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 ABSTRACT 

Interval Data Envelopment Analysis (Interval DEA) is a methodology to assess 

the efficiency of decision-making units (DMUs) in the presence of interval data. 

Sensitivity analysis and stability evaluation of decision- making units are as the 

most important concerns of Decision Makers (DM). In the past decades, many 

scholars have been attracted to the stability evaluation of DMUs from different 

perspectives. This study focuses on the sensitivity analysis in DEA and proposes 

an approach to determine the stability radius of the cost efficiency of units with 

interval data. Potential application of our proposed methods is illustrated by a 

numerical example in the literature review. 

 

1 Introduction 
 

Data Envelopment Analysis is a mathematical programming method to assess the efficiency of deci-

sion-making units with multiple inputs and multiple outputs (Charnes et al. [7], Banker et al. [5]). The 

original DEA models suppose that all inputs and outputs have certain values. However, this assumption 

may be violated by the existence of uncertain data. Several scholars have been attracted to the problem 

of the evaluation of units with imprecise data. For example, Cooper et al. [12] developed Imprecise 

Data Envelopment Analysis (IDEA) method to the situation where there exist both imprecise and ex-

actly-known data. Kim et al. [32] proposed a method to incorporate partial data into DEA. Lee et al. 

[36] suggested approaches to measure the inefficiency of units in IDEA. Despotits and Smirlis [15] 

showed that the units with imprecise data do not have constant efficiency scores and proposed a method 

to determine the upper and lower bounds for the efficiency score of units in the case of data uncertainty. 

See Cooper et [14], Entani et al. [17], Zhu [59] Jahanshahloo et al. [28], Wang et al. [57], Smirlis [47], 
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Park [40, 41], Toloo et al. [52], Kao and Liu [31], Esmaeili [19], Hatami Marbini et al. [25] and Sun et 

al. [50] for more studies about IDEA models. Kordrostami and Jahani Sayyad Noveiri [33] presented 

an approach to measure the optimistic and pessimistic efficiency scores of units with fuzzy data. 

Amirteimoori et al. [2] proposed a method to obtain the interval efficiency scores of units in the presence 

of interval data. Azizi et al. [4] presented an approach to determine the upper and lower bounds for the 

efficiency scores of units with imprecise data. Jiang et al. [30] developed a model to evaluate the scale 

efficiency of DMUs with imprecise data. Toloo et al. [53] proposed models to obtain the interval effi-

ciency scores of units based on the optimistic and pessimistic perspectives. DEA can be used to evaluate 

the different types of efficiency of DMUs, such as cost efficiency, revenue efficiency and profit effi-

ciency of units. The cost efficiency (CE) can be interpreted as the ability of each decision-making unit 

with multiple inputs and multiple outputs to produce the current outputs at minimal cost. Farrell [23] 

introduced the concept of CE in the situation that the input and output values and input prices are known 

exactly. Färe [21] proposed methods that present empirical implementations of the cost efficiency 

measures in DEA. The problem of the measuring the cost efficiency of units has attracted attentions of 

several scholars. See, Cooper et al. [13], Sueyoshi [49], Tone [54], Tone and Sahoo ([55], [56]), Mani-

adakis and Thanassoulis [37], Sengupta and Sahoo [44], Sahoo et al. [42], Mirdehghan et al. [38], 

Ghiyasi [24], Tohidnia and Tohidi [51] among others. 

Camanho and Dyson [6] and Fang and Li [20] evaluated the cost efficiency of units in the presence of 

data uncertainty. Kuosmanen and Post ([34, 35]) proposed models to determine the cost efficiency of 

units in the situation that the input prices are uncertain. Toloo et al. [52] considered the cost efficiency 

of units in the presence of interval data.  Cherchye et al. [10] considered the cost efficiency analysis of 

research programs in economics and business management faculties. Mostafaee and Saljooghi [39] con-

sidered two scenarios for assessing the cost efficiency of DMUs. The first scenario evaluated the cost 

efficiency of units in the presence of data uncertainty and the second scenario assessed the cost effi-

ciency of DMUs in the situation that both data and input prices were uncertain. However, few papers 

concern the evaluation of the cost efficiency in the presence of imprecise data.  See Jahanshahloo et al. 

[29], Kuosmanen and Post ([34, 35]) and Camanho and Dyson [6] for more studies about the cost effi-

ciency evaluation of units in the case of data uncertainty. The sensitivity analysis is one of the most 

important problems in DEA. The sensitivity analysis considers the possible changes in the data of 

DMUs in such a way that the efficiency of units does not change. Therefore, we have to find a region 

called the stability region with the mentioned feature. Mathematical methods, algorithmic and metric 

methods have been used by some scholars to perform sensitivity analysis. The first DEA sensitivity 

analysis method by Charnes et al. [8] examined the changes in a single output and showed that the 

sensitivity analysis methods in linear programming problems were not suitable in DEA. For more stud-

ies about the sensitivity analysis methods in DEA, see Charnes et al. [9], Seiford and Zhu [43], Allahyar 

and Rostamy-Malkhalifeh [1] and He et al. [26].  

Given the importance of the sensitivity analysis in DEA, specially, in Interval DEA, this paper focuses 

on the sensitivity and stability analysis and proposes some models to determine the stability radius of 

the cost efficiency of DMUs with interval data. The rest of this paper is organized as follows: section 2 

reviews the interval DEA and the cost efficiency evaluation preliminaries.  Section 3 suggests models 

to determine the stability radius of the cost efficiency of DMUs with interval data. A numerical example 

and a case study reported in Mostafaee and Saljooghi [39] are applied to illustrate the potential appli-

cation of our proposed methods. Section 5 concludes the paper.  
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2 Preliminaries 
 

This section reviews some basic preliminaries for the cost efficiency evaluation in DEA and the effi-

ciency assessment in interval DEA.  
 

2.1 The Cost efficiency evaluation in DEA 
 

Assume that we deal with a set of DMUs denoted by 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛, where each DMU consumes 

𝑚 different inputs to produce 𝑠 different outputs. 𝑥𝑖𝑗 and 𝑦𝑟𝑗 are the 𝑖𝑡ℎ input and 𝑟𝑡ℎ output for DMUj, 

respectively, for 𝑖 = 1, … , 𝑚 and 𝑟 = 1, … , 𝑠.  Also, Suppose that 𝑐𝑜 = (𝑐1𝑜, … , 𝑐𝑚𝑜) is the unit cost 

vector. Färe et al. [21] proposed model (1) to obtain a measure of cost efficiency, when the input and 

output data are known exactly. 

min 𝑐𝑜𝑥

s. t.
∑ 𝜆𝑗𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑥, 𝑖 = 1, … , 𝑚,

∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜, 𝑟 = 1, … , 𝑠,

𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛.

  

 

(1) 

Assume that 𝑥∗ is an optimal solution for model (2), the cost efficiency of 𝐷𝑀𝑈𝑜 was defined as follows 

by Färe et al. [21]: 

(2) 
𝐶𝐸𝑜 =

𝑐𝑜𝑥∗

𝑐𝑜𝑥𝑜
 

 

2.2 The efficiency evaluation in interval DEA 
 

Consider a system of 𝑛 DMUs, 𝐷𝑀𝑈𝑗, 𝑗 = 1, … , 𝑛, with the input vector 𝑥𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) and the 

output vector 𝑦𝑗 = (𝑦1𝑗 , … , 𝑦𝑠𝑗). Also, suppose that the input and output values are not deterministic 

for all units and 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈] and 𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ] in which the lower and upper bounds are positive 

and finite values. Wang et al. [57] formulated models (3a) and (3b) to evaluate the lower and upper 

bounds for the efficiency of 𝐷𝑀𝑈𝑜.  

The Lower Efficiency Score:  

𝐸𝑜𝑜
𝐿 = max ∑ 𝜇𝑟𝑦𝑟𝑜

𝐿𝑠
𝑟=1

s. t.
∑ 𝑤𝑖𝑥𝑖𝑜

𝑈𝑚
𝑖=1 = 1,

∑ 𝜇𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1 − ∑ 𝑤𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1 ≤ 0, ∀𝑗,

𝑤𝑖 , 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

  

 

 

 

 

 

(3a) 

The Upper Efficiency Score:  

𝐸𝑜𝑜
𝑈 = max ∑ 𝜇𝑟𝑦𝑟𝑜

𝑈𝑠
𝑟=1

s. t.
∑ 𝑤𝑖𝑥𝑖𝑜

𝐿𝑚
𝑖=1 = 1,

∑ 𝜇𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1 − ∑ 𝑤𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1 ≤ 0, ∀𝑗,

𝑤𝑖, 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

  

 

 

 

 

(3b) 

where 𝜀 is a non-Archimedean.  
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3 The stability radius of the cost efficiency of units with interval data 
 

This section proposes some models to determine the stability radius of the cost efficiency of units with 

interval data. We deal with a set of DMUs, 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛, with 𝑚 inputs 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈], 𝑖 =

1, … , 𝑚, and 𝑠 outputs 𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ], 𝑟 = 1, … , 𝑠. Also, Suppose that 𝑐𝑜 = (𝑐1𝑜, … , 𝑐𝑚𝑜) is the unit 

cost vector. In the following, we determine the minimal cost of 𝐷𝑀𝑈𝑜 to produce its current outputs in 

the absence of 𝐷𝑀𝑈𝑜. For this purpose, based on the idea of Anderson and Peterson [3], we eliminate 

the unit under evaluation, 𝐷𝑀𝑈𝑜, from the set of the observed units with interval data and reformulate 

models (4) to obtain the minimal cost of 𝐷𝑀𝑈𝑜 to produce its current outputs in the absence of 𝐷𝑀𝑈𝑜. 
 

𝑧∗ = min 𝑐𝑜𝑥

𝑠. 𝑡.
∑ 𝜆𝑗𝑥𝑖𝑗

𝑛
𝑗=1,𝑗≠𝑜 ≤ 𝑥𝑖 , 𝑖 = 1, … , 𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1,𝑗≠𝑜 ≥ 𝑦𝑟𝑜, 𝑟 = 1, … , 𝑠

𝑥 ≤ 𝑥𝑜, 𝑥 ≥ 0,
𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛,

  

 

 
 
 
 

(4) 

where 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈], 𝑖 = 1, … , 𝑚 and 𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ], 𝑟 = 1, … , 𝑠. It is clear that the units with impre-

cise data may not have constant minimal cost for generation the outputs. In the other word, the optimal 

value of model (4) may not be unique for all possible values of 𝑥𝑖𝑗(𝑖 = 1, … , 𝑚) and 𝑦𝑟𝑗(𝑟 = 1, … , 𝑠). 

Therefore, we propose two models (5a) and (5b) to determine the upper and lower bounds for the min-

imal cost of 𝐷𝑀𝑈𝑜 to generate its current outputs in the absence of 𝐷𝑀𝑈𝑜. 

The Lower Bound for the Minimal Cost:  

𝑧𝐿 = min 𝑐𝑜𝑥𝑙

𝑠. 𝑡.

∑ 𝜆𝑗𝑥𝑖𝑗
𝐿

𝑛

𝑗=1,𝑗≠𝑜

≤ 𝑥𝑖
𝑙 , 𝑖 = 1, … , 𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑈

𝑛

𝑗=1,𝑗≠𝑜

≥ 𝑦𝑟𝑜
𝐿 , 𝑟 = 1, … , 𝑠

𝑥𝑙 ≤ 𝑥𝑜
𝑈 , 𝑥𝑙 ≥ 0,

𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛.

 

 

 

 

 

 

(5a) 

 
 

 

The Upper Bound for the Minimal cost:  

 

𝑧𝐿 = min 𝑐𝑜𝑥𝑙

𝑠. 𝑡.
∑ 𝜆𝑗𝑥𝑖𝑗

𝐿𝑛
𝑗=1,𝑗≠𝑜 ≤ 𝑥𝑖

𝑙 , 𝑖 = 1, … , 𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑈𝑛

𝑗=1,𝑗≠𝑜 ≥ 𝑦𝑟𝑜
𝐿 , 𝑟 = 1, … , 𝑠

𝑥𝑙 ≤ 𝑥𝑜
𝑈, 𝑥𝑙 ≥ 0,

𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛.

  

 

 

 

 

 

(5b) 

 
  

In model (5a) the levels of inputs and outputs are adjusted in unfavourably situation of the evaluated 

unit, 𝐷𝑀𝑈𝑜, and in favourably situation of the other units. Therefore, model (5a) determines the lower 

bound for the minimal cost of 𝐷𝑀𝑈𝑜. In model (5b) the levels of inputs and outputs are adjusted in 

favourably situation of the evaluated unit, 𝐷𝑀𝑈𝑜, and in unfavourably situation of the other units. 
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Hence, model (5b) determines the upper bound for the minimal cost of 𝐷𝑀𝑈𝑜. Therefore, 𝑧∗ ∈ [𝑧𝐿 , 𝑧𝑈]. 
 

3.1  The proposed model to measure the stability radius  
 

In this section, we propose two models to determine the interval stability radiuses of the cost efficiency 

of units with interval data by using the optimal solutions of models (5a) and (5b). For this purpose, we 

consider the pre-determined vectors and propose models to determine the maximum possible movement 

along these directions such that the lower bound and upper bounds for the minimal cost of units do not 

change. Hence, the movement vectors 𝑔1 = (
−𝑥𝑜

0
), 𝑔2 =  (

0
𝑦𝑜

) and  𝑔3 = (
−𝑥𝑜

𝑦𝑜
) are defined and the 

inputs and the outputs of 𝐷𝑀𝑈𝑜 are disturbed along these directions for determining the stability radius 

of the minimal cost of 𝐷𝑀𝑈𝑜. In the following, we consider the direction vectors 𝑔𝑖 = (
𝑔𝑥

𝑔𝑦
) , 𝑖 = 1,2,3, 

and formulates models (6a) and (6b) to determine the maximum possible movement along these direc-

tion vectors such that the lower bound and upper bounds for the minimal cost of 𝐷𝑀𝑈𝑜 do not change.  

The Stability Radius of the Lower Bound of the Minimal Cost of 𝐷𝑀𝑈𝑜:  

𝜃𝐿 = max 𝜃
𝑠. 𝑡.
∑ 𝜆𝑗𝑥𝑖𝑗

𝐿𝑛
𝑗=1,𝑗≠𝑜 ≤ 𝑥𝑖𝑜

𝑈 + 𝜃𝑔𝑖𝑥 , 𝑖 = 1, … , 𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑈𝑛

𝑗=1,𝑗≠𝑜 ≥ 𝑦𝑟𝑜
𝐿 + 𝜃𝑔𝑟𝑦, 𝑟 = 1, … , 𝑠

𝐶(𝑥𝑜
𝑈 + 𝜃𝑔𝑥) ≤ 𝐶𝑥𝑙∗,

𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛.

  

 

 

 

 

(6a) 

The Stability Radius of the Upper Bound of the Minimal Cost of 𝐷𝑀𝑈𝑜:  

𝜃𝐿 = max 𝜃
𝑠. 𝑡. (6𝑏)

∑ 𝜆𝑗𝑥𝑖𝑗
𝑈𝑛

𝑗=1,𝑗≠𝑜 ≤ 𝑥𝑖𝑜
𝐿 + 𝜃𝑔𝑖𝑥 , 𝑖 = 1, … , 𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝐿𝑛

𝑗=1,𝑗≠𝑜 ≥ 𝑦𝑟𝑜
𝑈 + 𝜃𝑔𝑟𝑦, 𝑟 = 1, … , 𝑠

𝐶(𝑥𝑜
𝐿 + 𝜃𝑔𝑥) ≤ 𝐶𝑥𝑢∗,

𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛,

  

 

 

 

 

(6b) 

 

where 𝑥𝑙∗ and 𝑥𝑢∗ are the optimal solutions of models (5a) and (5b), respectively. Model (6a) is solved 

for three detection vectors 𝑔1 = (
−𝑥𝑜

0
) , 𝑔2 =  (

0
𝑦𝑜

) and 𝑔3 = (
−𝑥𝑜

𝑦𝑜
) and the minimum amount of 𝜃𝐿, 

obtained by considering these direction vectors, are introduced as the stability radius of the lower bound 

for the minimal cost of 𝐷𝑀𝑈𝑜. Hence, model (6a) determines the step length 𝜃𝐿 such that the lower 

bound for the minimal cost of 𝐷𝑀𝑈𝑜 does not change along the directions 𝑔𝑖 = (
𝑔𝑥

𝑔𝑦
) , 𝑖 = 1, 2,3.  Sim-

ilarly, model (6b) is solved for three detection vectors 𝑔1 = (
−𝑥𝑜

0
) , 𝑔2 =  (

0
𝑦𝑜

) and 𝑔3 = (
−𝑥𝑜

𝑦𝑜
) and 

the minimum amount of 𝜃𝑈, obtained by considering these direction vectors, are introduced as the sta-

bility radius of the upper bound for the minimal cost of 𝐷𝑀𝑈𝑜. Hence, model (6b) determines the step 

length 𝜃𝑈 such that the upper bound for the minimal cost of 𝐷𝑀𝑈𝑜 does not change along the directions 

𝑔𝑖 = (
𝑔𝑥

𝑔𝑦
) , 𝑖 = 1, 2,3.  
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4 Numerical example  

In this section, the proposed models are illustrated in a numerical example with five DMUs and a case 

study, reported in Mostafaee and Saljooghi [39], with 20 DMUs. 
 

Example 1: Consider five decision making units reported in Table 1. Each DMU consumes two inputs 

to produce two outputs. The last two columns of Table 1 show the input prices for all DMUs. In this 

example, the vector of input prices is not the same for all DMUs.  

 

Now, we apply the proposed approaches to determine the stability radius of the lower bound and upper 

bounds for the minimal cost of units in the presence of interval data. Hence, models (5a) and (6a) are 

solved to obtain the lower bound of the minimal cost of units and the stability radius of it.  
 

 Table 2: The Results of Models (5a) and (6a): Example 1 

 

 Table 3: The Results of Models (5b) and (6b) ): Example 1 

 

The results are reported in Table 2. The second and the third columns of Table 2 show the first and the 

second components of the input vector obtained by model (5a), respectively. The fourth column of this 

table reports the optimal value of model (5a) and the fifth column of Table 2 shows the stability radius 

of the lower bound for the minimal cost of DMUs in the presence of interval data. Similarly, models 

(5b) and (6b) are solved to obtain the upper bound for the minimal cost of units and the stability radius 

of it. The results are reported in Table 3. The second and the third columns of Table 6 show the first 

and the second components of the input vector obtained by model (5b), respectively. The fourth column 

of this table reports the optimal value of model (5b) and the fifth column of Table 3 shows the stability 

radius of the upper bound for the minimal cost of DMUs with interval data.  
 

Example 2:  In this example, the results of applying our proposed method to the dataset in Mostafaee 

and Saljooghi [39] are presented. This dataset has 20 decision making units with three inputs to produce 

five outputs. The data of the input ranges and the input prices for these units have been listed in Table 

4.  The data of the output ranges for these units have been listed in Table 5. Now, we apply our proposed 

Table 1: The Data of Five DMUs in Example 1. 

DMU 𝑥1
𝐿 𝑥1

𝑈 𝑥2
𝐿 𝑥2

𝑈 𝑦1
𝐿  𝑦1

𝑈  𝑦2
𝐿  𝑦2

𝑈  𝑐1 𝑐2 

1 12 15 0.21 0.48 138 144 21 22 100 50 

2 10 17 0.1 0.7 143 159 28 35 110 40 

3 4 5 0.16 0.35 157 198 21 29 105 42 

4 19 22 0.12 0.19 158 181 21 25 107 50 

5 14 15 0.06 0.09 157 180 28 40 111 47 

DMU 𝑥1
𝑙  𝑥2

𝑙  𝑧𝐿 𝜃𝐿 

1 2.90 0.12 295.45 0.6348 

2 3.86 0.15 431.01 0.6298 

3 9.87 0.10 1040.94 0.0000 

4 3.19 0.13 347.92 0.4138 

5 3.86 0.15 435.95 0.0000 

DMU 𝑥1
𝑢 𝑥2

𝑢 𝑧𝑈 𝜃𝑈 

1 5.24 0.37 542.14 0.0850 

2 8.33 0.58 940.00 0.0000 

3 18.92 0.11 1991.07 0.0000 

4 5.95 0.42 657.74 0.0519 

5 9.52 0.67 1088.48 0.0000 
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method to determine the stability radius for the cost efficiency for this data set. Hence, models (5a) and 

(6a) are solved and the results are reported in Table 6. The second, the third and the fourth columns of 

Table 6 show the first, the second and the third components of the input vector obtained by model (5a), 

respectively.  
 

Table 4: The Input Ranges and the Input Prices of Twenty DMUs in Example 2. 

DMU 𝑥1𝑗
𝐿  𝑥1𝑗

𝑈  𝑥2𝑗
𝐿  𝑥2𝑗

𝑈  𝑥3𝑗
𝐿  𝑥3𝑗

𝑈  𝑐1 𝑐2 𝑐3 

1 8254.56 8263.56 30.26 45.09 4847 5007 12 2 11 

2 3600.53 38910.53 17.69 20.78 9005 10,032 11 1 12 

3 5682.21 5697.21 17.47 19.39 15,823 17,101 10 4 14 

4 512.76 600.76 17.8 25.18 18,319 21,305 14 3 12 

5 12495.58 12531.58 15.39 21.35 1886 1875 14 1 14 

6 11189.68 13193.68 19.02 34.3 14,527 14,533 14 1 13 

7 771.61 809.64 16.34 20.12 13,977 14,056 12 2 13 

8 4341.02 8347.33 27.75 40.34 9224 9618 14 0.5 12 

9 1457.18 1958.18 19.73 20.01 9786 9961 12 4 11 

10 9092.21 9306.25 11.89 25.89 8085 8268 10 2 10 

11 3155.11 4195.11 20.27 22.08 1326 1345 11 3 14 

12 8625.98 12356.03 22.5 32.45 4764 5543 12 1 14 

13 16278.93 16679.45 24.23 30.23 9326 11,329 12 2 12 

14 5010.87 5113.68 21.62 22.62 5814 5837 13 4 10 

15 4011.24 4242.24 37.36 30.65 35,310 35,563 14 3 13 

16 8702.27 8831.33 23.7 30.17 226,017 226,345 12 1 10 

17 6927.43 8990.65 24.72 30.17 9852 10,063 13 2 10 

18 850.67 1221.67 13.43 20.43 12,691 12,736 14 1 12 

19 6181.84 10875.84 28.12 32.32 17,507 18,205 11 2 14 

20 1261.57 2270.57 20.81 22.11 30,253 30,916 11 4 12 

  

 Table 5: The Output Ranges of Twenty DMUs in Example 2. 

DMU 𝑦1
𝐿  𝑦1

𝑈 𝑦2
𝐿  𝑦2

𝑈 𝑦3
𝐿  𝑦3

𝑈 𝑦4
𝐿  𝑦4

𝑈 𝑦5
𝐿  𝑦5

𝑈 

1 1,262,798 1,291,506 325,071 327,038 1,092,933 1,154,312 93128.57 93246.34 7575.97 7670.33 

2 302,316 332,725 38,509 41,267 66,399 66,450 20179.39 20559.37 328.52 346.22 

3 652,583 661,236 123,230 123,580 1,517,439 1,517,687 78297.51 88395.69 2409.54 2412.77 

4 737,317 737,547 261,702 26,232 301,968 302,573 28734.36 34286.21 304.52 317.21 

5 365,134 367,007 15,612 15,786 80,153 80,893 365,134 11,996 279 305 

6 537,502 567,669 51,363 51,702 229,105 435,438 21798.65 23112.45 489.53 571.73 

7 205,122 206,143 54,177 54,196 757,565 759,043 47568.64 47989.7 431.85 448.45 

8 243,663 247,809 264,451 264,685 728,856 734,568 55581.36 56882.25 1727.73 1745.78 

9 279,091 280,974 179,083 185,632 945,771 949,551 40436.67 41200.9 445.82 449.06 

10 383,585 386,578 13,135 13,164 1,464,666 1,465,112 524689.8 526284.4 90.05 92.37 

11 261,142 261,829 144,716 147,218 604,120 610,986 12480.8 12595.35 1161.27 1201.35 

12 401,836 402,379 61,311 61,717 151,190 151,345 16264.01 20345.15 262.08 265.18 

13 569,375 578,903 456,902 498,437 275,812 276,361 47051.4 47906.2 848.44 849.34 

14 261,658 262,090 220,581 221,381 735,733 737,256 19613.36 22890.38 1224.77 1235.79 

15 347,687 348,762 285,715 265,945 462,277 463,478 131041.6 131732.6 1925.56 1937.06 

16 433,362 455,660 80,860 82,360 304,659 332,673 186072.3 187890.4 1286.52 1311.73 

17 528,743 570,965 301,168 301,464 4,146,106 4,156,223 11096.29 11245.62 4291.84 4330.22 

18 396,342 425,679 177,633 177,955 32,968 33,345 9463.04 10371.8 109.15 130.79 

19 537,025 537,327 328,473 357,623 1,662,874 1,663,364 62951.63 63045.46 1585.29 1711.12 

20 876,301 877,402 104,341 109,004 1,207,702 1,218,342 25554.16 28095.24 1094.32 1294.32 
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The fifth column of this table reports the optimal value of model (5a) and the sixth column of Table 6 

shows the stability radius for the lower bound of the minimal cost of units. Similarly, models (5b) and 

(6b) are solved and the results are reported in Table 7. 
 

Table 6: The Results of Models (5a) and (6a) 

DMU 𝑥1
𝑙  𝑥2

𝑙  𝑥3
𝑙  𝑧𝐿 𝜃𝐿 

1 20127.59 128.10 8570.23 336059.72 0.0000 

2 1932.23 7.08 1134.59 34876.65 0.4916 

3 5440.77 18.15 4751.11 120995.88 0.0446 

4 6085.75 30.38 3085.38 122316.19 0.0000 

5 6834.67 10.48 5879.95 178015.13 0.0000 

6 3435.40 12.59 2017.24 74332.29 0.4629 

7 2241.93 6.54 2299.09 56804.43 0.0000 

8 6220.47 37.04 2881.85 121687.31 0.2099 

9 4291.96 24.38 2331.57 77248.32 0.0000 

10 46447.76 170.27 27273.69 737555.04 0.0000 

11 3632.11 13.29 2307.33 72295.71 0.0000 

12 2568.30 9.42 1508.08 51942.23 0.5502 

13 9925.67 63.06 4236.10 170067.37 0.0000 

14 4739.83 30.39 1998.03 81719.64 0.0441 

15 7911.59 41.38 4190.48 165362.74 0.0000 

16 4826.27 11.03 3686.83 94794.51 0.3562 

17 21410.34 137.55 8998.14 368590.96 0.0000 

18 3948.07 22.78 1815.35 77079.92 0.0000 

19 7674.04 44.74 4002.11 140533.55 0.1669 

20 5982.48 21.85 4186.31 116130.44 0.0000 

 

  Table 10: The Results of Models (5b) and (6b) 

DMU 𝑥1
𝑢 𝑥2

𝑢 𝑥3
𝑢 𝑧𝑈 𝜃𝑈 

1 21568.61 93.04 15084.33 424937.09 0.0000 

2 2177.30 11.88 1319.26 39793.28 0.2525 

3 6216.85 27.31 5062.13 133147.65 0.0000 

4 4826.40 26.34 2924.38 102741.08 0.0000 

5 2401.64 13.10 1455.18 54008.63 0.0820 

6 3714.74 20.27 2250.81 81287.17 0.0636 

7 2594.91 9.78 2388.06 62203.28 0.0000 

8 7066.08 38.03 3498.90 140930.81 0.0000 

9 4931.89 24.93 3249.12 95022.70 0.0000 

10 20866.54 40.39 5961.46 268360.80 0.0000 

11 3791.82 19.99 2468.40 76327.50 0.0000 

12 2633.11 14.37 1595.43 53947.74 0.2357 

13 14361.33 75.71 4782.58 229878.27 0.0000 

14 6349.85 33.51 2173.38 104416.00 0.0000 

15 7717.19 39.45 4956.28 172590.70 0.0260 

16 5094.07 20.06 3903.75 100186.50 0.1317 

17 28861.51 151.91 9253.33 468036.65 0.0000 

18 4979.33 26.45 1960.97 93268.76 0.0000 

19 10930.66 55.60 4039.12 176896.07 0.0000 

20 6429.77 32.73 4470.19 124500.69 0.0000 
 

The second, the third and the fourth columns of Table 7 show the first, the second and the third compo-

nents of the input vector obtained by model (5b), respectively. The fifth column of this table reports the 
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optimal value of model (5b) and the sixth column of Table 7 shows the stability radius of the upper 

bound for the minimal cost of units.  

 

5 Conclusion 
 

This study considered the stability radius of the cost efficiency of units with interval data based on the 

sensitivity analysis. For this purpose, we eliminated the unit under evaluation and proposed some mod-

els to evaluate this unit. The most important feature of the proposed models is that these models can be 

applied to determine the stability region in which the efficiency of units does not change. Finally, we 

proposed some models for introducing the stability radius of cost efficiency of units in the presence of 

interval data. The proposed approaches can help the managers to identify the permissible changes in the 

data of units such that their performances remain unchanged.  
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