC does not offload the job to another EDC

without knowing its present load.

Fog computing is often engaged with real-time systems even though the healthcare

system is always considered mission-critical. A dynamic load-balancing approach with

optimization and reinforcement learning is introduced in Talaat et al., (2020) A load-

balancing agent uses a genetic algorithm to get the weight or priority of each fog server for

handling client requests. On the other hand, resource allocators implement reinforcement

learning methods to allocate appropriate resources to the incoming jobs. While allocating

resources, the highest weight fog server used to get the high priority.

Motivation and Challenges in the Existing System

The researcher innovates various models to solve load-balancing issues of fog computing in

literature. The fog computing environment's fundamental property consists of devices with

low processing power, storage capacity, and power consumption. Running a complex

algorithm for load balancing on a fog node may not be suitable and may decrease the overall

performance in a practical scenario found in the literature. Many decentralized systems were

introduced during the evaluation of the fog computing environment. Still, they did not

emphasize execution time as the job used to rotate from one fog node to another to get

executed. Task priority is one of the prime factors while designing the load balancing instead

of device priority, as fog computing mainly deals with real-time systems. If the respective job

can be leisurely executed, then fog is impractical. The task prioritization model needs to be

flexible enough to handle the dynamic behavior of job requests originating from the same

device, which was not discussed explicitly in the literature. In a real-world scenario, job

requests will come from various sources, and all of them will have a different dimension of

priority. The fog load balancing system should be capable enough to handle and prioritize the

input request, improving the overall service quality. Resource allocation time must be reduced

to enhance total response time. If the resources are correctly arranged, the same can be

allocated to the respective job requests in less time as the property of resources is disclosed

and well-known while organizing the resources. Fog load used to be very volatile as the

expected job requests were real-time, and the average execution time was also significantly

less. Because of its volatile nature, a dynamic load-balancing system is essential to achieve a

better result.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 49

In the proposed model, we have considered most of the issues faced in the fog

environment along with a load balancing mechanism that will increase the overall

performance. Similar resources are clustered together for better and quick resource match

finding. The model consists of a mix of centralized and decentralized architecture. Fog

Cluster Manager (FCM) gives the flavor of decentralization as there will be several FCMs,

and each FCM can communicate and share load/information among themselves (inter-cluster

communication). The same FCMs introduce the concept of centralization, where each FCM

take care of its own cluster's fog nodes (intracluster communication). The model can prioritize

and deprioritize the same task in a different situation. The Fuzzy rule-based system is used to

calculate the current load of each node instead of using any complex algorithm. A tree data

structure is utilized for resource arrangement inside a fog node cluster to reduce the searching

time while allocating resources.

Methodology

A load balancing mechanism is one of the critical aspects of a fog computing environment,

which usually solve the problem of overloaded and underloaded fog node (Kaur & Aron,

2021). Suppose loads are not distributed according to the capacity of fog nodes. In that case, it

may create an inverse effect on the system's overall performance as Quality-of-Service

parameters are used to get an impact highly with improper load distribution (Harnal et al.,

2022). A proper resource arrangement can lead to better resource allocation, which is directly

liable for a better load balancing mechanism in the fog computing environment. Minimal

effort is observed in the literature concerning the arrangement of fog resources. In our model,

we propose a Real-Time Flexi Forwarded Cluster Refreshing System (RTFRS) where a novel

tree-based dynamic resources arrangement has been introduced to refresh the fog cluster

resources. The entire mechanism of our proposed model is categorized into different stages

where few are responsible for the system's initial setup, and few take care of the

computational part once job requests start arriving.

Resource Clustering

The objective of this subsystem is to cluster the fog nodes based on their native properties.

These properties include computational speed, storage capacity, and available bandwidth.

Considering these properties, the fog node from the set all fog nodes R is represented as

 .

 { } ()

Fuzzy C-means clustering is a soft clustering technique. With the help of this clustering

technique, the subsystem generates the belongingness value of each fog node to a particular

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 50

cluster. The degree of belongingness is represented by , the membership function of

resources to cluster. The objective function of Fuzzy C-means is represented as

 ∑∑
 ‖ ‖

 ()

In the objective function, represents the number of fog resources, and represents the

number of fog clusters. The Euclidean distance of the fog node and the cluster centre is

signified with ‖ ‖

. The fuzzifier is represented by the parameter with .

The fuzzifier is used to control the fuzziness of the output cluster.

∑()

 ∑()

 ()

∑ (

)

 ‖ ‖

 ()

In Equation (3) calculates the cluster center, and Equation (4) calculates the membership

value iteratively to minimize the objective function. The objective function is minimized

when a fog node is assigned with a high membership value concerning a cluster center having

almost similar properties. The Euclidean distance and low membership value in respect of

other cluster centers having different properties.

Once the cluster is formed, each group's fog node with the highest resources will be

marked as Fog Cluster Manager (FCM). FCM does not execute a job request. Instead, it will

assign it to its cluster members. The FCM remains the same unless a re-cluster happens or it

fails. If it failed, the neighboring FCM used to take charge, as all FCMs share their resource

information with their neighboring FCMs.

Priority Assignment

The main objective of this subsystem is to assign a priority to the incoming request. We have

derived our prioritization mechanism from the very known least laxity first algorithm called

least slack schedule (Leung, 1989). The basic concept of this algorithm is to find out the

process with less laxity time.

 ()

In Equation (5), is the laxity, is the deadline time and is the execution time

of the Job. Here waiting time was not considered separately as the include waiting

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 51

time as well to return the total execution time. Usually, the priority of a task is inversely

proportional to the laxity of that task which means that if a job can be executed leisurely

(more laxity), that task can be considered less critical. Based on this concept, we have

calculated the value of .

 ()

Considering the diversity of sources from which job requests are expected, we introduce a

default priority for each section. For example, life-saving medical equipment will prioritize

getting any dependent data over a standard car requesting traffic details. In the priority

configuration model, we are setting up a default priority for each category of devices from

where the job request generates.

 ()

In a use case scenario, a similar device may have a different priority based on the current

situation around that particular device. For example, a fire station vehicle (fire truck) to

control a fire incident will have higher priority over regular traffic. Still, the same fire truck

returning to its base station may not have the same importance. An additional perimeter has

been introduced as priority controller to reduce the priority when the emergency device is

working in a normal situation so that other high priority jobs get executed in time.

 (

) ()

Cluster Selection

Once the job request arrives at the gateway, it will forward the same to a cluster containing

similar resources as per the request of the job. The gateway maintains a resource table of

clusters where each FCM update according to their latest available resources. The

maintenance and working of the resource table are similar to the routing table a router

maintains. In the resource table, FCM updates its cluster's highest and lowest resources.

Accordingly, the gateway checks the resource table, gets the best match, and forward the job

request to the concern cluster's FCM.

Load Calculation

Load calculation of each fog node is a continuous process unless and until the fog node is

dead. The FCM calculates a load of its cluster member whenever a fog node is assigned with

a job request and when the fog node finishes executing a job request. Load recalculation is

essential when the fog node is assigned with any job request because its available resource

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 52

will be reduced, and the available load will be increased. In the same way, the available load

will be less, and resources will be more when the fog node finishes executing a job, so

another recalculation is required.

 () () ()

A fuzzy rule-based load calculation mechanism has been used to calculate the current

load of a fog node. The fuzzy rule-based system uses if-then statements, also known as

conditional statements, to give any output. Our expected output is the current load based on

the input parameter such as available CPU, storage, and bandwidth, which is represented as a

fuzzy rule in Equation (9). Each FCM will take care of its cluster for load calculation using

this proposed method.

Resource Arrangement

The proper arrangement of resources will improve the performance of fog computing as the

required resources can be identified and allocated in less time. The resource allocation

problem is not just about finding available resources but also allocating that in a minimal

amount of time. In the literature, we found that resource arrangement is limited to resource

clustering only. We did not find any literature focusing on the resource arrangement inside the

cluster for better performance. In our proposed model, we use an AVL tree data structure to

keep the load information of each fog node.

The main motive for using an AVL tree data structure is to keep the fog node arranged in

respect of their load within the fog cluster. When a job request arrives at FCM, it is easy for

FCM to identify the best or ideal resource which can execute the job inside the resource

cluster. Conventionally, once the job request arrives at FCM, it has to check each fog node to

get the most available resources. Still, in our proposed model, FCM picks the best match or

most available resources by traversing the AVL tree, which is much more efficient concerning

time complexity.

Resource Allocation and Offloading

Resource allocation is a runtime activity in any computational system as it entirely depends

on the dynamic job request where all the incoming tasks are forwarded to servers for

execution. A balance resource utilization is very much essential to improvise the performance

of a resource allocation model. In fog computing, resources are used to get allocated once

available and match the requirement for that particular job request, as fog resources are

limited in nature. A balance resource utilization also improves the performance of a fog

computing system. In our proposed model, we implemented two-way resource allocation,

namely intra-cluster resources allocation and inter-cluster offloading. In intra-cluster resource

allocation, the FCM will allocate the best available resources to the input job request based on

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 53

the fuzzy load calculation and resource arrangement in the AVL tree. Once the resource gets

allocated, the FCM will update the load of that resource and rearrange it in the AVL tree

considering the current load. In certain situations, the FCM may not be able to find the

required resource inside its cluster. In that case, the respective FCM will have communication

with its neighboring FCM for the availability of required resources. Suppose the requested

resources are available in another resource cluster and agreed to take over the job request. In

that case, the current FCM will offload the job request (inter-cluster offloading) to that

particular FCM where the resources are available. If the current FCM receives no response

within a period, it will offload the job request to the cloud.

Figure 1. Architecture of the proposed model

System Architecture

The entire system architecture is subdivided into three layers: the end device layer, fog layer,

and cloud layer, which are the essential components of fog computing. The end device layer

consists of the consumer devices, which generate the job request and submit it to the fog layer

for execution to get the required output. The fog layer executes the received job with the help

of fog servers according to their priority using various algorithms. Meanwhile, the cloud layer

provides support for additional computing facilities and permanent data storage. When fog

servers cannot execute a received job for their lack of computing facility or overload, it

offloads the job to the cloud so that the respective job gets executed in time.

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 54

Figure 2. Priority calculation system with a control mechanism

The proposed system architecture is represented in Figure 1, and the step-by-step working

strategy is explained below

• In the end device layer, devices generate the Job request and send it to their respective

gateways.

• Upon receiving the job request, the gateway does its internal processing by allocating the

priority to each job request using our proposed priority assignment algorithm.

• In the fog layer, all the available resources are clustered according to their computational

speed, storage capacity, and bandwidth using the Fuzzy C Mean clustering technique.

• The device with the cluster's highest resources is considered the FCM for that particular

cluster.

• Each resources cluster will have an FCM which directly communicates with the gateway.

• All the FCMs advertise their high and low-capacity fog nodes concerning their resources

periodically.

• Gateway assigns the job request to the FCM, considering its priority and resource

requirement. Before assigning the job request, the gateway checks the resource advertisement

given by FCM to verify resources.

• Each FCM arranges the fog resources in the AVL tree considering its computational speed

inside the resource cluster once the cluster development is over.

• As soon as the job request arrives, FCM gets the fog server with the highest resources

assigned.

• If the requested resources are unavailable in the resource cluster, FCM checks other clusters'

FCM for offloading.

• If other clusters are not ready to take the load, FCM offloads the task to the cloud.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 55

Design and Implementation

In this part, we will discuss implementing our proposed load balancing and resource

allocation algorithm, where utmost care has been taken to realize the real scenario of practical

utilization using programming tools. All the subsystems which contributed to the proposed

system are explained with their algorithms and respective parameters. A proper simulated

environment has been created using appropriate functions and structured libraries of MatLab

and Python programming tools.

Algorithm 1: Resource Clustering (Fuzzy C Mean)

Input: Input: Fog nodes (computational speed, storage capacity, available bandwidth), No of

fog cluster K, Maximum iteration

Output: Clusters of Fog Nodes

1. Initialize the Fog_Node Weight

2. FWij=Random weight to each (K) Cluster

3. While (Itr<Max_Itr OR Prv_Centriod != Cur_Centroid)

4. While(Cluster_no<Max_Cluster)

5. Compute the cluster centre using equation 3

6. End While

7. While(Fog_Node<Max_Fog_Node)

8. Compute the new membership function using equation 4

9. End While

10. End While

Resource clustering used to take place while setting up the system. Our proposed model

uses the fuzzy C Mean clustering technique for resource clustering. The implementation of

the clustering system is stated in Algorithm 1. Assignment of priority is the first operation of

an incoming task so that it can be identified among the pool of earlier tasks waiting in the

queue. Figure 2 shows the process of priority assignment of our proposed model.

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 56

Figure 3. Membership Function for input variable (A) Bandwidth, (B) CPU, (C) Storage and (D) Variable

Output Load

During the process of priority calculation, once the job arrives, the system calculates its

laxity. Each job request will carry its default priority with which the initial priority is

calculated. Finally, with the priority controller mechanism, the absolute priority of the job

request is calculated. The priority controller mechanism is introduced to reduce the default

priority by considering the present status of that particular job request. The priority

assignment mechanism is implemented in our proposed model using Algorithm 2. The load

calculation process was implemented using Matlab Fuzzy Logic Toolbox. During the design

of fuzzy rules, CPU, Storage and bandwidth were considered input parameters. All the input

parameters are converted into five different linguistic variables (0%, 20%, 40%, 60%, 80%

and 100%) based on their uses. The membership function for the input variable (CPU,

Storage, bandwidth) and the output variable (Load) is shown in Figure 3. With the help of

fuzzy rules base written in If-Then format, we have established the relation between the input

and output variables. The defuzzification dialogue window of the Matlab Fuzzy Logic

designer shown in Figure 4 represents the rules and defuzzification of linguistic input values

to the crisp output value.

Algorithm 2: Priority Assignment Algorithm

Input: Job Request with Deadline & Execution Time, Default Priority, Priority Controller

Output: Priority of the Job Request

1. Get the Job_Request to calculate the priority

2. Calculate the Laxity of the Job using equation no 5

3. Calculate the initial priority using equation 6

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 57

4. Calculate Default Priority based on device category

5. If(Priority_Controller ==1)

6. Calculate the priority using equation 7

7. Else if(Priority_Controller>0 && Priority_Controller<1)

8. Calculate the priority using equation 8

9. Else

10. Invalid Input

11. End if

Figure 4. Rules with Defuzzied output

All the resources are appropriately arranged using an AVL tree inside the cluster. The

arrangement is based on available resources to get the best suitable resources per the demand

of individual job requests. The tree gets updated for each job assignment to a Fog node as the

available resources reduce. The same happens when the job execution gets over. For both

situations, Algorithm 3 updates the AVL tree to arrange the resources inside the cluster.

Algorithm 3: Resource Arrangement Inside Cluster

Input: Fog Node

Output: Arranged list of Fog Nodes

1. Function AVL_Update(Fog_Node)

2. Traverse the AVL Tree to get the Fog_Node.

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 58

3. Delete the Fog_Node

4. Fog_New_Load = Fuzzy_Load_Cal(Fog_Node)

5. Insert the Fog_Node concerning the Fog_New_Load.

The proposed model categorizes the job assignment process into two different

subsystems. As soon as a job request arrives, the FCM tries to assign the job to the fog nodes

inside the cluster, termed an inter-cluster job assignment. But suppose for unavailability of

resources at runtime, the FCM fails to assign the job to any fog node inside the cluster. In that

case, it will try to get the resources from neighboring clusters, considered under inter-cluster

offloading. The entire job assignment process with both subsystems is implemented using

Algorithm 4.

Algorithm 4: Job Assignment / Resource Allocation

Input: Job_Request, Req_CPU, Oth_Req_Res, Avl_Fog, Cloud_Exe_Time

Output: Assign the requested job to a Fog Node

1. Get Most_ Available _CPU and Lest_Available_CPU from each Fog_Cluster

2. If(Req_CPU<Most_Avlbl_CPU && Req_CPU>Lest_Avlbl_CPU)

3. For All Clusters check

4. Select_Fog_Cluster=Cluster with more(Avg_Avlbl_CPU – Req_CPU)

5. End For

6. Cluster_Head=Get_Cluster_Head(Secect_Fog_Cluster)

7. Assign the job request to Cluster Head.

8. Fog_Load_List=inorder_traverse(Avl_Fog)

9. For All Fog_Node in Fog_Load_List with Req_CPU<Tot_Avl_CPU

10. If(Req_CPU<Cur_Avl_CPU)

11. If(Oth_Req_Res<Cur_Oth_Avl_Res)

12. Assign the Job_Request to the Fog_Node

13. AVL_Update(Fog_Node)

14. Assign = True

15. End If

16. End If

17. End For

18. If(Assign !=True)

19. Check with neighbouring Fog_Nodes. With the same Algorithm, Steps 6 –17

20. Else if(Dead_Time>Cloud_Exe_Time)

21. Forward the Job to Cloud

22. Else

23. Drop the Job

24. End If

25. Else if(Dead_Time>Cloud_Exe_Time)

26. Forward the Job to Cloud

27. Else

28. Drop the Job

29. End If

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 59

Results

This section will present a comparative evaluation of our proposed model, a Real-Time Flexi

Forwarded Cluster Refreshing System (RTFRS) with some standard methods, algorithms, and

specific situations in fog computing. While doing the comparative analysis of our proposed

method, we consider Decentralized Systems (DS), Smart Gateway Systems without

Resources Clustering (SGS), Standard Round Robin Mechanism (RRM) of job distribution

among fog nodes, and real time flexi forwarding fog computing. The resource arrangement

inside the cluster is a novel approach in fog computing introduced in this work. We compare

our load-balancing approach with and without resource arrangement inside the fog cluster to

realize the efficiency of this approach. A Decentralized System (DS) works with a non-smart

lightweight Gateway. In this system, the gateway is responsible for forwarding the job request

to any random fog node. Gateway does not maintain any state of the job request. Each fog

node can decide whether to execute or forward the incoming job request. In this way, the

system becomes autonomous, and decision taking responsibility is distributed among the fog

nodes. RRM is the typical Round Robin method of job distribution where jobs are allocated to

a stack of resources one after another without considering either the capacity of the resources

or the requirement of the job request. Round Robin's mechanism of job distribution is one of

the popular methods as it is less complex and straightforward to implement. Smart Gateway

System without Resources Clustering (SGS) is the traditional system of fog computing, where

the gateway is used to take care of the entire system.

The fog nodes directly communicate with the gateway, and the load distribution is only

taken care of by the gateway. Real-Time Flexi Forwarded System (RTFS) is a subsystem of

our proposed model without including a resource arrangement mechanism (refreshing) inside

the cluster. We consider this system for our comparative analysis to represent the critical

observation of resource arrangement inside a fog cluster. One of the significant roles of fog

computing is to deliver the service in a minimal amount of time, reducing network delay.

Turnaround time refers to the time to complete a job. Figure 5 displays the turnaround time of

various approaches we had simulated, including our proposed method with a range of job

requests starting from 100 to 700. The proposed method has the lowest average turnaround

time compared to the other methods. As the gateway assigns the job request to the resource

cluster based on its resource requirement and the FCM periodically updates the gateway about

the availability of its resources inside the cluster, the system has a high probability of

assigning the required resources to the job request in the first run itself. Moreover, once the

job arrives inside the cluster, FCM immediately assigns the job to the most available fog

resources reducing the execution time. FCM is used to maintain the load ratio of all its fog

resources inside the cluster.

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 60

Figure 5. Average turnaround time of each job

Figure 6. Average waiting time of each job

The average turnaround time is proportional to the waiting time of a job. If waiting time

increases eventually, the turnaround time for a job request will also increase. Figure 6 shows

the average waiting time for a range of jobs (100-700). From the figure, it can be easily

identified that the proposed method outperforms all other traditional methods considered

during the experiment and presented. The working principle of FCM is also one of the critical

points for reducing waiting time for our proposed method. FCM first tries to allocate the job

request to its resources inside the fog cluster, where resources are arranged for easy

allocation. If FCM does not find matching resources, it immediately checks from its

neighboring FCMs. If no FCM replies, the job gets forwarded to the cloud. During the entire

process, the parent FCM keeps ownership of the job unless it finds a suitable resource or is

forwarded to the cloud.

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 61

Table 1. Average load for group of nodes

Method

s

Group

1

Group

2

Group

3

Group

4

Group

5

Group

6

Group

7

Group

8

Group

9

Group

10

RTFR

S
70 55 62 75 53 65 59 57 73 67

DS 90 29 34 80 63 84 25 44 51 62

RRM 81 45 61 20 37 57 90 55 71 80

SGS 65 71 68 76 55 68 73 60 79 72

RTFS 68 57 60 55 70 74 62 69 51 65

Proper utilization of resources is also one of the significant attributes while developing a

fog computing system, as fog has limited resources. Figure 7 represents the resource

utilization behavior of nodes using different algorithms and approaches. Here we made a

group of nodes having similar loads after the execution of our proposed algorithm. These

groups were created to demonstrate the load difference of the same resources while using

different approaches. All the algorithms were executed, for which Table 1 shows the results.

Here it was observed that for RTFRS, the average load of Group 4 is 75% and Group 5 is

53%, whereas in the case of DS, the load for Group 1 is 90%, and Group 7 is 25%.

On the other hand, for RRM, Group 4 has a 20% load, and Group 7 has a 90% load. The

outcome of this scenario is the difference between the loads among resources. From Table 2,

it is observed that for RTFRS, this difference in average load is low (22), whereas, for DS

(65) and RRM (70), it is high. Usually, in an ideal case, all fog nodes should have almost

similar loads to make the system more efficient. Unbalance load reduce the efficiency of the

entire system where some nodes are overloaded with jobs, increasing execution time, and

some are ideal, waiting for job request to arrive. From Figure 7, we can understand the load

difference among the group of nodes, and it was observed that the proposed RTFRS system

had distributed the load in a better way. RTFRS can distribute the load in a reformed way as it

has two levels of resource allocation filter. The first one is in the gateway, and the second is in

FCM. The FCM periodically updates the gateway about its available resources and present

loads. Accordingly, the gateway assigns/redirects the job request to the available or

underloaded resource cluster. The simulation was carried out with a job load of 350 – 400 and

50 fog nodes having different types of resources.

Table 2. Difference of load for various methods

Method Highest Load Lowest Load Difference

RTFRS 75 53 22

DS 90 25 65

RRM 90 20 70

SGS 79 55 24

RTFS 74 51 23

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 62

Figure 7. Utilization of resources in percentage

All the jobs will not get executed in a single request, but the system should be capable

enough to reduce the failure rate. Figure 8 shows the graphical representation of average

failure rates where the proposed method, RTFRS, has the lowest, 2.67%. Table 3 gives

detailed statistics for the number of jobs that failed to execute when job loads increased from

100 to 700 for different approaches. Here it has been observed that when the job load is low,

the RTFRS and RTFS performance is almost the same, but when the load increases, the

RTFRS performs better. It is mainly because of the arrangement of the resources inside the

fog cluster using the tree structure. Load distribution is easy and faster where resources are

arranged properly, which helps our proposed model perform better. Moreover, the priority

assignment model of our proposed model is efficient as it can alter the priority of similar job

requests with less importance allowing the most critical job request for execution.

Figure 8. Average failure rate of incoming job request

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 63

Table 3. Statistics of failed job requests when loading increases

Job Load

RTFRS DS RRM SGS RTFS

Failed

Task
Rate (%)

Failed

Task
Rate (%)

Failed

Task
Rate (%)

Failed

Task
Rate (%)

Failed

Task
Rate (%)

100 2 2 3 3 11 11 2 2 2 2

200 4 2 11 5.5 23 11.5 6 3 4 2

300 6 2 26 8.67 39 13 11 3.67 6 2

400 10 2.5 37 9.254 62 15.5 21 5.25 10 2.5

500 14 2.8 49 9.8 73 14.6 38 7.6 17 3.4

600 21 3.5 63 10.5 98 16.34 57 9.5 27 4.5

700 27 3.86 75 10.72 142 20.28 89 12.71 38 5.42

Gateway is one of the essential components of the fog computing system, which is

responsible for overall performance. The workload on the gateway should be adequately

maintained to save it from crashing with overload because if the gateway fails, the entire

system fails. Of course, redundancy will back the system up, but the available system may fail

for the exact cause. The simulated result of our experiment in Figure 9 shows the loads on the

gateway with 100 to 700 job requests where SGS has the highest load and DS has the lowest

load on the gateway. Our proposed system has a moderate load of 48.22% on average. In

SGS, the gateway is the single point where all the jobs are accumulated for execution.

Accordingly, the jobs get distributed, maintaining load among fog nodes, and finally, get back

the results after execution. It is a centralized system. But in the case of DS, the gateway

forwards the task to a random fog node without worrying about the present load of that

system. In the case of RTFRS, the gateway has less responsibility than SGS, as FCM takes

care of its local fog nodes.

Figure 9. Load on Gateway based on the job request

The experiment results found that the proposed system has maintained a decent load on

the gateway while forwarding jobs and maintaining the fog cluster load records. The gateway

has an extensive role in the success of the fog system, and overburdening the gateway may

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 64

lead to the failure of the entire system. Clustering all the resources makes it easy for the

gateway and Fog Cluster Manager (FCM) to find the best available resources for allocation to

the requested job. The produced results represent a balance resource utilization because of the

coordination between the gateway and FCM. The concept of task prioritization with flexible

priority assignment makes the system more realistic. Implementing the same will not increase

the complexity of the entire system, which was reflected in output results having fewer failure

rates for our proposed system.

The arrangement of resources inside the resource cluster, as well as the working principle

of FCM, makes the system convenient. Implementing the AVL tree data structure increases

the search and resource allocation speed, reducing the simulated results' waiting time and

turnaround time. The proposed system has outperformed most of the parameters considered in

the simulated result. However, consideration of other things may be helpful in fog computing.

Reclustering of the resources has not been considered during the experiment because of time

constraints and complexity, which may be a system's shortcoming. During the experiment, the

gateway failure situation has also not been simulated.

Conclusion

The recent development of connected devices increased the use of the internet and cloud

systems, where real-time systems may suffer due to bandwidth bottlenecks. Fog computing

has the potential to support real-time systems, and effort was given to justify the use of this

system in realistic situations. The proposed RTFRS method mainly focused on the load

balancing among the resources using distributed characteristics of fog computing where

multiple fog manager takes care of the job assignment based on the current load. The flexible

job prioritization method increases the system's reliability, and the resource arrangement

inside the cluster enhances the performance by increasing the allocation speed. Even though

the proposed model was not implemented using real hardware and accurate data, the utmost

care has been taken to depict the real-time situation while doing the simulated experiment.

Conflict of interest
The authors declare no potential conflict of interest regarding the publication of this work. In

addition, the ethical issues including plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and, or submission, and redundancy have

been completely witnessed by the authors.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of

this article

Journal of Information Technology Management, 2023, Vol. 15, Special Issue, 65

References

Alhaddadin, F., Liu, W., & Gutiérrez, J. A. (2014, December). A user profile-aware policy-based

management framework for greening the cloud. In 2014 IEEE Fourth International Conference

on Big Data and Cloud Computing (pp. 682-687). IEEE.

Alqahtani, F., Amoon, M., & Nasr, A. A. (2021). Reliable scheduling and load balancing for requests

in cloud-fog computing. Peer-to-Peer Networking and Applications, 14(4), 1905-1916.

Beraldi, R., Canali, C., Lancellotti, R., & Mattia, G. P. (2020). Distributed load balancing for

heterogeneous fog computing infrastructures in smart cities. Pervasive and Mobile Computing,

67, 101221.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the

internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud

computing (pp. 13-16).

Buttazzo, G. (2006). Research trends in real-time computing for embedded systems. ACM SIGBED

Review, 3(3), 1-10.

Dadashi Gavaber, M., & Rajabzadeh, A. (2021). BADEP: bandwidth and delay efficient application

placement in fog‐based IoT systems. Transactions on Emerging Telecommunications

Technologies, 32(8), e4136.

Donassolo, B., Fajjari, I., Legrand, A., & Mertikopoulos, P. (2019, January). Fog based framework for

IoT service provisioning. In 2019 16th IEEE annual consumer communications & networking

conference (CCNC) (pp. 1-6). IEEE.

Fizza, K., Banerjee, A., Mitra, K., Jayaraman, P. P., Ranjan, R., Patel, P., & Georgakopoulos, D.

(2021). QoE in IoT: a vision, survey and future directions. Discover Internet of Things, 1(1), 1-

14.

Hameed, A. R., ul Islam, S., Ahmad, I., & Munir, K. (2021). Energy-and performance-aware load-

balancing in vehicular fog computing. Sustainable Computing: Informatics and Systems, 30,

100454.

Harnal, S., Sharma, G., Seth, N., & Mishra, R. D. (2022). Load Balancing in Fog Computing Using

QoS. In Energy Conservation Solutions for Fog-Edge Computing Paradigms (pp. 147-172).

Springer, Singapore.

Höfer, C. N., & Karagiannis, G. (2011). Cloud computing services: taxonomy and comparison.

Journal of Internet Services and Applications, 2(2), 81-94.

Kaur, M., & Aron, R. (2021). A systematic study of load balancing approaches in the fog computing

environment. The Journal of Supercomputing, 77(8), 9202-9247.

Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for

enterprises. Business horizons, 58(4), 431-440.

Leung, J. Y. T. (1989). A new algorithm for scheduling periodic, real-time tasks. Algorithmica, 4(1),

209-219.

Li, C., Zhuang, H., Wang, Q., & Zhou, X. (2018). SSLB: self-similarity-based load balancing for

large-scale fog computing. Arabian Journal for Science and Engineering, 43(12), 7487-7498.

Lin, H., & Bergmann, N. W. (2016). IoT privacy and security challenges for smart home

environments. Information, 7(3), 44.

Ni, J., Zhang, K., Lin, X., & Shen, X. (2017). Securing fog computing for internet of things

applications: Challenges and solutions. IEEE Communications Surveys & Tutorials, 20(1), 601-

628.

A Dynamic Load Balancing Architecture for Fog Computing using Tree Base… 66

Puthal, D., Obaidat, M. S., Nanda, P., Prasad, M., Mohanty, S. P., & Zomaya, A. Y. (2018). Secure

and sustainable load balancing of edge data centers in fog computing. IEEE Communications

Magazine, 56(5), 60-65.

Rahman, F. H., Au, T. W., Newaz, S. S., Suhaili, W. S., & Lee, G. M. (2020). Find my trustworthy

fogs: A fuzzy-based trust evaluation framework. Future Generation Computer Systems, 109,

562-572.

Sarkar, S., & Misra, S. (2016). Theoretical modelling of fog computing: a green computing paradigm

to support IoT applications. Iet Networks, 5(2), 23-29.

Shin, K. G., & Ramanathan, P. (1994). Real-time computing: A new discipline of computer science

and engineering. Proceedings of the IEEE, 82(1), 6-24.

Singh, S. P., Sharma, A., & Kumar, R. (2020). Design and exploration of load balancers for fog

computing using fuzzy logic. Simulation Modelling Practice and Theory, 101, 102017.

Sun, Y., Lin, F., & Xu, H. (2018). Multi-objective optimization of resource scheduling in fog

computing using an improved NSGA-II. Wireless Personal Communications, 102(2), 1369-

1385.

Talaat, F. M., Saraya, M. S., Saleh, A. I., Ali, H. A., & Ali, S. H. (2020). A load balancing and

optimization strategy (LBOS) using reinforcement learning in fog computing environment.

Journal of Ambient Intelligence and Humanized Computing, 11(11), 4951-4966.

Wan, J., Chen, B., Wang, S., Xia, M., Li, D., & Liu, C. (2018). Fog computing for energy-aware load

balancing and scheduling in smart factory. IEEE Transactions on Industrial Informatics, 14(10),

4548-4556.

Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing: concepts, applications and issues. In

Proceedings of the 2015 workshop on mobile big data (pp. 37-42).

Zaidan, A. A., Zaidan, B. B., Qahtan, M. Y., Albahri, O. S., Albahri, A. S., Alaa, M., ... & Lim, C. K.

(2018). A survey on communication components for IoT-based technologies in smart homes.

Telecommunication Systems, 69(1), 1-25.

Bibliographic information of this paper for citing:

Bikash, Sarma; Kumar, R. & Themrichon, Tuithung (2023). A Dynamic Load Balancing Architecture

for Fog Computing using Tree Base Resource Arrangement and Flexible Task Prioritization. Journal

of Information Technology Management, 15 (Special Issue), 43-66. https://doi.org/

10.22059/jitm.2023.91567

Copyright © 2023, Sarma Bikash; R. Kumar & Tuithung Themrichon

https://doi.org/%2010.22059/jitm.2023.91567
https://doi.org/%2010.22059/jitm.2023.91567

