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 ABSTRACT 

Forming a portfolio of different stocks instead of buying a particular type of 

stock can reduce the potential loss of investing in the stock market. Although 

forming a portfolio based solely on past data is the main theme of various re-

searches in this field, considering a portfolio of different stocks regardless of their 

future return can reduce the profits of investment. The aim of this paper is to 

introduce a new two-phase approach to forming an optimal portfolio using the 

predicted stock trend pattern. In the first phase, we use the Hurst exponent as a 

filter to identify stable stocks and then, we use a meta-heuristic algorithm such as 

the support vector regression (SVR) algorithm to predict stable stock price trends. 

In the next phase, according to the predicted price trend of each stock having a 

positive return, we start arranging the portfolio based on the type of stock and the 

percentage of allocated capacity of the total portfolio to that stock. To this end, we 

use the multi-objective particle swarm optimization algorithm to determine the 

optimal portfolios as well as the optimal weights corresponding to each stock. The 

sample, which was selected using the systematic removal method, consists of 

active firms listed on the Tehran Stock Exchange from 2018 to 2020. Experi-

mental results, obtained from a portfolio based on the prediction of stock price 

trends, indicate that our suggested approach outperforms the retrospective ap-

proaches in approximating the actual efficient frontier of the problem, in terms of 

both diversity and convergence. 

 

1 Introduction 

In any trading market, every investment-based decision contains two crucial factors, namely, 

risk and return. The risk is defined as a measurable potential loss of an investor. The return is 

considered as the set of benefits an investor achieves during an investment period. This period 

can vary from daily to annual, or it can be any deterministic period of time according to the 

predefined time horizon of an investor. It is clear that in any investment, the investor tries to 

avoid the risk and tends to make more profit.  Uncertainty in the capital market, fluctuations in 

prices, and different returns of companies’ stocks make investors anxious and cautious about 

https://portal.issn.org/resource/ISSN/2538-5569
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the outlook of their investment. One of the most important ways to reduce such concerns is to 

invest in a set of different stocks, that is, to form a portfolio. Choosing a portfolio is one of the 

most common issues that different investors with different levels of capital always face, from 

relatively small portfolios with a small number of stocks, properties, etc. to large portfolios that 

include a variety of assets, and should be managed by professional investors. The main con-

cerns in choosing a portfolio are choosing the best possible combination of assets and determin-

ing the appropriate weight for each. Recently, researchers have made extensive efforts to pro-

vide methods for determining the optimal portfolio. Harry Markowitz can be considered as a 

pioneer in the optimization modeling of portfolio selection issues. He was the first researcher to 

study the concept of portfolio and its varieties, who showed that a diverse portfolio can reduce 

the investment risk [17]. Markowitzss mathematical modeling was a long way from the real 

world, but it had a profound effect on improving the portfolio selection procedure, and many 

researchers thereafter refined his theory. But, so far, no comprehensive model has been pro-

posed to enable investors to choose the optimal portfolio of investments. Markowitzss model 

has two important drawbacks. First, it is not appropriate for the long-term horizon, and second, 

it forms a portfolio only based on the price trend of a stock in the past (retrospectively).  If a 

portfolio of different stocks is formed by ignoring the future return trend of those stocks (futur-

ist), the potential loss of the portfolio can be increased. Since investing is a long-term concept, 

in this article we first use a filter to identify stable stocks.  

A stable stock is one whose price trend does not fluctuate sharply, regardless of the general 

state of the stock market. Using the stability filter in this article, we make the proposed portfo-

lio valid for a longer period of time. After the separation of stable stocks,  we use a new two-

phase approach to examine the way a portfolio can be formed on the basis of futuristic patterns. 

To the best of our knowledge, such a study has not been conducted so far. Now, the main ques-

tions we aim to answer can be written as follows. Can the proposed approach be used to form a 

future portfolio with appropriate desirability? To what extent has this approach been able to 

bring the proposed portfolio closer to the real portfolio of the issue in the medium-term (three-

month) period? The results of this research can be used effectively for investment companies, 

senior managers, financial analysts, investment funds, researchers in the field of finance, and 

investors. The main part of this paper is organized as follows.  

Section 2 describes the research background of the studies conducted on the optimization of 

portfolio selection. In Section 3, we briefly discuss the structure of the support vector regres-

sion (SVR) algorithm and the Hurst exponent as a filter to identify stable stocks. The basics of 

the portfolio optimization problem and the structure of the multi-objective particle swarm op-

timization (MOPSO) algorithm are declared in Section 4. In Section 5, the structure of the new 

two-phase approach is described. In the first step, we use the Hurst exponent as a filter to iden-

tify stable stocks, and then use the SVR algorithm to forecast different stock prices in the Teh-

ran Stock Market (TSE) in a period of three months. In the second step, using the forecasted 

price trends, we calculate the optimal stocks composition and the optimal weight corresponding 

to each stock in the optimal portfolio. Finally, Section 6 is devoted to the conclusion. 

 

2 Literature Review 

   In recent years, the trend of economic globalization has resulted in a significant increase in 

the spread of financial crises from one market to the others, hence the risk of investing in the 
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financial markets such as the securities and the exchange market  rises [2]. A strategy to control 

the investment risk is to form a portfolio of different stocks. However, the main issue in portfo-

lio arrangement is the optimal selection of assets and securities to which a certain amount of 

total capital can be allocated. Due to the complexities in the context of risk minimization and 

maximum return on investment, in recent years, extensive efforts have been made to form an 

optimal stock portfolio; such as Markowitz can be considered as one of the pioneers in this 

field [17]. Afterwards, numerous researchers developed and modified the Markowitz model.  In 

2005, Maringer et al., in the Markowitz model, considered an additional constraint on the max-

imum number of stocks in the portfolio to facilitate portfolio management and to reduce the 

corresponding costs [16]. In 2007, Fernandez and Gomez by considering the constraints of the 

minimum and the maximum number of stocks in a portfolio proposed a new model called the 

cardinality constraints mean-variance model [7]. In 2014, Ghasemi et al. optimized the stock 

portfolio using a new model where in addition to allowing short selling; they added some con-

straints on the capital markets such as the maximum amount of short -selling, the maximum 

number of stocks in the portfolio, and the upper and lower bounds for the total amount of assets 

to this model [8]. 

In the real world, we face with the real constraints in modeling the problem, and hence, the ex-

act mathematical methods do not cope with such large-scale problems. In this regard, the meta-

heuristic methods are suggested as efficient methods to solve the portfolio optimization prob-

lems [9]. To this end, most researchers have called various meta-heuristic methods to solve the 

problem of determining the optimal stock portfolio. For further studies, we refer the readers to 

some references such as Unal et al. in 2020 [20] in which they solved the optimization problem 

of the stock portfolio by the MOPSO algorithm, or Vasiani et al., in [21], solved the problem by 

the genetic algorithm (GA) and Sahala et al., in 2020 in [19] used the artificial bee colony 

(ABC) algorithm for this optimization problem.  On the other hand, we believe that an invest-

ment plan such as stock portfolio selection should consider not only the past performance of the 

stock but also the future potential of the stock. Each approach considering these perspectives 

affects the forecast’s accuracy of stock price. In recent years, there have been extensive efforts 
to forecast the stock market and various financial markets.  

In 2018, Bernardo et al. combined the SVM and GA with each other and proposed a new algo-

rithm. The results showed the high accuracy of their proposed algorithm in Forex market fore-

casting [4]. In 2020, Alahmari forecasted the prices of three well-known cryptocurrencies, i.e., 

Bitcoin, Ripple, and Ethereum, using the SVR algorithm concluding three different kernel 

methods (linear, polynomial, and radial basis). The numerical results indicated that the predic-

tion accuracy of the SVR algorithm with the kernel of radial basis function was superior to the 

other kernels [1]. In 2020, Das et al. predicted the price of several stocks on the Bangladesh 

stock exchange using the SVR algorithm with two linear kernels and a radial base function. 

They used the sum of squared errors as a measure to determine the prediction accuracy of each 

algorithm. Their results showed that the prediction accuracy of the SVR algorithm with the lin-

ear kernel (the accuracy was about 96.82%) was superior to the kernel of radial base function 

(the accuracy was about 97.06%) [6]. The study of the literature review regarding the optimal 

portfolios shows that no approach takes into account the forming of stock portfolio based on 

forecasting the price trend of stocks. Therefore, we can divide the researches considering the 

optimal portfolios into two general categories; (i) the studies in which only the price trends 
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forecasting is investigated and (ii) the studies that only concentrated on the retrospective port-

folio. The main purpose of this paper is to introduce a two-phase approach to determine the 

optimal stock portfolio based on predicting different stock price patterns for the medium-term. 

This approach consists of two main phases. In the first phase, we use the Hurst exponent as a 

filter to identify stable stocks, and then, we predict the trend of different stock prices in the 

Tehran stock exchange using the SVR algorithm. In the second phase, by using the obtained 

results from the first phase and calling the MOPSO as a meta-heuristic algorithm1, we determine 

the optimal combination of different stocks as well as the optimal weight corresponding to each 

stock in the optimal stock portfolio.                                  

 

3 Prediction and Examination of the Stability Trend of Different Stocks 

(Phase I) 
  

Stock markets play a key role in the optimal allocation of financial resources, and therefore, in the 

economic prosperity of countries. Therefore, the stability of these markets is very important for all 

market factors, especially investors and politicians. In recent years, especially in 2019, various rea-

sons, including the reduction of bank profits, stagnation in other markets, and the government’i i eeen-
tive policies to invest in the stock market, caused a large amount of people's capital to flow to this 

market. The inflow of this amount of liquidity increased speculative activity and sharp price fluctua-

tions, especially in the shares of small companies. Since in this research we are looking to introduce 

the optimal stocks in the medium term, according to the specific conditions governing the study peri-

od, we study the active and top firms listed on the Tehran Stock Exchange. 

   Various methods have been proposed to identify stable stocks, one of which is the use of the Hurst 

exponent. The Hurst exponent is a measure of stability or long-term memory in time series. Various 

methods have been proposed to calculate the value of the Hurst exponent, one of which is to use the R 

/S analysis method. The process of calculating the Hurst exponent using the R/S analysis method is 

described in the following algorithm. We refer the reader to [23] for more details. 

Calculation of the Hurst exponent using the R/S analysis method 

Input: Insert a set 𝑃𝑜𝑖𝑛𝑡𝑠 ∶= {(𝑥𝑠,𝑦𝑠) ∈ 𝑅2| 𝑠 = 0,1,2,…,𝑁 } containing N+1 data point due to 

the stock prices in a predefined time period. 

Output: Determine the value of the Hurst exponent (H). 

1  Divide the set 𝑃𝑜𝑖𝑛𝑡𝑠 into d subsets  𝑍𝜏,𝑚 (𝑚 = 1,2,…,𝑑) of equal length 𝜏 with the compo-

nents 𝑍𝜏,𝑚(𝑖)  (𝑖 = 1,2, … ,𝜏). 

             Repeat Steps 1-2 to1-5 for all 𝑚 = 1, 2,…, 𝑑. 

2 Calculate the mean 𝐸𝜏,𝑚 and the standard deviation 𝑆𝜏,𝑚 for the subset 𝑍𝜏,𝑚. 

3 Set  𝑋𝜏,𝑚(𝑖):= 𝑍𝜏,𝑚(𝑖)- 𝐸𝜏,𝑚. 

4 Calculate the cumulative series 𝑌𝜏,𝑚 corresponding to 𝑋𝜏,𝑚. 

𝑌𝜏,𝑚(𝑗) = ∑ 𝑋𝜏.𝑚(𝑖),                    𝑚 = 1,2, … ,𝑑    ,     𝑗 = 1,2m… i𝜏
𝑗

𝑖=1

 

5 Calculate the deviation of the maximum and minimum values of 𝑌𝜏,𝑚. 
 

                                                                        
1 To the best of our knowledge, the performance of MOPSO is better than the other meta-heuristic algorithms in 

solving multi-objective optimization problems in stock markets. The sensitive analysis about the performance of 

meta-heuristic algorithms does not studied in this paper.  
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𝑅𝜏.𝑚 = 𝑚𝑎𝑥 𝑖=1,2,…,𝜏{𝑌𝜏,𝑚(𝑖)} − 𝑚𝑖𝑛 𝑖=1,2,…,𝜏{𝑌𝜏,𝑚(𝑖)}. 
 

6 Calculate the ratio (
𝑅𝜏,𝑚

𝑆𝜏,𝑚
) for each 𝑍𝜏,𝑚, and set for each 𝜏, 

(
𝑅

𝑆
)

𝜏
≔

∑ (
𝑅𝜏,𝑚
𝑆𝜏,𝑚

)𝑑
𝑚=1

𝑚
. 

 

7 Plot the values of (𝑅/𝑆)𝜏 as a function of 𝜏 in a logarithmic graph. 

8 Fit a linear regression for the obtained points by using the least squares method, and define 

the slope of the regression line as the Hurst exponent (H). 
 

   It is worth mentioning that the Hurst exponent H is usually between 0 and 1; H = 0.5 means that the 

time series is random or uncorrelated, and there is no significant relationship in the stock price trend; 

0 ≤ H < 0.5 indicates that the time series is unstable and has a short-term memory, while 0.5 < H ≤ 1 

means that the time series is stable and has a long-term memory. After identifying the stable stocks, 

we predict their price trends using the past prices. With the rapid development of artificial intelligence 

and machine learning methods in recent years, some intelligent methods, such as the artificial neural 

network (ANN) and the SVR, have been widely used to predict financial time series [11,13]. In this 

section, we detail Phase I of the two-phase approach proposed for determining the optimal portfolio. 

In this phase, using the SVR algorithm and considering as data points the closing prices per stock in 

each trading day of a period of time (considered to be a one-year period here), we forecast the medi-

um -term (the three-month) price trend of any stock.  In what follows, we briefly describe the SVR 

algorithm. Suppose that we are given a training data set 𝑆 = {(𝑥𝑖,𝑦𝑖): 𝑥𝑖 ∈  𝑅𝑑 , 𝑦𝑖  𝜖 𝑅  , 𝑖 =

0,1,2, … ,𝑁}, where 𝑅𝑑 denotes the space of input patterns. The aim of the SVR algorithm is to find a 

function 𝑓(𝑥) whose deviation from the actual 𝑦𝑖 is at most 𝜖 for each of the training data: 

 

𝑓(𝑥) = 𝑤𝑇 . 𝑥 + 𝑏     𝑥,𝑤 ∈ 𝑅𝑑 , 𝑏 ∈ 𝑅.                                                                (1) 

 

Considering the loss function and slack variables ξ
𝑖
+

, ξ
𝑖
−

 to control the infeasible constraints of the 

optimization problem [23], it can be written as  

Minimize  𝜑(𝑤,ξ𝑖
+,ξ𝑖

−) =
‖𝑤‖2

2
+ 𝐶(∑ ξ𝑖

+ + ∑ ξ𝑖
−)                              

𝑁

𝑖=0

𝑁

𝑖=0

 

    𝑦𝑖 − 𝑓(𝑥𝑖) ≤ ε + ξ𝑖
+           𝑖 = 0,1,2, ⋯ ,𝑁                                    

   𝑓(𝑥𝑖) − 𝑦𝑖 ≤ ε + ξ𝑖
−           𝑖 = 0,1,2, ⋯ ,𝑁                                    

  ξ𝑖
+,ξ𝑖

− ≥ 0,                                                                                               

 

 

(2) 

where the positive constant 𝐶 has to be selected by the user. It determines the penalty parameter of the 

error term. The quadratic optimization problem (2) can be easily solved in its dual form. The complete 

SVR equations are fully expressed in [23], and the summarized equation is given by 

Maximize   − 𝜀 ∑(𝛼𝑖
+ + 𝛼𝑖

−) + ∑ 𝑦𝑖(𝛼𝑖
+ − 𝛼𝑖

−) −
1

2
∑ ∑(𝛼𝑖

+ − 𝛼𝑖
−)(𝛼𝐽

+ − 𝛼𝐽
−)(𝑥𝑖.𝑥𝑗) 

𝑁

𝑗=0

𝑁

𝑖=0

𝑁

𝑖=0

𝑁

𝑖=0

 (3) 
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∑ 𝛼𝑖
+ = ∑ 𝛼𝑖

−                                                                                             

𝑁

𝑖=0

𝑁

𝑖=0

 

0 ≤ 𝛼𝑖
+ ≤ 𝐶                          𝑖 = 0,1,2, ⋯ ,𝑁                                                    

0 ≤ 𝛼𝑖
− ≤ 𝐶                          𝑖 = 0,1,2, ⋯ ,𝑁, 

 

where 𝛼𝑖
+, 𝛼𝑖

− are the Lagrange multipliers. After solving the optimization problem (3) and 

finding the optimal values 𝛼𝑖
+and 𝛼𝑖

−, we calculate the optimal values of the variables 𝑤 and 𝑏. 

We refer the reader to [23] for further reading. 

 

4 Portfolio Optimization (Phase II) 

   According to Markowitzss theory, an efficient investment portfolio is one that provides the maxi-

mum return for a fixed level of risk and the lowest risk for a fixed level of return [17]. As long as the 

number of assets to be invested and the number of market constraints are small, Markowitzss model 

can be solved by quadratic programming methods. But, when the constraints of the real-world prob-

lem are taken into account, this problem cannot be solved using classical mathematical methods, and 

hence the importance of using evolutionary algorithms to determine the optimal portfolio is increased. 

In portfolio optimization, we usually deal with a two-objective optimization problem whose aims are 

to maximize the returns and minimize the portfolio risk. In what follows, we explain the way one can 

build the stock portfolio based on the results obtained in phase II. 
 

Portfolio return. Portfolio return is defined as the weighted average of the expected returns of each 

stock in a portfolio. It can be calculated by the formula 

𝜇𝐿 = ∑ 𝜇𝑖

𝑁

𝑖=1

𝑤𝑖, (4) 

 

where 𝜇𝐿, N and 𝜇𝑖 are the returns of portfolio L, the number of stocks in the portfolio, and the aver-

age expected return of stock i, respectively. Also, 𝑤𝑖 is the weight of stock i in the optimal portfolio 

[17]. 
 

Portfolio risk. There are some different methods for evaluating portfolio risk, including the vari-

ance and semi-variance methods introduced by Markowitz [17, 3]. Portfolio risk depends not only on 

the weighted average risk of each stock of the portfolio, but also on the covariance or relationships 

among the returns of stocks that form the portfolio. According to [17], this can be calculated by the 

formula  

𝜎𝐿
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗,

𝑁

𝑗=1

𝑁

𝑖=1

 (5) 

 

where 𝑤𝑖 and 𝑤𝑗 are defined as the weights of stocks i and j in portfolio L, 𝜎𝑖𝑗 denotes the covariance 

returns of stocks i and j, and 𝜎𝐿
2 is the variance (risk) of portfolio L.  

Now, considering the two objective functions of the problem, namely, maximizing the returns and 

minimizing the risk, the model of the portfolio optimization problem can be formulated as  
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𝑚𝑖𝑛 𝜎𝐿
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝐽=1

 

𝑁

𝑖=1

 

 max  𝜇𝐿 = ∑ 𝜇𝑖

𝑁

𝑖=1

𝑤𝑖 

 max  𝜇𝐿 = ∑ 𝜇𝑖

𝑁

𝑖=1

𝑤𝑖                                                                                    

 ∑ 𝑤𝑖

𝑁

𝑖=1

= 1                                         

𝑤𝑖 ≥ 0             𝑖 = 1,2, ⋯ ,𝑁,   

 

(6) 

where ∑ 𝜇𝑖
𝑁
𝑖=1 𝑤𝑖 is portfolio return, and ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁
𝐽=1

𝑁
𝑖=1  indicates portfolio risk [17]. The con-

straint ∑ 𝑤𝑖
𝑁
𝑖=1 = 1 indicates that the amount of capital corresponding to the stocks in a portfolio is 

equal to the total investment of a stockholder. Finally, the constraint 𝑤𝑖 ≥ 0 means that the investor 

always has the right to sell the stocks he/she owns. The problem of portfolio optimization is an NP-

hard problem [15]. This is why it cannot be solved by the classical methods in a reasonable time, and 

we must use evolutionary algorithms to solve it. Due to the proper performance of the PSO algorithm 

in solving single-objective optimization problems, many researchers have used this algorithm to solve 

multi-objective optimization problems (MOOPs). Several versions of the algorithm, improved for 

solving MOOPs, exist in the literature. (See [17, 18] for example.) Therefore, in this paper we consid-

er this algorithm as a tool for solving the stock portfolio optimization problem. As mentioned before, 

the aim of this paper is to propose a new approach for determining the optimal stock portfolio. Hence, 

we do not investigate the way portfolio optimization may be affected by the kind of meta-heuristic 

algorithm one chooses. 
 
 

4.1 The Particle Swarm Optimization (PSO) Algorithm 
 

    In 1995, the PSO algorithm was first introduced by Kennedy and Eberhart in [16]. This method, 

which is an iterative process like other meta-heuristic algorithms, is inspired by the social behavior of 

some animals in a group manner, such as the collective movement of fish school or bird flocks. In this 

algorithm, several particles are distributed in the search space of functions to be optimized. Each par-

ticle calculates the value of the objective function at the position in which it is located, and then, using 

a combination of the information, namely, its current location, the best position known by itself as 

well as the best position known by all particles, chooses the direction of movement. Therefore, any 

particle chooses a direction to move, and hence, one step of the algorithm ends. These steps are re-

peated until the desired solution is achieved. Each particle in the PSO algorithm consists of three d-

dimensional vectors, in which d is the dimension of the search space. For a particle, say particle i, 

these vectors are defined as follows. 

• The current position of particle i in iteration k is denoted by 𝑥𝑖
𝑘 . 

• The speed of particle i in iteration k is denoted by 𝑣𝑖
𝑘. 

https://en.wikipedia.org/wiki/Fish_school
https://en.wikipedia.org/wiki/Flocking_(behavior)
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• The best position particle i has ever experienced is denoted by 𝑥𝑖
𝑖.𝑏𝑒𝑠𝑡 , and the best position 

of all particles is 𝑥g, best.  

    In any iteration, a solution 𝑥𝑖 is computed. If this solution is better than the previous solutions, it is 

stored as 𝑥𝑖
𝑖.𝑏𝑒𝑠𝑡. The values of the objective function at 𝑥𝑖 and 𝑥𝑖

𝑖.𝑏𝑒𝑠𝑡  are denoted by 𝑓𝑖 and 𝑓𝑖
𝑖.𝑏𝑒𝑠𝑡, 

respectively. The positions of particles in the initial iteration are randomly generated, and all initial 

velocities are set equal to 0. In the next steps, the position and velocity of each particle are updated 

using 

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑥𝑖
𝑖.𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑥g, best − 𝑥𝑖
𝑘) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1, 

(7) 

 

where w is the inertia coefficient, denoting the tendency of each particle to move along its current 

velocity vector, 𝑟1 and 𝑟2 are random numbers in [0,1] with a uniform distribution which yields diver-

sity in solutions, and finally, 𝑐1 and 𝑐2 are positive, ssss tttt  rrr mmtt rr s aalldd aaccll rr tt inn eeeffi-
cients”. The pseudo-code of the PSO algorithm is summarized as follows. 

The Pseudo-code of the PSO algorithm 

Step 1- Create the initial population and evaluate its individuals. 

Step 2- Determine the best position of each particle and the best global position. 

Step 3- Update the velocity and position of any particle solutions by (7), and evaluate the newly 

generated. 

Step 4- Go to Step 2 if the stopping criterion is not met. 

Step 5- End. 
 

 

4.2 The multi-objective particle swarm optimization (MOPSO) algorithm 

 

The MOPSO algorithm was first introduced by Coello [5] in 2004. This algorithm is a generaliza-

tion of the PSO algorithm that is used to solve MOOPs. Unlike single-objective optimization prob-

lems, in MOOPs, no single solution can simultaneously optimize all objectives. Hence, we can find a 

set of Pareto solutions (or non-dominated solutions) that form the efficient frontier (or Pareto opti-

mal). Furthermore, in the MOPSO, a new concept called archive has been added to the PSO to pre-

serve the non-dominated solutions that are determined during the search process. Initially, the parti-

cles are randomly generated in the MOPSO. It is noteworthy that in this paper, each particle in the 

MOPSO represents a portfolio, and its position represents the corresponding weights for stocks in the 

portfolio. Then, we compare the individual particles and store the non-dominated individuals of the 

population in an archive. Since it is not necessarily possible in the MOPSO to select a particle as the 

best global position, each particle chooses an individual from the archive as the leader. Since the 

MOPSO always tends to search for more space in the problem, it tries to choose the selected particle 

from the areas where particles with less dispersion remain in the archive. Therefore, we first prioritize 

the discovered objective space and then calculate the probability of each selected area; a probability 

function is considered that satisfies the following conditions. 

∑ 𝑃𝑖

𝑛

𝑖=1

= 1 

0 ≤ 𝑃𝑖 ≤ 1   

𝑛𝑖 ≤ 𝑛𝑗 ⇔  𝑃𝑖 ≥ 𝑃𝑗 . 

(8)  
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Herein, 𝑃𝑖 is the probability that area i be selected, and 𝑛𝑖 is the number of archive members in the 

area. The third condition means that areas with more archive members are less probable to be select-

ed. In this paper, we use the Boltzman method to calculate the probability of each region [9]. The 

method is based on the formula 

𝑃𝑖 =
𝑒−𝛽𝑛𝑖

∑ 𝑒−𝛽𝑛𝑗
𝑗

, (9) 

 

where 𝑃𝑖 is defined as before, and 𝛽 is the selection pressure parameter, which is determined by the 

user according to the importance of selecting areas with fewer non-dominated points. After calculat-

ing the probability of each area, an area is selected using the Roulette-wheel method, and then, one of 

the members of the archive which lies in that area is randomly selected as a leader. After selecting a 

leader by any particle and moving towards it, the best position of any particle must be updated. To 

compare the best position of each particle with its current position, we consider the following instruc-

tions. 
 

a) If the new position dominates the best position of that particle, then substitute the best posi-

tion with the new one. 

             b) If the new position is dominated by the best position of that particle, do nothing. 

             c) If none of the positions dominates the other, randomly choose one of them as the best posi-

tion. 

By adding non-dominated members of the current population to the archive, once again, we examine 

the members of the archive and remove the dominated members. In this algorithm, the cardinality of 

the archive is restricted by a bound; if the cardinality exceeds the specified value during the pro-

cessing of the algorithm, the extra members of the archive are omitted. Again, use a mechanism simi-

lar to the leader selection mechanism, except that areas with more archive members are more probable 

to be removed. Therefore, to calculate the probability of removing any particle from the archive due 

to area i, namely, 𝑞𝑖, we use the equation 

𝑞𝑖 =
𝑒𝛾𝑛𝑖

∑ 𝑒𝛾𝑛𝑗
𝑗

,   (10) 

where 𝛾 is the removal pressure parameter whose value is selected by the user according to the priori-

ty of areas having greater cardinalities?  In what follows, we summarize the main structure of the 

MOPSO algorithm. 

 

The Pseudo-code of the MOPSO algorithm 

 

Step 1- Create an initial population. 

Step 2- Select the non-dominated solutions and save them in the archive. 

Step 3- Prioritize the explorative objective space. 

Step 4- Choose a corresponding leader from the archive for any particle to move. 

Step 5- Update the best position of each particle. 

Step 6- Add non-dominated solutions of the current population to the archive. 

Step 7- Remove dominated solutions from the archive. 

   Step 8- Remove extra archive solutions if the cardinality of the archive exceeds the specified bound. 

Step 9- If the stopping criteria are not met, then go to Step 3; otherwise, stop. 
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5 Numerical Results 
 

In this research, we first examined the financial data of active and top companies of the Iran Stock 

Exchange based on their close prices during the years 2018 to 2020. (These companies have been 

selected from different industry groups according to their type of activity.) During this period, the 

market experienced both ascending and descending periods, which made it a very suitable choice for 

testing the proposed approach. In addition, the market experienced various political and social condi-

tions during this period, including parliamentary elections, sanctions, and the sudden influx of people 

to the stock market, which had significant psychological effects on the stock prices. The examination 

of this period can be interesting, because it shows the reaction of the proposed approach to various 

psychological conditions (both favorable and unfavorable) in the market. We chose the desired stocks 

from the TSE according to the combination of the following measures. 

     a) The liquidity of stocks and the market capacity of the stock. 

  b) Alternation of stock trading in the trading hall (the number of traded days). 

c) The effect of a company on the market (the average number of stocks issued and the average 

current value of the company's stock). 
 

In Phase I of the proposed approach, we first used the Hurst exponent as a filter to identify stable 

stocks. The results related to the Hurst exponents of the stable stocks in 2018 and 2019 are given in 

Table 1. 

 

Table 1: The Hurst exponents of active and top companies in the stock market in 2018 and 2019  

 

 

 

Company 
Hurst exponent  

Company 
Hurst exponent 

2018 2019 2018 2019 

Iran Tele. Co. 0.5695 0.9146 Atieh Dade Pardaz 0.6558 0.5066 

S*Iran Transfo 0.7621 0.7890 Saderat Bank 0.8326 0.5650 

Iran Const. Inv. 0.5987 0.8532 Zamyad 0.5880 0.7073 

Khorasan Steel Co. 0.8117 0.8147 S*Tejarat Bank 0.6685 0.6925 

Khouz. Steel 0.9848 0.7150 S*Mellat Bank 0.6550 0.6285 

S*Azarab Ind. 0.8552 0.8551 Inf. Services 0.8996 0.9379 

Ind. & M. L. 0.6461 0.6405 Shahrood N.E 0.6559 0.7178 

S*IRI Marine Co. 0.7088 0.8891 Pars Int. Mfg. 0.5844 0.6860 

Chadormalu 0.7684 0.5664 Shazand Petr. 0.5638 0.8306 

Tehran Cement 0.9156 0.7440 Behran Oil 0.7229 0.5923 

 

According to Table 1, since the Hurst exponent of each of the stocks is more than 0.5 in both 1397 

and 1398, it is stable and the price trends are predictable. To predict the price trend of each stock, the 

close prices per stock during the period 2018 to 2019, taken from the website of “Tehran Stock Ex-

change Technology Management Company (TSETMC)”, were considered as data points for the SVR 

algorithm to predict the price trend of the stock in the first quarter of 2019 and 2020. In Phase II, us-

ing the financial measures of the return and the risk, we determined the optimal stock portfolio and 

the optimal ratio assigned to each stock of the total portfolio capacity. Then, applying the SVR algo-

rithm to the aforementioned top stocks, we forecasted the price trends of these stocks in 2018 and 

2019. We used some measures to evaluate the performance of the SVR algorithm in the accuracy of 

predicting stock price trends. In light of these measures, we evaluated the performance of the SVR 



Karrabi et al.  

 
 

 

 

 
Vol. 7, Issue 4, (2022) 

 
Advances in Mathematical Finance and Applications 

 

[859] 

 

algorithm and the quite popular ANN method. 

 

5.1 Data Normalization 
 
 

   Since non-normalized data reduce the speed and accuracy of prediction, the inputs, and in some 

cases the outputs, must be normalized. To normalize the input data, we use the equation 

𝑥𝑁 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (11) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum data, respectively, and 𝑥𝑁 represents the nor-

malized data corresponding to the data 𝑥. 

 

5.2 Predictive Accuracy Measures 
 

 In this section, we explain some estimator measures such as the mean squared error (MSE), the 

relative squared error (RSE), and the mean absolute error (MAE). We used these measures to com-

pare the estimated values (namely, those obtained from the SVR and ANN algorithms) with the actual 

values. These measures of the quality of an estimator are defined by the formulas 

𝑀𝑆𝐸 =
1

𝑁 + 1
 ∑(𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 

𝑅𝑆𝐸 =
∑ (𝑥𝑖 − 𝑥𝑖)2𝑁

𝑖=1

∑ (�̅�𝑖 − 𝑥𝑖)2𝑁
𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁 + 1
 ∑|𝑥𝑖 − 𝑥𝑖|

𝑁

𝑖=1

, 

(12) 

 

where 𝑥𝑖 , 𝑥𝑖 and �̅�𝑖 represent the actual values, the predicted values, and the mean of the actual val-

ues, respectively. The results obtained by applying the SVR and ANN algorithms to the twenty stocks 

regarding the aforementioned predictive accuracy measures are presented in Table 2. It is worth men-

tioning that the neural network used in this article is a three-layer perceptron neural network. There 

are three input layer neurons, which are the closing price of the stock on the previous trading day, the 

closing price of the stock on two trading days earlier, and the closing price of the stock on four trading 

days earlier. Also, there are five hidden layer neurons, and there is only one output layer neuron, 

which is the closing price of the stock on the next trading day. Moreover, the activation functions used 

in this perceptron network are the hyperbolic tangent function in the hidden layer and a linear function 

in the output layer. The neural network structure used in this paper is shown in Figure 1. 

 

 

Fig. 1: The structure of the artificial neural network used in this paper 
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Table 2: The Performance of the SVR and ANN Algorithms On the Twenty Stocks 

 2018 2019 

The SVR algorithm The ANN algorithm The SVR algorithm The ANN algorithm 

MSE RSE MAE MSE RSE MAE MSE RSE MAE MSE RSE MAE 

Iran Tele. 

Co. 

0.003

0 

0.094

7 

0.032

9 

0.013

3 

0.143

5 

0.076

7 

0.001

2 

0.015

2 

0.011

7 

0.002

5 

0.021

7 

0.026

5 

S*Iran 

Transfo 

0.004

1 

0.071

4 

0.046

6 

0.003

9 

0.096

1 

0.047

2 

0.000

8 

0.008

8 

0.020

1 

0.001

3 

0.015

0 

0.034

5 

Iran Const. 

Inv. 

0.001

2 

0.020

3 

0.026

1 

0.002

1 

0.022

1 

0.035

7 

0.000

5 

0.008

3 

0.017

3 

0.001

1 

0.009

5 

0.025

1 

Khorasan 

Steel Co. 

0.001

4 

0.028

2 

0.024

8 

0.008

7 

0.104

2 

0.056

2 

0.001

1 

0.016

5 

0.024

3 

0.001

5 

0.016

9 

0.028

3 

Khouz. 

Steel 

0.002

7 

0.042

0 

0.039

2 

0.003

6 

0.054

8 

0.046

1 

0.000

6 

0.016

3 

0.015

5 

0.008

1 

0.087

9 

0.027

8 

S*Azarab 

Ind. 

0.004

1 

0.103

9 

0.048

6 

0.003

7 

0.100

6 

0.049

2 

0.000

7 

0.010

8 

0.020

2 

0.000

8 

0.011

9 

0.024

3 

Ind. & M. 

L. 

0.005

0 

0.116

4 

0.052

7 

0.010

1 

0.167

6 

0.071

5 

0.000

7 

0.012

2 

0.018

3 

0.000

9 

0.021

7 

0.027

4 

S*IRI 

Marine Co. 

0.006

1 

0.106

0 

0.056

7 

0.006

7 

0.119

8 

0.060

5 

0.007

9 

0.059

7 

0.057

4 

0.007

6 

0.058

0 

0.048

0 

Chadorma-

lu 

0.001

7 

0.020

8 

0.032

8 

0.002

3 

0.032

7 

0.037

8 

0.001

1 

0.014

9 

0.026

9 

0.002

9 

0.034

0 

0.033

0 

Tehran 

Cement 

0.000

8 

0.008

8 

0.018

4 

0.002

4 

0.024

1 

0.030

0 

0.001

1 

0.017

0 

0.024

9 

0.002

2 

0.015

8 

0.031

1 

Atieh Dade 

Pardaz 

0.002

9 

0.057

4 

0.041

2 

0.004

7 

0.089

6 

0.051

6 

0.001

3 

0.023

1 

0.022

7 

0.002

8 

0.030

6 

0.032

9 

Saderat 

Bank 

0.007

6 

0.022

9 

0.044

7 

0.001

5 

0.015

9 

0.030

6 

0.000

4 

0.015

3 

0.011

9 

0.001

4 

0.025

8 

0.016

1 

Zamyad 0.003

3 

0.051

3 

0.044

9 

0.004

6 

0.064

4 

0.053

4 

0.000

1 

0.002

5 

0.008

7 

0.001

0 

0.003

8 

0.016

2 

S*Tejarat 

Bank 

0.001

3 

0.011

2 

0.029

1 

0.001

2 

0.012

7 

0.026

2 

0.002

7 

0.055

5 

0.044

1 

0.001

7 

0.025

6 

0.023

2 

S*Mellat 

Bank 

0.001

0 

0.012

3 

0.026

8 

0.003

2 

0.028

1 

0.036

8 

0.001

9 

0.048

2 

0.031

6 

0.002

1 

0.013

5 

0.028

0 

Inf. Ser-

vices 

0.000

8 

0.006

9 

0.021

0 

0.011

3 

0.091

0 

0.043

1 

0.001

1 

0.018

7 

0.023

3 

0.004

7 

0.052

4 

0.030

3 

Shahrood 

N.E 

0.000

8 

0.025

2 

0.023

1 

0.002

3 

0.052

4 

0.040

8 

0.001

4 

0.016

1 

0.029

2 

0.001

3 

0.014

8 

0.027

7 

Pars Int. 

Mfg. 

0.001

5 

0.025

5 

0.029

7 

0.004

3 

0.042

6 

0.043

0 

0.001

1 

0.018

3 

0.022

9 

0.003

1 

0.036

0 

0.033

6 

Shazand 

Petr. 

0.002

4 

0.032

4 

0.038

1 

0.002

7 

0.033

5 

0.041

8 

0.001

2 

0.022

2 

0.020

2 

0.005

4 

0.057

3 

0.030

4 

Behran Oil 0.002

8 

0.037

7 

0.036

5 

0.002

6 

0.031

3 

0.036

0 

0.000

9 

0.014

4 

0.019

4 

0.001

5 

0.033

5 

0.029

9 

Mean devi-

ations 

0.002

7 

0.044

7 

0.035

6 

0.004

7 

0.066

3 

0.045

7 

0.001

3 

0.020

7 

0.023

5 

0.002

6 

0.029

2 

0.028

7 

 

The last row of Table 2 shows the average deviations of the forecasted values from the real data for 

the twenty stocks. Looking closer to the last row of Table 2, we observe that the performance of the 

SVR algorithm in forecasting the price trend of a stock is better than the ANN algorithm. 
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5.3 Building the Optimal Portfolio 
 

In this section, we describe Phase II of the two-phase approach proposed for determining the opti-

mal stock portfolio regarding the risk and the return simultaneously. To do so, first, we create an op-

timal portfolio using the real data of the problem (the close prices of the selected stocks mentioned in 

Table 1 in the first quarter of 2019) using the mathematical methods of solving the quadratic pro-

gramming problem. To simplify, considering the new risk aversion parameter 𝜆𝜖[0,1], the model can 

be described as one objective function: 

min 𝜆 [∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

 

𝑁

𝑖=1

] − (1 − 𝜆) [∑ 𝜇𝑖

𝑁

𝑖=1

𝑤𝑖]        

𝑠.𝑡        ∑ 𝑤𝑖

𝑁

𝑖=1

= 1 

𝑤𝑖 ≥ 0             𝑖 = 1,2, … ,𝑁. 

(13) 

When 𝜆 is 0, the model maximizes the mean return of the portfolio, regardless of the variance (risk). 

In contrast, when 𝜆 equals unity, the model minimizes the risk of the portfolio regardless of the mean 

return. So, the sensitivity of the investor to the risk increases as 𝜆 increases from 0 to unity, while it 

decreases as 𝜆 approaches 0. Each case, with different value of 𝜆, would have a different value for the 

objective function, which is composed of the mean value and variance (risk). Tracing the mean return 

and variance intersections with different values of 𝜆, we can draw an efficient frontier. Since each 

point on an efficient frontier curve indicates an optimum, this indicates that the portfolio optimization 

problem is a multi-objective optimization problem. The introduction of the parameter 𝜆 makes the 

problem into a single-objective function problem. Since the mathematical method solves the problem 

in an accurate manner, and in each implementation the same efficient frontier is obtained, the efficient 

frontier obtained from this method can be used as a basis for comparing the following two approach-

es. 
 

a) Markowitz’s approach (Approach 1): This approach only uses the past data related to the 

stocks to form the optimal portfolio (a retrospective approach). 

b) The two-phase approach (Approach 2): This approach uses the predicted data related to the 

stocks to form the optimal portfolio (a futuristic approach). 
 

 

 

Fig. 2: The efficient frontiers obtained from approaches 1 and 2, and the actual efficient frontier (2019). 
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Now, to compare the two mentioned approaches, we use the data points (namely, the close prices of 

the stocks) for a one-year period to form an optimal portfolio for the next year via the MOPSO algo-

rithm. The superiority of an approach is measured by the distance between the approximated points 

(the points obtained from approaches 1 or 2) and the points on the actual efficient frontier. As shown 

in Figure 2, the performance of the two-phase approach (depicted in red) is better than Approach 1 

(Markowitz’s pppraa,,, depicted in blue) regarding both convergence (to the real Pareto frontier, de-

picted in black) and diversity. Now, to confirm and evaluate the results more accurately, in what fol-

lows we apply approaches 1 and 2 to the data points in 2019 and form the stock portfolio in 2020. 

 

 

Figure. 3: The efficient frontiers obtained from approaches 1 and 2, and the actual efficient frontier (2020). 

As illustrated in Figure 3, like Figure 2, Approach 2 outperforms Approach 1 regarding diversity 

and convergence points of view. Even more important, at some points, the efficient frontier of Ap-

proach 2 coincides with the actual efficient frontier of the problem. Now, we use the inverted genera-

tional distance (IGD) indicator to quantitatively compare two distinct Pareto frontiers which we ob-

tained from the two different approaches. Suppose that 𝑀∗ is the set of non-dominated points on the 

actual efficient frontier (the reference data set) of the problem, and that 𝑀 is the set of non-dominated 

solutions on the approximate efficient frontier obtained from an approach. The IGD indicator between 

the sets 𝑀∗ and 𝑀 is calculated using the following equation [13]. 

𝐼𝐺𝐷(𝑀,𝑀∗) =
∑ 𝑑(𝜐,𝑀)𝜈𝜖𝑀∗

|𝑀∗|
. (14) 

Here, 𝑑(𝜐,𝑀) is the Euclidean distance between 𝜐 and the points 𝑀 and |𝑀∗| is the cardinality of 𝑀∗. 

If |𝑀∗| is large enough to provide a good estimate of the Pareto frontier, then the IGD indicator can 

simultaneously represent both convergence and diversity. Obviously, the smaller the IGD value, the 

closer the approximate Pareto frontier to the real one.  
   

Table 3: The Values of the IGD Indicator for Approaches 1 and 2 

Approach IGD in 2019 IGD in 2020 

Approach 1 0.005 0.125 

Approach 2 0.0026 0.0015 

 

It can be seen that the IGD indicator of the two-phase approach (Approach 2) is less than that of 
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Markowitzss approach (Approach 1) in both 2019 and 2020. Looking closer, we observe that Ap-

proach 2 improves the Pareto frontier in comparison with Approach 1 about 48% and 98.8% in 2019 

and 2020, respectively, regarding the diversity and the convergence.  

Since each non-dominated solution on the efficient frontier represents an optimal portfolio that con-

tains different stocks, it is clear that the investor should choose a solution (or solutions) considering 

his conditions. In other words, low-risk investors choose portfolios to the left of the efficient frontier 

(the points closer to the origin). Note that these portfolios have lower risks and of course lower ex-

pected returns. In contrast, high-risk investors choose portfolios to the right of the efficient frontier 

(points farther from the origin), because these portfolios have higher expected returns (and, of course, 

higher risks).  
 

6 Conclusion 
 

In stock investing, choosing the optimal portfolio is one of the most important issues. In this regard, 

the creation of models which lead to the selection of the best portfolio is of great importance. The 

studies conducted so far with the aim of determining the optimal portfolio are based solely on the 

price trends of stocks in the past (retrospective approaches). In this paper, a new two-phase approach 

was designed to determine the optimal portfolio by predicting the price trends of different stocks (a 

futuristic approach). Also, in order to obtain better results, the Hurst exponent filter was used for the 

appropriate initial selection of stable stocks, as part of the research innovations compared to the pre-

viously performed studies.  In the proposed approach, we first used the Hurst exponent as a filter to 

identify stable stocks, and then used the SVR algorithm to predict the price trends of the stable stocks. 

In the second phase, according to the predicted price trend of each stable stock and using the return 

and risk measures as well as implementation of the multi-objective particle swarm optimization 

(MOPSO) as a meta-heuristic algorithm, the optimal Pareto portfolios and the optimal weight corre-

sponding to each stock in that portfolio were determined. The numerical results obtained from portfo-

lio optimization using the proposed two-phase approach indicate that this new approach outperforms 

Markowitzss approach (as a retrospective approach) in the approximation of the efficient frontier and 

in terms of diversity and convergence. One of the most important and complex issues in the field of 

investment is the duration of investment on each stock. The present study enabled the investors to 

create a future portfolio according to their desired risk by changing the minimum acceptable value of 

the Hurst exponent. Currently, the authors are working on the relationship between the position of 

each portfolio on the efficient frontier and the stock information in that portfolio. 
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