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Abstract— Software testing is an expensive and time-

consuming process. These costs can be significantly reduced 

using automated methods. Recently, many researchers have 

focused on automating this process using search algorithms. 

Many different methods have been proposed, all of which using a 

means of heuristic or meta-heuristic search algorithms. The main 

problem with these methods is that they are usually stuck in local 

optima. In this paper, to overcome such a problem, we have 

combined the firefly algorithm (FA) and asexual reproduction 

optimization algorithm (ARO). FA is a bio-inspired algorithm 

that is very efficient at exploitation and local searches; however, 

it suffers from poor exploration and is prone to local optima 

problem. On the other hand, ARO can be used for escaping from 

local optima. For this combination, we have inserted ARO into 

the steps of FA for increasing the population diversity. We have 

utilized this combination for automatic test case generation with 

the aim of covering all finite paths of the control flow graph. To 

evaluate the performance of the proposed method, we have 

utilized it for generating test cases for a number of programs. 

Results have indicated that, while giving similar results in terms 

of the test coverage, the proposed method is significantly better 

than the existing state of the art algorithms in terms of the 

number of fitness evaluations. Compared algorithms are FA, 

ARO, traditional genetic algorithm (TGA), adaptive genetic 

algorithm (AGA), adaptive particle swarm optimization (APSO), 

hybrid genetic tabu search algorithm (HGATS), random search 

(RS), differential evolution (DE), and hybrid cuckoo search and 

genetic algorithm (CSGA). 

Keywords— Software Test; Test Data Generation; Search 

Algorithms; Firefly Algorithm; Asexual Reproduction Optimization 

Algorithm. 

1.  INTRODUCTION 

Software testing is one of the most important ways of 
software quality assurance. When a software is developed, it 
should be reviewed and be tested. The test stage is the most 
sensitive stage of the software development process and 
embraces half of the software development costs [1]. Despite 
its necessity, testing does not add any new functionality to the 
software, and thus, great efforts have been made to reduce its 
costs by automating it. In the last decade, various methods have 
been introduced for automatic software testing, all of which 
aimed at maximizing error detection by producing the least 
number of test data. In the process of generating test data, we 

need a clue for determining how much test data must be 
generated [2]. This clue is referred to as the coverage criterion. 
Different criteria have been defined in literature so far, and 
selecting one is an engineering problem in which one has to 
consider his/her time and budget. Coverage criteria are 
classified into the following four classes: input space 
partitioning, graph coverage, logic coverage, and syntax-based 
[2].  

According to the selected coverage criterion and its class, 
input data for the test generation process is determined. For 
instance, for input space partitioning, this data is the number 
and types of input arguments of the software under the test 
(SUT). Or, for graph coverage class, input data is the control 
flow graph of the SUT. Using this input data, the problem is to 
find a set of test cases that can satisfy the selected coverage 
criterion. This is a search problem within a complex and large 
search space [3]. Therefore, heuristic and meta-heuristic search 
algorithms can be utilized here [4]. For this paper, we have 
considered the “Path Coverage” criterion, which is a criterion 
reside in the graph coverage class. The specific problem is to 
find a test set that can cover all finite paths within the control 
flow graph of the SUT. To solve this problem, a combination 
of the firefly algorithm and the asexual reproduction 
optimization algorithm has been used. FA is a swarm 
intelligence algorithm that is inspired by the behavior of 
fireflies. It is one of the most successful yet low-cost 
algorithms. However, it may trap in local [5, 6]. To overcome 
this problem, in this paper, we have suggested combining FA 
witch ARO [7]. In this combination, ARO has been used to 
diversify the population of FA. The   . irefly algorithm is 
selected due to its power in solving the modern numerical 
optimization problems, in particular for the NP-hard problems 
[1] [2]. As compared to particle swarm optimization and 
genetic algorithm techniques [1], the Firefly Algorithm reduces 
the overall computational effort by 86% and 74%, respectively 
[2]. On the other hand, the asexual reproduction optimization 
algorithm is considered for its high speed and the absence of 
any additional parameters [3]. 

The performance and efficiency of the proposed method 
have been evaluated using a number of SUTs. Results have 
been compared with the traditional FA, ARO, AGA [8], TGA 
[9], APSO [10], HGATS [11], RS (it is the simplest algorithm 
which randomly generates a large number of possible solutions 
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and chooses better solutions), DE [12], and CSGA [13] in 
terms of a number of evaluations. A significant advantage of 
the proposed method over existing methods in terms of the 
aforementioned criteria have been demonstrated in these 
results. 

The rest of the paper is organized as follows. Section 2 
discusses related work. FA and ARO algorithms are briefly 
presented in Section 3. The proposed method is elaborated in 
Section 4. Section 5 provides experimental results. Finally, 
Section 6 concludes the paper. 

2. RELATED WORKS 

There are different methods for designing test data that can 
be divided into two methods: white box (structural test) and 
black box (functional test) [14]. In the white box approach, the 
program code is used to design the test and we are dealing with 
the internal mechanism of a system, while in the black box 
approach it focuses only on the outputs of the SUT. This 
method, which is based on requirements specifications, does 
not require code execution and can help identify any 
ambiguities and inconsistencies in the requirements 
specifications. Among the black box solutions, we can mention 
the model-based test which has been used for many years in 
industrial and academic research [15]. This solution, by 
analyzing the model of the system under test and considering 
the coverage criterion, is able to systematically produce test 
items that cover certain features of the model. 

From the point of view of algorithm type, test data 
production algorithms can be divided into 3 categories [16]: 

• Random 

• Search based (white box testing or structural 
testing( 

• Model based (black box test) 

2-1. Random 

Random testing was one of the first works in this field and 
due to the development of other methods, this method has 
become very inefficient in recent years. The purpose of this 
paper is to compare this method with other methods. Random 
testing is the easiest approach for test case generation. Random 
testing generates test data for any type of program, as it is 
independently generated from their operational profile. It is not 
able to cover all types of faults since the random generation of 
test case may not execute some statements having faults. The 
probability of finding at least one error in software by random 
testing depends only on the number of test points [17]. Random 
testing chooses test data set randomly from uniform 
distribution and perform testing using these test data set. 
Random testing program is viewed as a worst case of program 
testing because of its inability to find failure in the system. A 
mixed final testing was recommended that merges random 
testing with value based testing [18]. The easiest and cheaper 
technique for test data generation is the random testing which 
require less effort and time for test data generation [19]. 

2-2. Search based 

Multi-population genetic algorithm has been introduced in 
recent years as an improved genetic algorithm, which has 
shown good performance. The multi-population approach can 
prevent the algorithm from being trapped in local minimums 
and premature convergence, on the other hand, the multi-

population model can improve the quality of the solutions and 
improve the speed of genetic algorithm evolution. In this 
method, the multi-population genetic algorithm is used to 
obtain the optimal solution, since two child populations and 
one main population are used and the child populations run in 
parallel. Experiments have shown that this method improves 
the convergence rate, search time, and percentage of coverage 
and is better than single population genetic algorithm and 
random search [20].  There are two different ways of adjusting 
parameter values (recombination rate and mutation rate) of the 
genetic algorithm: adjusting parameter values before the 
optimization process, or by dynamically adjusting parameters 
during execution. In this method, the genetic algorithm 
improved by maintaining population diversity is used to 
generate test data that dynamically obtains the recombination 
rate and mutation rate of the chromosomes with the similarity 
between the chromosomes and the amount of chromosomes in 
each step of the algorithm. Genetic algorithm operators are 
essential to obtain the next generation of a population and to 
replicate evolution. The classical genetic algorithm encounters 
the recession phenomenon in its later stages, with constant 
values of recombination rate and mutation due to population 
diversity. In the recombination operator, if the rate of this 
operator is high, the chromosome suitability values may be 
easily corrupted, and if the rate of this operator is low, no new 
offspring may be created, so this rate is better given the degree 
of population variation and the average fitness of the 
population chromosomes in each calculate the stage of 
implementation. Experimental results show that this method is 
more effective than similar methods and random method for 
path testing. Although the programs selected in this article are 
in C, this method can be used in another language [8]. Mack 
Mann and Pradeep Tamar introduced a genetic algorithm-based 
method for generating software test data and their results were 
compared with the stochastic method. In this paper, the impact 
of early population on the efficiency of genetic algorithm is 
investigated. Their experiments showed that their proposed 
method is more efficient than the random method and requires 
less time to generate software test data, and by increasing the 
initial population size, more search space can be created by 
increasing diversity, making it less likely the algorithm should 
be local optimized [21]. Rijwan Khan introduced a method for 
the automated generation of software test data by combining 
genetic algorithm and cuckoo search algorithm. Their goal was 
to reduce the time and cost of producing test data. Cuckoo 
search algorithms have been used to improve chromosomes. 
Their experiments have shown that the combination of the two 
algorithms is better than applying each of them separately 
[13].In this paper [22], the genetic algorithm and the simulated 
annealing algorithm are used to automate the production of test 
data based on the path coverage criteria and their results are 
compared. Their results show that the genetic algorithm is 
simulated more efficiently than the simulated annealing 
algorithm by correctly adjusting the parameters and achieving 
maximum coverage in the least number of iterations. 

In [23], a method for generating test data based on the 
combination of genetic algorithm and particle swarm 
optimization algorithm for automating test data generation 
automation based on path coverage criteria is presented. The 
efficiency of the proposed methods has been analyzed with 
programs of different and complex sizes. Finally, this method 
compares the combination with the genetic algorithm and the 
particle swarm optimization algorithm, and they have shown 
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that their combination works better than any of these methods. 
Another method for generating dynamic test data is based on 
particle swarm optimization algorithm, which defines the 
condition of the fitness function for each statement, and only 
the conditional statements are considered in this method. This 
method works better than random search and tabu search [24, 
25, 26]. It is presented in a way to generate test data using 
cuckoo search algorithms and tabu search. Tabu search is used 
to reduce the execution time of the algorithm. This method is 
better in terms of execution time and performance than particle 
swarm optimization algorithms and bees algorithm [27, 28]. 

Sahin and Akay have presented a comparison between 
important meta-heuristics algorithms used for automatic test 
data generation [29]. These algorithms have been compared 
based on different fitness functions (path-based, dissimilarity-
based and approximation level + branch distance). This is due 
to the fact that different fitness functions affect the behavior of 
the algorithm in the search space. Results have shown that 
meta-heuristics strategies were very well suited for generating 
test data. 

Kumar et. al. have introduced a method for automatically 
generating test data using a combination of GA and PSO  [30]. 
Their goal was to overcome the weaknesses of both algorithms. 
They designed a new fitness function based on the concept of 
dominance relations, branch weight and branch distance to a 
better search. Their proposed method have been compared with 
GA, PSO, ant colony optimization, and differential evolution 
based on two criteria; average number of generations and 
average percentage of coverage. The results of their 
experiments have shown that hybrid PSO-GA gives better 
results compared to the compared algorithms in the field of test 
data generation. 

Jain et. al. have introduced a new 2-step inharmonious 
approach based on GA and PSO to class testing using data flow 
criteria [31]. A set of classes are further tested to study 
performance of the proposed method in terms of the percentage 
of coverage and the execution time. The results of their 
experiments have shown that their proposed method is better 
than random method in terms of coverage ratio achieved and 
iterations performed. 

In [32] using a combination of firefly algorithm and graph 
reduction, the standard firefly algorithm has been extended to 
generate optimal discrete and independent paths for software 
testing. The proposed approach tries to minimize the number of 
test data by optimizing the test paths for test data. Their results 
showed that firefly algorithm based approach has produced the 
optimal paths below a given number of independent paths and, 
it can minimize the test efforts and provides the best critical 
test paths. 

2-3. Model based 

In this method, software systems models are used to extract 
the test set. In this type of method, the focus is on behavioral 
testing, a function, or black box that tests the program based on 
observable input and output behavior. In this method, SUT is 
considered as a black box testing that receives inputs and 
generates outputs. SUT has an internal mode that changes with 
input processing and output generation. The model describes 
possible input and output sequences at a certain level of 
abstraction and links to implementation through a connection. 
A selection algorithm extracts test data from the model. The 

use of a test criterion based on a test hypothesis justifies the 
accuracy of the selection. 

This method has been used in [33]. The authors have 
utilized UML state machine diagrams for automatically 
generating test scenarios for concurrent and composite states. 
The firefly algorithm has been used only for prioritizing test 
scenarios. 

3. BRIEF EXPLANATIONS OF USING ALGORITHMS IN THE 

PAPER 

Inspired by a natural phenomenon, meta-heuristic 
algorithms allow a very large search space to be intelligently 
explored. What is clever about this is that meta-heuristic 
algorithms do not navigate the entire search space; instead, 
they only navigate the part of the space where there is a good 
chance that a good enough point exits there. Brief descriptions 
of FA and ARO algorithm are given in the following sections. 

3-1. Asexual Reproduction Optimization Algorithm 

The asexual reproductive optimization is a meta-heuristic 
search method, in which, a single member (parent 
chromosome) is randomly generated and is then evaluated. The 
following operations are repeated: 

First, a string of genomes in the parent chromosome is 
randomly selected and mutated. The length of the selected 
string (g) is randomly selected within the range [1,L], where L 
is the length of the parent chromosome. The result of this 
mutation is referred to as the larva. Next, with a probability of 
pc, defined in (1) given below, the parent and the larva 
chromosomes are undergo a uniform recombination operation. 
The recombinant result is referred to as the bud chromosome. 

    
 

     
     (1) 

ARO is greedy in the sense that the child produced, either 
the larva or the bud, replaces his parent only if he is more fit. 
Main features of this algorithm are its high speed and the 
absence of any additional parameters. 

3-2. Firefly Algorithm 

The firefly algorithm is designed by modeling the 
luminosity characteristics of firefly worms [34]. To simplify 
the definition of this algorithm, the following three 
assumptions have been considered: 

1. All fireflies are of a kind and attract pairs to each other 
regardless of gender. 

2. Attractiveness is relative to their brightness. So for each pair 
of firefly worms, a worm that has less light is attracted to a 
worm that has more light. The absorption power is 
proportional to the intensity of their light and the intensity of 
the light decreases with increasing distance between the two 
worms. If the light intensity of the two worms is similar, 
their movement would be random. 

3. The brightness of firefly worms is determined by the value 
of the objective function. 

Since the attractiveness of a firefly worm is commensurate 
with the intensity of light being seen by nearby firefly worms, 
we can define the attractiveness of the worm i from the point of 
view of the worm j according to (2), given below. 
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         (2) 

Here,   , is the attractiveness of the firefly worm i at 

distance     and   is the light absorption coefficient.     

can be replaced by other functions such as      if     . 

The movement and absorption of worm i into worm j is 
determined according to (3), given below. 

            (     )              (3) 

   and    represent worms i and j respectively.   is a 

random value, within the range [0, 1]. 

4. THE PROPOSED METHOD 

Premature convergence is an important issue in the firefly 
algorithm. Studies have shown that there is a direct relationship 
between early and premature convergence and the population 
diversity [35, 36, 6, 37]. In the proposed method, we have 
modified FA so that its population is diversified using ARO. In 
what follows, we will first formulate the problem, and then, 
explain the proposed algorithm is detail. 

4-1. Formulation of the problem 

In the process of producing structural test data, we need 
criteria to determine how complete the generated data is for 
testing the software under the test. These criteria, referred to as 
coverage criteria, are defined based on the structure of the 
SUT. For example, the branch coverage criterion is one of the 
criteria in which the goal is to cover all branches of the SUT. 
Another criterion is the expression coverage, which aims to 
execute all program expressions. In this paper, we focus on the 
path coverage criterion, in which the aim is to cover all finite 
paths in the SUT. 

Finding all finite paths of the SUT can be carried out using 
the control flow graph (CFG) of the SUT. Every SUT can be 
represented by its CFG           , which is a directional 

graph. N is equal to the set of nodes, and E is equal to the set of 
directional edges    ,     is the initial node and     is the 

terminating node. Each node represents a linear sequence of 
program calculations being tested. Each edge     represents the 

transfer of SUT execution control from node ni to node nj. For 
example, Fig.1 shows the CFG associated with the SUT. 

The specific problem in this paper is to automatically 
generate input data that can test and cover all finite paths in the 
SUT, with the goal of minimizing the number of test cases. 
This is proved to be an NP-hard problem [43]. 

4-2. Population Initialization 

The first step in the FA algorithm is creating the first 
population randomly. The population consists of a number of 
firefly worms. Suppose the number of input parameters is m 
and the number of paths in the CFG is n. Then a worm which 
can represent a test set for a given SUT can be defined as: 

     [               ], 
      [                     ]. Each     is a sub-section 

of the worm which represents a test case, with the hope of 
covering path k in the CFG. Since there are n paths, thus 
k {1,2,…,n}. Each a_(ik,l) represents an input parameter of 
the SUT, thus            . Fig.2 shows an example of a 
worm. In other words, each worm represents a complete test 
set, which may or may not cover all paths within the CFG. 
According to this structure, a number of random worms are 
generated to form the initial population. 

4-3. Fitness Function 

After generating the initial random population, to determine 
the fitness of each worm, it is necessary to run the SUT n 

times, each time with a specific    . Executing SUT with a 

specific     indicates which path within the SUT is covered 

with the given input parameters [                     ]. 

The result of these executions determines to what extent xi 

covers paths in the CFG. The fitness of each worm is then 
calculated according to (4), given below. 

 

Fig 1: A sample SUT and its corresponding CFG. 
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Fig 2: A firefly worm which can be used for the test data generation problem 

                |                         | 

                   
              

 
     

                                       (4) 

4-4. Modifications Applied to the Basic FA 

The main modification is to ensure diversity in the 
population. Diversity can be defined according to Euclidean 
distance between individuals. However, if we only consider the 
distance for diversifying the population, we may neglect the 
fitness information of individuals. Therefore, in this paper we 
consider a population diversity metric that considers both 
distance and fitness information [38]. 

Definition 1: Dissimilarity: The Euclidean distance dij 
between the two worms xi and xj is considered as their 
dissimilarity, and is calculated according to (5), given below.  

    |     |   √∑           
  

                       (5) 

The distance of the worm xi with the whole population can 
be calculated according to (6). 

    ∑    
  
         (6), 

where ps is the population size. Then the distance of the 
population can be calculated according to (7), as given below. 

    ∑    
  
        (7) 

Definition 2: The average fitness of the population can be 
calculated according to (8). 

    
 

  
 ∑   

  
         (8) 

According to the values of D and f, a diversification process 
is executed in the following situations: 

• D is less than a predetermined fixed threshold 

• The value of D is not changed in subsequent number of 
generations 

• The value of f is not changed in subsequent number of 
generations 

If a diversification is required, then ARO algorithm is 
utilized for this purpose. Each individual xi in the population is 
passed into the ARO algorithm. It is first mutated to make a 
larva, and then, with a probability of pc is recombined with the 

larva to become the bud. Either of the larva or the bud is then 
replaced with the xi in the population. 

4-5. The Complete Algorithm 

Algorithm 1 presents the pseudo code of the proposed FA-
ARO algorithm. The initial population evolves according to the 
FA-ARO strategy, until one of the following two criteria is 
met: 

1. One firefly worm is discovered which covers all n paths 
of the given CFG. 

2. Maximum number of evaluations is reached. 

5. EXPERIMENTAL RESULTS 

5-1. Evaluation Metrics 

In this paper, we have utilized following evaluation criteria 
for evaluating the performance of the proposed method in 
comparison to existing state of the art methods: 

- Coverage Ratio: Defined as the fitness of the best 
individual. 

- FEvals: Number of fitness evaluations before finding the 
answer. 

5-2. Benchmark Programs 

To conduct experiments, several benchmark programs 
(SUTs) have been selected. The purpose of these benchmarks 
is to cover a variety of structures such as loops and conditions.  
For each SUT, we have described why it is considered here.  

SUT1- Quadratic Equation: In algebra, a quadratic 
function, a quadratic polynomial, a polynomial of degree 2, or 
simply a quadratic, is a polynomial function with one or more 
variables in which the highest-degree term is of the second 
degree [39]. This program takes three inputs. The number of 
finite paths within its CFG is 4. 

This SUT is utilized for checking if the proposed method is 
able to consider conditionals with specific values. The SUT has 
different paths for positive, negative, and zero deltas. The 
toughest path is the one with delta = 0, since there are very few 
cases in which delta can be equal to zero. 

SUT2- Triangle Classification: Triangles can be classified 
according to the lengths of their sides [40]: 

• All sides the same length (equilateral). 

• Two sides of equal length (isosceles). 

• All sides of different lengths (scalene). 

This program takes three inputs. The number of finite paths 
within its CFG is 3. This SUT is a simple one for which test 
cases could be found easily. However, it is a well-known 
benchmark in the field and thus, we have considered it here. 

SUT3- Binary Search: It is a technique for finding a numeric 
value from a set of ordered numbers. This method reduces the 
search range by half at each step, so the target is either soon 
found or it becomes clear that the search value is not in the list 
[41]. This program takes two inputs: a sorted array and the 
target value. Number of finite paths within the CFG of this 
program depends on the length of the input array. This SUT is 
considered here with the purpose of testing if the proposed 
method is able to provide test cases for recursive calls. 
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Algorithm 1 The proposed FA-ARO algorithm. 

1: Inputs 

    The SUT, n, m, ps (population size), max_ evaluations, diversity_threshold,   ,  ,   

    number of iteration (ARO algorithm), rounds of the run algorithm 

2: Output 

    Set of test data for the SUT 

3: Population = [ ] 

4: Sbest = [ ] 

5:  

6 number of evaluations = 0 

7: g = 0 

8: For i = 1 to ps do 

9:         xi = MakeRandomWorm(n, m) 

10:       compute fi according to the equation (4) 

11:Compute f according to the equation (8) 

12:  

13: While  (not all paths are covered) or (number of evaluations <  max_ evaluations ) 

14:       For i=1 to ps do 

15:            For j = 1 to ps do 

16:                   If fj > fi 

17:                             population= UpdatePosition (Population,i,j,   ,     ) 

18:            End 

19:      End 

20:      fitness = EvaluationPopulation (Population) 

21:      g=g +1 

22:      If g ==     rounds of the run algorithm: 

23:                

24:               g=0 

25:               Compute the  values according to the equation (8)      

26:      

27:               Compute the   values according to the equation (7) 

28:        

29:               If (   <  diversity_threshold) or  

                           (the value of   is not changed in subsequent generations) or 

                                            (the value of   is not changed in subsequent generations)  

30:                             

31:                            For i to ps do 

32:                                      xi= ARO(xi, number of iteration) 

33:              End   

34:        End  

35:        number of evaluations = number of evaluations + population size 

35: End 

 

SUT4- Fibonacci: Fibonacci sequence, such that each 
number is the sum of the two preceding ones, starting from 0 
and 1 [42]. This program takes one input. The number of finite 
paths within its CFG 4. The aim of considering this SUT here 
is to check for loops. 

SUT5- Find Area of a Triangle: This program takes three 
inputs. The number of finite paths within its CFG is 7. In this 
program, there are paths that must produce certain values that 
must pass nested conditions. 

SUT6- A Simple Calculator: This Program is a simple 
calculator that can add, subtract, multiply and divide two given 
numbers. This program takes three inputs. The number of finite 
paths within its CFG is 10. In the calculator program, nesting 
functions is considered. 

5-3. Parameter Settings 

Table 1 lists the various operator and parameter settings 
used for experiments in this paper. 

5-4. Experiments 

This experiment aims at showing the superiority of the 
proposed method compared with other existing methods in 
terms of both coverage ratio and the number of fitness 
evaluations. The experiment has been carried out over all six 
benchmark programs; SUT1 ~ SUT6. Each algorithm has been 
executed 50 times to obtain statistically significant results. 
Results of the experiment have been reported in Table 2 and in 
terms of FEvals and coverage ratio respectively. Table 2 
provides mean, standard deviation, and the P-value (t-test with 
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TABLE 1: PARAMETER SETTINGS. 

 

α=.05) for each algorithm per benchmark programs. In 
particular, p-value indicates the probability of error in 
accepting the validity of the observed results. For example, a p-
value of 0.0008 for the results of FA algorithm for SUT1, 
indicates that there is a .08% probability that the observed 
mean and STD are random. In general, the lower the p-value, 
the more accurate our result would be.  

Coverage ratio for all algorithms and all SUTs were 100%. 
It could be seen from Table 2 that the proposed FA-ARO 
algorithm substantially outperforms other existing algorithms 

in terms of the number of fitness evaluations. The main reasons 
for superiority of the FA-ARO over existing algorithms are its 
ability in escaping from local optima, with the help of ARO 
and its performance in improving individuals of the population 
with the help of FA. In TGA and AGA, no individual tries to 
improve itself. The only means of improvement is carried out 
through the mutation and crossover operations. However, in the 
proposed algorithm, each worm independently tries to improve. 
In ARO, in addition to the above mentioned problem, due to 
the lack of cooperation between individuals, the convergence 

Data range 
Population 

Representation 

Population 

Size 
Value Parameter/ Operator Algorithm 

 

100, 100]-[ 

 

integer 

 

 

 

 

 

 
1 
 
 
 

 

uniform Crossover type [7] ARO 

40 0.50 alpha 

[34] FA 1 gamma 
1    

0.50 alpha 

ARO-FA 
1 gamma 
1    

uniform Crossover type 
.9 Pc0 

AGA [8] 

.2 Pm0 

linear rank selection 

One point Crossover type 

One point Mutation type 

Range of [.4, .6] 𝜎 

.85 pc 

TGA [9] .15 pm 

 selection 

1.0 Wmax 

APSO [10] 
.4 Wmin 

2 C1 

2 C2 

.85 Pc 

HGATS [11] .12 Pm 

roulette wheel selection 

1 Mutation Scaling 

Factor: F 
DE [12] 

.9 Crossover Constant: 

CR 

.10 pc 

CSGA [13] 
.85 pm 

tournament 

selection 

selection 
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TABLE 2: EXPERIMENT RESULTS: FEVAL. 

 

    Program 

 

 

 

Algorithm 

 

 

SUT1 
 

SUT2 
 

SUT3 
 

SUT4 
 

SUT5 
 

SUT6 

FA 

 Mean 
 

20847.2 64721.6 3374.6 5450.4 17412.8 12920.4 

Std 
 

1691.42 5596.00 253.77 495.09 1226.69 796.12 

P-value 
 

0.152 0.0008 0.0 0.0 2e-07 2e-05 

ARO 

Mean 
 

23766.4 72076.5 2949.9 5007.1 13183.9 13988.2 

Std 
 

1952.73 7762.81 340.67 433.96 704.02 696.60 

P-value 
 

0.034 0.001 0.001 1e-06 1e-03 0.0 

FAARO 

Mean 
 

16120.8 33074.1 1221.1 1621.9 6988.0 6895.6 

Std 
 

1547.12 3177.51 114.98 104.07 439.30 506.55 

P-value 
 

1.0 1.0 1.0 1.0 1.0 1.0 

AGA 

Mean 
 

16879.2 36292.0 1486.6 2899.8 10464.7 10675.7 

Std 
 

2207.02 4156.05 182.54 208.01 574.80 443.84 

P-value 
 

0.844 0.666 0.391 0.0002 0.001 0.0001 

TGA 

Mean 
 

23095.2 63338.4 2755.2 6030.5 21945.6 11179.5 

Std 
 

2490.43 7583.93 302.09 494.95 1078.06 547.04 

P-value 
 

0.099 0.011 0.001 2e-08 0.0 0.0001 

APSO 

Mean 
 

16920.8 38819.2 2517.9 2036.8 8957.5 7474.4 

Std 
 

1558.55 3494.32 207.61 145.23 638.01 360.82 

P-value 
 

0.799 0.394 0.0002 0.106 0.078 0.516 

HGATS 

 

 

 

Mean 
 

17788.8 47557.6 2073.9 3748.4 18275.0 11901.1 

Std 
 

1589.25 4300.53 203.21 307.84 1617.53 700.86 

P-value 
 

0.599 0.060 0.012 1.34e-05 8e-06 0.0001 

RS 

Mean 
 

42191.2 102775.6 5610.5 6457.6 65388.8 22805.1 

Std 
 

4148.01 10743.18 549.40 652.66 4257.31 1106.56 

P-value 
 

8e-05 3e-05 0.0 1e-06 0.0 0.0 

DE 

Mean 
 

18576.0 45760.8 1821.96 3590.4 13689.6 10091.18 

Std 
 

1571.16 4350.41 188.34 285.12 1540.11 420.56 

P-value 
 

0.307 0.060 0.033 0.001 0.001 0.023 

CSGA 

Mean 
 

19852.0 46161.6 2452.8 4033.6 13879.2 9157.6 

Std 
 

2130.32 4960.34 430.40 270.20 1251.12 485.37 

P-value 
 

0.129 0.040 0.0003 4.062e-06 0.0003 0.162 

 
time to an acceptable answer may be too long. APSO and FA 
suffer from local optimum traps, and hence, usually are not 
able to find global optima. DE has many disadvantages, 
including unstable convergence in the last period and easy to 
be trapped into local optimum. In CSGA, there is not much 
improvement over genetic algorithms, and there are still 
common problems with genetic algorithms in CSGA. 

6. CONCLUSION 

This paper provides a way for automatically generating test 
data using a meta-heuristic method that combines the firefly 
algorithm and asexual reproduction optimization algorithm. 
The firefly algorithm has a high speed, but it suffers from the 
problem of premature convergence. On the other hand, the 
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ARO algorithm is well suited for escaping from local optima. 
In the combined method, referred to as FA-ARO, ARO was 
considered as a step within the steps of FA algorithm for 
diversifying the population. In order to evaluate the efficiency 
of the proposed method, its results were compared with that of 
the existing state of the art algorithms in terms of coverage 
ratio as well as the number of fitness evaluations. It was 
indicated that the proposed FA-ARO method is significantly 
better than the existing methods in terms of the number of 
fitness evaluations while at the same time provides equal test 
coverage. 
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