
Automated Test Data Generation Using a

Combination of Firefly Algorithm and Asexual

Reproduction Optimization Algorithm

Amir Hossein Damia

Faculty of Computer Engineering
K. N. Toosi University of Technology

Tehran, Iran

damiaa@email.kntu.ac.ir

Mehdi Esnaashari*

Faculty of Computer Engineering

K. N. Toosi University of Technology

Tehran, Iran

esnaashari@kntu.ac.ir

Received: 2020/08/05 Revised: 2020/09/14 Accepted: 2020/09/28

Abstract— Software testing is an expensive and time-

consuming process. These costs can be significantly reduced

using automated methods. Recently, many researchers have

focused on automating this process using search algorithms.

Many different methods have been proposed, all of which using a

means of heuristic or meta-heuristic search algorithms. The main

problem with these methods is that they are usually stuck in local

optima. In this paper, to overcome such a problem, we have

combined the firefly algorithm (FA) and asexual reproduction

optimization algorithm (ARO). FA is a bio-inspired algorithm

that is very efficient at exploitation and local searches; however,

it suffers from poor exploration and is prone to local optima

problem. On the other hand, ARO can be used for escaping from

local optima. For this combination, we have inserted ARO into

the steps of FA for increasing the population diversity. We have

utilized this combination for automatic test case generation with

the aim of covering all finite paths of the control flow graph. To

evaluate the performance of the proposed method, we have

utilized it for generating test cases for a number of programs.

Results have indicated that, while giving similar results in terms

of the test coverage, the proposed method is significantly better

than the existing state of the art algorithms in terms of the

number of fitness evaluations. Compared algorithms are FA,

ARO, traditional genetic algorithm (TGA), adaptive genetic

algorithm (AGA), adaptive particle swarm optimization (APSO),

hybrid genetic tabu search algorithm (HGATS), random search

(RS), differential evolution (DE), and hybrid cuckoo search and

genetic algorithm (CSGA).

Keywords— Software Test; Test Data Generation; Search

Algorithms; Firefly Algorithm; Asexual Reproduction Optimization

Algorithm.

1. INTRODUCTION

Software testing is one of the most important ways of
software quality assurance. When a software is developed, it
should be reviewed and be tested. The test stage is the most
sensitive stage of the software development process and
embraces half of the software development costs [1]. Despite
its necessity, testing does not add any new functionality to the
software, and thus, great efforts have been made to reduce its
costs by automating it. In the last decade, various methods have
been introduced for automatic software testing, all of which
aimed at maximizing error detection by producing the least
number of test data. In the process of generating test data, we

need a clue for determining how much test data must be
generated [2]. This clue is referred to as the coverage criterion.
Different criteria have been defined in literature so far, and
selecting one is an engineering problem in which one has to
consider his/her time and budget. Coverage criteria are
classified into the following four classes: input space
partitioning, graph coverage, logic coverage, and syntax-based
[2].

According to the selected coverage criterion and its class,
input data for the test generation process is determined. For
instance, for input space partitioning, this data is the number
and types of input arguments of the software under the test
(SUT). Or, for graph coverage class, input data is the control
flow graph of the SUT. Using this input data, the problem is to
find a set of test cases that can satisfy the selected coverage
criterion. This is a search problem within a complex and large
search space [3]. Therefore, heuristic and meta-heuristic search
algorithms can be utilized here [4]. For this paper, we have
considered the “Path Coverage” criterion, which is a criterion
reside in the graph coverage class. The specific problem is to
find a test set that can cover all finite paths within the control
flow graph of the SUT. To solve this problem, a combination
of the firefly algorithm and the asexual reproduction
optimization algorithm has been used. FA is a swarm
intelligence algorithm that is inspired by the behavior of
fireflies. It is one of the most successful yet low-cost
algorithms. However, it may trap in local [5, 6]. To overcome
this problem, in this paper, we have suggested combining FA
witch ARO [7]. In this combination, ARO has been used to
diversify the population of FA. The . irefly algorithm is
selected due to its power in solving the modern numerical
optimization problems, in particular for the NP-hard problems
[1] [2]. As compared to particle swarm optimization and
genetic algorithm techniques [1], the Firefly Algorithm reduces
the overall computational effort by 86% and 74%, respectively
[2]. On the other hand, the asexual reproduction optimization
algorithm is considered for its high speed and the absence of
any additional parameters [3].

The performance and efficiency of the proposed method
have been evaluated using a number of SUTs. Results have
been compared with the traditional FA, ARO, AGA [8], TGA
[9], APSO [10], HGATS [11], RS (it is the simplest algorithm
which randomly generates a large number of possible solutions

International Journal of Web Research, Vol. 3, No. 1, Spring-Summer, 2020

20

and chooses better solutions), DE [12], and CSGA [13] in
terms of a number of evaluations. A significant advantage of
the proposed method over existing methods in terms of the
aforementioned criteria have been demonstrated in these
results.

The rest of the paper is organized as follows. Section 2
discusses related work. FA and ARO algorithms are briefly
presented in Section 3. The proposed method is elaborated in
Section 4. Section 5 provides experimental results. Finally,
Section 6 concludes the paper.

2. RELATED WORKS

There are different methods for designing test data that can
be divided into two methods: white box (structural test) and
black box (functional test) [14]. In the white box approach, the
program code is used to design the test and we are dealing with
the internal mechanism of a system, while in the black box
approach it focuses only on the outputs of the SUT. This
method, which is based on requirements specifications, does
not require code execution and can help identify any
ambiguities and inconsistencies in the requirements
specifications. Among the black box solutions, we can mention
the model-based test which has been used for many years in
industrial and academic research [15]. This solution, by
analyzing the model of the system under test and considering
the coverage criterion, is able to systematically produce test
items that cover certain features of the model.

From the point of view of algorithm type, test data
production algorithms can be divided into 3 categories [16]:

• Random

• Search based (white box testing or structural
testing(

• Model based (black box test)

2-1. Random

Random testing was one of the first works in this field and
due to the development of other methods, this method has
become very inefficient in recent years. The purpose of this
paper is to compare this method with other methods. Random
testing is the easiest approach for test case generation. Random
testing generates test data for any type of program, as it is
independently generated from their operational profile. It is not
able to cover all types of faults since the random generation of
test case may not execute some statements having faults. The
probability of finding at least one error in software by random
testing depends only on the number of test points [17]. Random
testing chooses test data set randomly from uniform
distribution and perform testing using these test data set.
Random testing program is viewed as a worst case of program
testing because of its inability to find failure in the system. A
mixed final testing was recommended that merges random
testing with value based testing [18]. The easiest and cheaper
technique for test data generation is the random testing which
require less effort and time for test data generation [19].

2-2. Search based

Multi-population genetic algorithm has been introduced in
recent years as an improved genetic algorithm, which has
shown good performance. The multi-population approach can
prevent the algorithm from being trapped in local minimums
and premature convergence, on the other hand, the multi-

population model can improve the quality of the solutions and
improve the speed of genetic algorithm evolution. In this
method, the multi-population genetic algorithm is used to
obtain the optimal solution, since two child populations and
one main population are used and the child populations run in
parallel. Experiments have shown that this method improves
the convergence rate, search time, and percentage of coverage
and is better than single population genetic algorithm and
random search [20]. There are two different ways of adjusting
parameter values (recombination rate and mutation rate) of the
genetic algorithm: adjusting parameter values before the
optimization process, or by dynamically adjusting parameters
during execution. In this method, the genetic algorithm
improved by maintaining population diversity is used to
generate test data that dynamically obtains the recombination
rate and mutation rate of the chromosomes with the similarity
between the chromosomes and the amount of chromosomes in
each step of the algorithm. Genetic algorithm operators are
essential to obtain the next generation of a population and to
replicate evolution. The classical genetic algorithm encounters
the recession phenomenon in its later stages, with constant
values of recombination rate and mutation due to population
diversity. In the recombination operator, if the rate of this
operator is high, the chromosome suitability values may be
easily corrupted, and if the rate of this operator is low, no new
offspring may be created, so this rate is better given the degree
of population variation and the average fitness of the
population chromosomes in each calculate the stage of
implementation. Experimental results show that this method is
more effective than similar methods and random method for
path testing. Although the programs selected in this article are
in C, this method can be used in another language [8]. Mack
Mann and Pradeep Tamar introduced a genetic algorithm-based
method for generating software test data and their results were
compared with the stochastic method. In this paper, the impact
of early population on the efficiency of genetic algorithm is
investigated. Their experiments showed that their proposed
method is more efficient than the random method and requires
less time to generate software test data, and by increasing the
initial population size, more search space can be created by
increasing diversity, making it less likely the algorithm should
be local optimized [21]. Rijwan Khan introduced a method for
the automated generation of software test data by combining
genetic algorithm and cuckoo search algorithm. Their goal was
to reduce the time and cost of producing test data. Cuckoo
search algorithms have been used to improve chromosomes.
Their experiments have shown that the combination of the two
algorithms is better than applying each of them separately
[13].In this paper [22], the genetic algorithm and the simulated
annealing algorithm are used to automate the production of test
data based on the path coverage criteria and their results are
compared. Their results show that the genetic algorithm is
simulated more efficiently than the simulated annealing
algorithm by correctly adjusting the parameters and achieving
maximum coverage in the least number of iterations.

In [23], a method for generating test data based on the
combination of genetic algorithm and particle swarm
optimization algorithm for automating test data generation
automation based on path coverage criteria is presented. The
efficiency of the proposed methods has been analyzed with
programs of different and complex sizes. Finally, this method
compares the combination with the genetic algorithm and the
particle swarm optimization algorithm, and they have shown

Automated Test Data Generation Using a Combination of Firefly Algorithm and Asexual Reproduction Optimization Algorithm

21

that their combination works better than any of these methods.
Another method for generating dynamic test data is based on
particle swarm optimization algorithm, which defines the
condition of the fitness function for each statement, and only
the conditional statements are considered in this method. This
method works better than random search and tabu search [24,
25, 26]. It is presented in a way to generate test data using
cuckoo search algorithms and tabu search. Tabu search is used
to reduce the execution time of the algorithm. This method is
better in terms of execution time and performance than particle
swarm optimization algorithms and bees algorithm [27, 28].

Sahin and Akay have presented a comparison between
important meta-heuristics algorithms used for automatic test
data generation [29]. These algorithms have been compared
based on different fitness functions (path-based, dissimilarity-
based and approximation level + branch distance). This is due
to the fact that different fitness functions affect the behavior of
the algorithm in the search space. Results have shown that
meta-heuristics strategies were very well suited for generating
test data.

Kumar et. al. have introduced a method for automatically
generating test data using a combination of GA and PSO [30].
Their goal was to overcome the weaknesses of both algorithms.
They designed a new fitness function based on the concept of
dominance relations, branch weight and branch distance to a
better search. Their proposed method have been compared with
GA, PSO, ant colony optimization, and differential evolution
based on two criteria; average number of generations and
average percentage of coverage. The results of their
experiments have shown that hybrid PSO-GA gives better
results compared to the compared algorithms in the field of test
data generation.

Jain et. al. have introduced a new 2-step inharmonious
approach based on GA and PSO to class testing using data flow
criteria [31]. A set of classes are further tested to study
performance of the proposed method in terms of the percentage
of coverage and the execution time. The results of their
experiments have shown that their proposed method is better
than random method in terms of coverage ratio achieved and
iterations performed.

In [32] using a combination of firefly algorithm and graph
reduction, the standard firefly algorithm has been extended to
generate optimal discrete and independent paths for software
testing. The proposed approach tries to minimize the number of
test data by optimizing the test paths for test data. Their results
showed that firefly algorithm based approach has produced the
optimal paths below a given number of independent paths and,
it can minimize the test efforts and provides the best critical
test paths.

2-3. Model based

In this method, software systems models are used to extract
the test set. In this type of method, the focus is on behavioral
testing, a function, or black box that tests the program based on
observable input and output behavior. In this method, SUT is
considered as a black box testing that receives inputs and
generates outputs. SUT has an internal mode that changes with
input processing and output generation. The model describes
possible input and output sequences at a certain level of
abstraction and links to implementation through a connection.
A selection algorithm extracts test data from the model. The

use of a test criterion based on a test hypothesis justifies the
accuracy of the selection.

This method has been used in [33]. The authors have
utilized UML state machine diagrams for automatically
generating test scenarios for concurrent and composite states.
The firefly algorithm has been used only for prioritizing test
scenarios.

3. BRIEF EXPLANATIONS OF USING ALGORITHMS IN THE

PAPER

Inspired by a natural phenomenon, meta-heuristic
algorithms allow a very large search space to be intelligently
explored. What is clever about this is that meta-heuristic
algorithms do not navigate the entire search space; instead,
they only navigate the part of the space where there is a good
chance that a good enough point exits there. Brief descriptions
of FA and ARO algorithm are given in the following sections.

3-1. Asexual Reproduction Optimization Algorithm

The asexual reproductive optimization is a meta-heuristic
search method, in which, a single member (parent
chromosome) is randomly generated and is then evaluated. The
following operations are repeated:

First, a string of genomes in the parent chromosome is
randomly selected and mutated. The length of the selected
string (g) is randomly selected within the range [1,L], where L
is the length of the parent chromosome. The result of this
mutation is referred to as the larva. Next, with a probability of
pc, defined in (1) given below, the parent and the larva
chromosomes are undergo a uniform recombination operation.
The recombinant result is referred to as the bud chromosome.

 (1)

ARO is greedy in the sense that the child produced, either
the larva or the bud, replaces his parent only if he is more fit.
Main features of this algorithm are its high speed and the
absence of any additional parameters.

3-2. Firefly Algorithm

The firefly algorithm is designed by modeling the
luminosity characteristics of firefly worms [34]. To simplify
the definition of this algorithm, the following three
assumptions have been considered:

1. All fireflies are of a kind and attract pairs to each other
regardless of gender.

2. Attractiveness is relative to their brightness. So for each pair
of firefly worms, a worm that has less light is attracted to a
worm that has more light. The absorption power is
proportional to the intensity of their light and the intensity of
the light decreases with increasing distance between the two
worms. If the light intensity of the two worms is similar,
their movement would be random.

3. The brightness of firefly worms is determined by the value
of the objective function.

Since the attractiveness of a firefly worm is commensurate
with the intensity of light being seen by nearby firefly worms,
we can define the attractiveness of the worm i from the point of
view of the worm j according to (2), given below.

International Journal of Web Research, Vol. 3, No. 1, Spring-Summer, 2020

22

 (2)

Here, , is the attractiveness of the firefly worm i at

distance and is the light absorption coefficient.

can be replaced by other functions such as if .

The movement and absorption of worm i into worm j is
determined according to (3), given below.

 () (3)

 and represent worms i and j respectively. is a

random value, within the range [0, 1].

4. THE PROPOSED METHOD

Premature convergence is an important issue in the firefly
algorithm. Studies have shown that there is a direct relationship
between early and premature convergence and the population
diversity [35, 36, 6, 37]. In the proposed method, we have
modified FA so that its population is diversified using ARO. In
what follows, we will first formulate the problem, and then,
explain the proposed algorithm is detail.

4-1. Formulation of the problem

In the process of producing structural test data, we need
criteria to determine how complete the generated data is for
testing the software under the test. These criteria, referred to as
coverage criteria, are defined based on the structure of the
SUT. For example, the branch coverage criterion is one of the
criteria in which the goal is to cover all branches of the SUT.
Another criterion is the expression coverage, which aims to
execute all program expressions. In this paper, we focus on the
path coverage criterion, in which the aim is to cover all finite
paths in the SUT.

Finding all finite paths of the SUT can be carried out using
the control flow graph (CFG) of the SUT. Every SUT can be
represented by its CFG , which is a directional

graph. N is equal to the set of nodes, and E is equal to the set of
directional edges , is the initial node and is the

terminating node. Each node represents a linear sequence of
program calculations being tested. Each edge represents the

transfer of SUT execution control from node ni to node nj. For
example, Fig.1 shows the CFG associated with the SUT.

The specific problem in this paper is to automatically
generate input data that can test and cover all finite paths in the
SUT, with the goal of minimizing the number of test cases.
This is proved to be an NP-hard problem [43].

4-2. Population Initialization

The first step in the FA algorithm is creating the first
population randomly. The population consists of a number of
firefly worms. Suppose the number of input parameters is m
and the number of paths in the CFG is n. Then a worm which
can represent a test set for a given SUT can be defined as:

 [],
 []. Each is a sub-section

of the worm which represents a test case, with the hope of
covering path k in the CFG. Since there are n paths, thus
k {1,2,…,n}. Each a_(ik,l) represents an input parameter of
the SUT, thus . Fig.2 shows an example of a
worm. In other words, each worm represents a complete test
set, which may or may not cover all paths within the CFG.
According to this structure, a number of random worms are
generated to form the initial population.

4-3. Fitness Function

After generating the initial random population, to determine
the fitness of each worm, it is necessary to run the SUT n

times, each time with a specific . Executing SUT with a

specific indicates which path within the SUT is covered

with the given input parameters [].

The result of these executions determines to what extent xi

covers paths in the CFG. The fitness of each worm is then
calculated according to (4), given below.

Fig 1: A sample SUT and its corresponding CFG.

Automated Test Data Generation Using a Combination of Firefly Algorithm and Asexual Reproduction Optimization Algorithm

23

Fig 2: A firefly worm which can be used for the test data generation problem

 | |

 (4)

4-4. Modifications Applied to the Basic FA

The main modification is to ensure diversity in the
population. Diversity can be defined according to Euclidean
distance between individuals. However, if we only consider the
distance for diversifying the population, we may neglect the
fitness information of individuals. Therefore, in this paper we
consider a population diversity metric that considers both
distance and fitness information [38].

Definition 1: Dissimilarity: The Euclidean distance dij
between the two worms xi and xj is considered as their
dissimilarity, and is calculated according to (5), given below.

 | | √∑

 (5)

The distance of the worm xi with the whole population can
be calculated according to (6).

 ∑

 (6),

where ps is the population size. Then the distance of the
population can be calculated according to (7), as given below.

 ∑

 (7)

Definition 2: The average fitness of the population can be
calculated according to (8).

 ∑

 (8)

According to the values of D and f, a diversification process
is executed in the following situations:

• D is less than a predetermined fixed threshold

• The value of D is not changed in subsequent number of
generations

• The value of f is not changed in subsequent number of
generations

If a diversification is required, then ARO algorithm is
utilized for this purpose. Each individual xi in the population is
passed into the ARO algorithm. It is first mutated to make a
larva, and then, with a probability of pc is recombined with the

larva to become the bud. Either of the larva or the bud is then
replaced with the xi in the population.

4-5. The Complete Algorithm

Algorithm 1 presents the pseudo code of the proposed FA-
ARO algorithm. The initial population evolves according to the
FA-ARO strategy, until one of the following two criteria is
met:

1. One firefly worm is discovered which covers all n paths
of the given CFG.

2. Maximum number of evaluations is reached.

5. EXPERIMENTAL RESULTS

5-1. Evaluation Metrics

In this paper, we have utilized following evaluation criteria
for evaluating the performance of the proposed method in
comparison to existing state of the art methods:

- Coverage Ratio: Defined as the fitness of the best
individual.

- FEvals: Number of fitness evaluations before finding the
answer.

5-2. Benchmark Programs

To conduct experiments, several benchmark programs
(SUTs) have been selected. The purpose of these benchmarks
is to cover a variety of structures such as loops and conditions.
For each SUT, we have described why it is considered here.

SUT1- Quadratic Equation: In algebra, a quadratic
function, a quadratic polynomial, a polynomial of degree 2, or
simply a quadratic, is a polynomial function with one or more
variables in which the highest-degree term is of the second
degree [39]. This program takes three inputs. The number of
finite paths within its CFG is 4.

This SUT is utilized for checking if the proposed method is
able to consider conditionals with specific values. The SUT has
different paths for positive, negative, and zero deltas. The
toughest path is the one with delta = 0, since there are very few
cases in which delta can be equal to zero.

SUT2- Triangle Classification: Triangles can be classified
according to the lengths of their sides [40]:

• All sides the same length (equilateral).

• Two sides of equal length (isosceles).

• All sides of different lengths (scalene).

This program takes three inputs. The number of finite paths
within its CFG is 3. This SUT is a simple one for which test
cases could be found easily. However, it is a well-known
benchmark in the field and thus, we have considered it here.

SUT3- Binary Search: It is a technique for finding a numeric
value from a set of ordered numbers. This method reduces the
search range by half at each step, so the target is either soon
found or it becomes clear that the search value is not in the list
[41]. This program takes two inputs: a sorted array and the
target value. Number of finite paths within the CFG of this
program depends on the length of the input array. This SUT is
considered here with the purpose of testing if the proposed
method is able to provide test cases for recursive calls.

International Journal of Web Research, Vol. 3, No. 1, Spring-Summer, 2020

24

Algorithm 1 The proposed FA-ARO algorithm.

1: Inputs

 The SUT, n, m, ps (population size), max_ evaluations, diversity_threshold, , ,

 number of iteration (ARO algorithm), rounds of the run algorithm

2: Output

 Set of test data for the SUT

3: Population = []

4: Sbest = []

5:

6 number of evaluations = 0

7: g = 0

8: For i = 1 to ps do

9: xi = MakeRandomWorm(n, m)

10: compute fi according to the equation (4)

11:Compute f according to the equation (8)

12:

13: While (not all paths are covered) or (number of evaluations < max_ evaluations)

14: For i=1 to ps do

15: For j = 1 to ps do

16: If fj > fi

17: population= UpdatePosition (Population,i,j, ,)

18: End

19: End

20: fitness = EvaluationPopulation (Population)

21: g=g +1

22: If g == rounds of the run algorithm:

23:

24: g=0

25: Compute the values according to the equation (8)

26:

27: Compute the values according to the equation (7)

28:

29: If (< diversity_threshold) or

 (the value of is not changed in subsequent generations) or

 (the value of is not changed in subsequent generations)

30:

31: For i to ps do

32: xi= ARO(xi, number of iteration)

33: End

34: End

35: number of evaluations = number of evaluations + population size

35: End

SUT4- Fibonacci: Fibonacci sequence, such that each
number is the sum of the two preceding ones, starting from 0
and 1 [42]. This program takes one input. The number of finite
paths within its CFG 4. The aim of considering this SUT here
is to check for loops.

SUT5- Find Area of a Triangle: This program takes three
inputs. The number of finite paths within its CFG is 7. In this
program, there are paths that must produce certain values that
must pass nested conditions.

SUT6- A Simple Calculator: This Program is a simple
calculator that can add, subtract, multiply and divide two given
numbers. This program takes three inputs. The number of finite
paths within its CFG is 10. In the calculator program, nesting
functions is considered.

5-3. Parameter Settings

Table 1 lists the various operator and parameter settings
used for experiments in this paper.

5-4. Experiments

This experiment aims at showing the superiority of the
proposed method compared with other existing methods in
terms of both coverage ratio and the number of fitness
evaluations. The experiment has been carried out over all six
benchmark programs; SUT1 ~ SUT6. Each algorithm has been
executed 50 times to obtain statistically significant results.
Results of the experiment have been reported in Table 2 and in
terms of FEvals and coverage ratio respectively. Table 2
provides mean, standard deviation, and the P-value (t-test with

Automated Test Data Generation Using a Combination of Firefly Algorithm and Asexual Reproduction Optimization Algorithm

25

TABLE 1: PARAMETER SETTINGS.

α=.05) for each algorithm per benchmark programs. In
particular, p-value indicates the probability of error in
accepting the validity of the observed results. For example, a p-
value of 0.0008 for the results of FA algorithm for SUT1,
indicates that there is a .08% probability that the observed
mean and STD are random. In general, the lower the p-value,
the more accurate our result would be.

Coverage ratio for all algorithms and all SUTs were 100%.
It could be seen from Table 2 that the proposed FA-ARO
algorithm substantially outperforms other existing algorithms

in terms of the number of fitness evaluations. The main reasons
for superiority of the FA-ARO over existing algorithms are its
ability in escaping from local optima, with the help of ARO
and its performance in improving individuals of the population
with the help of FA. In TGA and AGA, no individual tries to
improve itself. The only means of improvement is carried out
through the mutation and crossover operations. However, in the
proposed algorithm, each worm independently tries to improve.
In ARO, in addition to the above mentioned problem, due to
the lack of cooperation between individuals, the convergence

Data range
Population

Representation

Population

Size
Value Parameter/ Operator Algorithm

100, 100]-[

integer

1

uniform Crossover type [7] ARO

40 0.50 alpha

[34] FA 1 gamma
1

0.50 alpha

ARO-FA
1 gamma
1

uniform Crossover type
.9 Pc0

AGA [8]

.2 Pm0

linear rank selection

One point Crossover type

One point Mutation type

Range of [.4, .6] 𝜎

.85 pc

TGA [9] .15 pm

 selection

1.0 Wmax

APSO [10]
.4 Wmin

2 C1

2 C2

.85 Pc

HGATS [11] .12 Pm

roulette wheel selection

1 Mutation Scaling

Factor: F
DE [12]

.9 Crossover Constant:

CR

.10 pc

CSGA [13]
.85 pm

tournament

selection

selection

International Journal of Web Research, Vol. 3, No. 1, Spring-Summer, 2020

26

TABLE 2: EXPERIMENT RESULTS: FEVAL.

 Program

Algorithm

SUT1

SUT2

SUT3

SUT4

SUT5

SUT6

FA

 Mean

20847.2 64721.6 3374.6 5450.4 17412.8 12920.4

Std

1691.42 5596.00 253.77 495.09 1226.69 796.12

P-value

0.152 0.0008 0.0 0.0 2e-07 2e-05

ARO

Mean

23766.4 72076.5 2949.9 5007.1 13183.9 13988.2

Std

1952.73 7762.81 340.67 433.96 704.02 696.60

P-value

0.034 0.001 0.001 1e-06 1e-03 0.0

FAARO

Mean

16120.8 33074.1 1221.1 1621.9 6988.0 6895.6

Std

1547.12 3177.51 114.98 104.07 439.30 506.55

P-value

1.0 1.0 1.0 1.0 1.0 1.0

AGA

Mean

16879.2 36292.0 1486.6 2899.8 10464.7 10675.7

Std

2207.02 4156.05 182.54 208.01 574.80 443.84

P-value

0.844 0.666 0.391 0.0002 0.001 0.0001

TGA

Mean

23095.2 63338.4 2755.2 6030.5 21945.6 11179.5

Std

2490.43 7583.93 302.09 494.95 1078.06 547.04

P-value

0.099 0.011 0.001 2e-08 0.0 0.0001

APSO

Mean

16920.8 38819.2 2517.9 2036.8 8957.5 7474.4

Std

1558.55 3494.32 207.61 145.23 638.01 360.82

P-value

0.799 0.394 0.0002 0.106 0.078 0.516

HGATS

Mean

17788.8 47557.6 2073.9 3748.4 18275.0 11901.1

Std

1589.25 4300.53 203.21 307.84 1617.53 700.86

P-value

0.599 0.060 0.012 1.34e-05 8e-06 0.0001

RS

Mean

42191.2 102775.6 5610.5 6457.6 65388.8 22805.1

Std

4148.01 10743.18 549.40 652.66 4257.31 1106.56

P-value

8e-05 3e-05 0.0 1e-06 0.0 0.0

DE

Mean

18576.0 45760.8 1821.96 3590.4 13689.6 10091.18

Std

1571.16 4350.41 188.34 285.12 1540.11 420.56

P-value

0.307 0.060 0.033 0.001 0.001 0.023

CSGA

Mean

19852.0 46161.6 2452.8 4033.6 13879.2 9157.6

Std

2130.32 4960.34 430.40 270.20 1251.12 485.37

P-value

0.129 0.040 0.0003 4.062e-06 0.0003 0.162

time to an acceptable answer may be too long. APSO and FA
suffer from local optimum traps, and hence, usually are not
able to find global optima. DE has many disadvantages,
including unstable convergence in the last period and easy to
be trapped into local optimum. In CSGA, there is not much
improvement over genetic algorithms, and there are still
common problems with genetic algorithms in CSGA.

6. CONCLUSION

This paper provides a way for automatically generating test
data using a meta-heuristic method that combines the firefly
algorithm and asexual reproduction optimization algorithm.
The firefly algorithm has a high speed, but it suffers from the
problem of premature convergence. On the other hand, the

Automated Test Data Generation Using a Combination of Firefly Algorithm and Asexual Reproduction Optimization Algorithm

27

ARO algorithm is well suited for escaping from local optima.
In the combined method, referred to as FA-ARO, ARO was
considered as a step within the steps of FA algorithm for
diversifying the population. In order to evaluate the efficiency
of the proposed method, its results were compared with that of
the existing state of the art algorithms in terms of coverage
ratio as well as the number of fitness evaluations. It was
indicated that the proposed FA-ARO method is significantly
better than the existing methods in terms of the number of
fitness evaluations while at the same time provides equal test
coverage.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing, John
Wiley & Sons, 2011.

[2] P. Ammann, and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[3] P. McMinn, “Search‐ based software test data generation: a survey”.
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105-156,
2004.

[4] R. R. Sahoo, and M. Ray, “Metaheuristic techniques for test case
generation: a review”. Journal of Information Technology Research
(JITR), vol. 11, no. 1, pp.158-171, 2018.

[5] N. J. Cheung, X. M. Ding, and H. B. Shen, “Adaptive firefly algorithm:
parameter analysis and its application”. PLoS One, vol. 9, no. 11,
e112634, 2014.

[6] I. Fister, X. S. Yang, and J. Brest, “Memetic self-adaptive firefly
algorithm”. In Swarm intelligence and bio-inspired computation,
Elsevier. 2013, pp. 73-102.

[7] A. Farasat, M. B. Menhaj, T. Mansouri, and M. R. S. Moghadam,
“ARO: A new model-free optimization algorithm inspired from asexual
reproduction”. Applied Soft Computing, vol. 10, no. 4, pp. 1284-1292,
2010.

[8] X. Bao, Z. Xiong, N. Zhang, J. Qian, B. Wu, and W. Zhang, “Path-
oriented test cases generation based adaptive genetic algorithm”. PloS
one, vol. 12, no. 11, 2017.

[9] M. R. Girgis, “Automatic Test Data Generation for Data Flow Testing
Using a Genetic Algorithm”. J. UCS, vol. 11, no. 6, pp. 898-915, 2005.

[10] S. Jiang, J. Shi, Y. Zhang, and H. Han, “Automatic test data generation
based on reduced adaptive particle swarm optimization algorithm”.
Neurocomputing, vol. 158, pp.109-116, 2015.

[11] X. Fan, “Test data generation with a hybrid genetic tabu search
algorithm for decision coverage criteria”. In The 5th International
Conference on Computer Engineering and Networks, SISSA Medialab,
October 2015, vol. 259, p.008.

[12] S. Varshney, and M. Mehrotra, A differential evolution based approach
to generate test data for data-flow coverage. In 2016 International
Conference on Computing, Communication and Automation (ICCCA),
IEEE, April 2016, pp. 796-801.

[13] [13] R. Khan, M. Amjad, and A. K. Srivastava, “Optimization of
automatic test case generation with cuckoo search and genetic algorithm
approaches”, Advances in Computer and Computational Sciences,
Springer, Singapore, 2018, pp. 413-423.

[14] P. Ammann, and J. Offutt, Introduction to Software Testing, 1 ed.,
United States of America, New York, Cambridge University Press, April
2008.

[15] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux, and A.
Vernotte, “Recent advances in model-based testing”, In Advances in
Computers, vol. 101, Elsevier, January 2016, pp. 53-120.

[16] F. Lonetti, and E. Marchetti, “Emerging software testing technologies”.
In Advances in Computers, vol. 108, Elsevier, 2018, pp. 91-143.

[17] R. Hamlet, “Random testing”, in Encyclopedia of software Engineering,
[18] S. C. Ntafos, and J. W. Duran, “An Evolution of random testing”, IEEE

Transaction on Software Testing, vol. 10, no. 4, pp. 438-444, July 1984.

[19] D. C. Ince, “The automatic generation of test data”, The Computer
Journal, vol. 30, no. 1, pp. 63-69, 1987.

[20] N. Zhang, B. Wu, and X. Bao. “Automatic generation of test cases based
on multi-population genetic algorithm”. Int. J. Multimedia Ubiquitous
Eng., vol. 10, no. 6, pp. 113-122, 2015.

[21] M. Mann, P. Tomar, and O. P. Sangwan, “Test Data Generation Using
Optimization Algorithm: An Empirical Evaluation”. Soft Computing:
Theories and Applications. Springer, Singapore, 2018, pp. 679-686.

[22] M. Mann, O. P. Sangwan, P. Tomar, and S. Singh, “Automatic goal-
oriented test data generation using a genetic algorithm and simulated
annealing”. 2016 6th International Conference-Cloud System and Big
Data Engineering (Confluence). IEEE, 2016 pp. 83-87.

[23] S. Singla, D. Kumar, H. M. Rai, and P. Singla, “A hybrid PSO approach
to automate test data generation for data flow coverage with dominance
concepts”. International Journal of Advanced Science and Technology,
vol. 37, pp. 15-26, 2011.

[24] A. A. Sofokleous, and A.S. Andreou. “Automatic, evolutionary test data
generation for dynamic software testing”. Journal of Systems and
Software, vol. 81, no. 11, pp. 1883-1898, 2008.

[25] G. I. Latiu, O. A. Cret, and L. Vacariu, “Automatic test data generation
for software path testing using evolutionary algorithms”. 2012 Third
International Conference on Emerging Intelligent Data and Web
Technologies. IEEE, 2012, pp. 1-8.

[26] A. Windisch, S. Wappler, and J. Wegener, “Applying particle swarm
optimization to software testing”. Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, 2007, pp. 1121-
1128.

[27] P. R. Srivastava, R. Khandelwal, S. Khandelwal, S. Kumar, and S. S.
Ranganatha, “Automated test data generation using cuckoo search and
tabu search (CSTS) algorithm”. Journal of Intelligent Systems, vol. 21,
no. 2, pp. 195-224, 2012.

[28] K. Perumal, J. M. Ungati, G. Kumar, N. Jain, R. Gaurav, and P. R.
Srivastava, “Test data generation: a hybrid approach using cuckoo and
tabu search”. International Conference on Swarm, Evolutionary, and
Memetic Computing, Springer, Berlin, Heidelberg, 2011, pp. 46-54.

[29] O. Sahin, and , B. Akay “Comparisons of metaheuristic algorithms and
fitness functions on software test data generation”. Applied Soft
Computing, vol. 49, pp.1202-1214, 2016.

[30] S. Kumar, D. K. Yadav, and D. A. Khan, “A novel approach to automate
test data generation for data flow testing based on hybrid adaptive PSO-
GA algorithm”. International Journal of Advanced Intelligence
Paradigms, vol. 9, no. 2-3, pp.278-312, 2017.

[31] N. Jain, R. Porwal, S. Kumar, S.Varshney, and M. Saraswat, “Automatic
data flow class testing based on 2-step heterogeneous process using
evolutionary algorithms”. Journal of Statistics and Management
Systems, vol. 22, no. 7, pp.1315-1348, 2019.

[32] P. R. Srivatsava, B. Mallikarjun, and X. S. Yang, “Optimal test sequence
generation using firefly algorithm”. Swarm and Evolutionary
Computation, vol. 8, pp.44-53, 2013.

[33] D. P. Mohapatra, “Firefly optimization technique based test scenario
generation and prioritization”. Journal of Applied Research and
Technology, vol. 16, no. 6, pp.466-483, 2018.

[34] X. S. Yang, “Firefly algorithm, stochastic test functions and design
optimization”. International Journal of Bio-inspired Computation, vol. 2,
no. 2, pp.78-84, 2010.

[35] B. McGinley, J. Maher, C. O'Riordan, and F. Morgan, “Maintaining
healthy population diversity using adaptive crossover, mutation, and
selection”. IEEE Transactions on Evolutionary Computation, vol. 15, no.
5, pp.692-714, 2011.

[36] Y. Leung, Y. Gao, and Z. B. Xu, “Degree of population diversity-a
perspective on premature convergence in genetic algorithms and its
markov chain analysis”. IEEE Transactions on Neural Networks, vol. 8,
no. 5, pp.1165-1176, 1997.

[37] A. E. Eiben, and J. E. Smith, Multimodal problems and spatial
distribution. In Introduction to Evolutionary Computing, Springer,
Berlin, Heidelberg, 2003, pp. 153-172.

[38] N. Zhang, B. Wu, and X. Bao. “Automatic generation of test cases based
on multi-population genetic algorithm”. Int. J. Multimedia Ubiquitous
Eng., vol. 10, no. 6, pp. 113-122, 2015.

[39] N. Zhang, B. Wu, and X. Bao, “Automatic generation of test cases based
on multi-population genetic algorithm”. Int. J. Multimedia Ubiquitous
Eng, vol. 10, no. 6, pp.113-122, 2015.

[40] A. S., Ghiduk, “Automatic generation of basis test paths using variable
length genetic algorithm”. Information Processing Letters, vol. 114, no.
6, pp.304-316, 2014.

International Journal of Web Research, Vol. 3, No. 1, Spring-Summer, 2020

28

[41] A. M. Bidgoli, and H. Haghighi, “Augmenting ant colony optimization
with adaptive random testing to cover prime paths”. Journal of Systems
and Software, vol. 161, p.110495, 2020.

[42] G. I., Latiu, O. A. Cret, and L. Vacariu, “September. Automatic test data
generation for software path testing using evolutionary algorithms”. In
2012 Third International Conference on Emerging Intelligent Data and
Web Technologies, IEEE, 2012, pp. 1-8.

[43] M. Harman, and B. F. Jones, “Search-based Software Engineering”.
Information and Software Technology, vol. 43, pp. 833-839, 2001.

 Mehdi Esnaashari received the B.S.,
M.S., and Ph.D. degrees in Computer
Engineering, all from Amirkabir
University of Technology, Tehran, Iran, in
2002, 2005, and 2011 respectively. He
worked at Iran Telecommunications
Research Center as an Assistant Professor
from 2012 to 2016. Currently, he is an

Assistant Professor in the Faculty of Computer Engineering, K.
N. Toosi University of Technology. His research interests
include computer networks, learning systems, especially

reinforcement learning, and information
retrieval.

Amir Hossein Damia received his M.S.
degree in the field of software engineering
from K. N. Toosi University of Technology
in 2020. His research interests include
evolutionary algorithms, reinforcement
learning, and software testing.

