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Abstract  

The modeling of strategies for buying and selling in Stock Market Investment 

has been the object of numerous advances and uses in economic studies, both 

theoretically and empirically. One of the popular models in economic studies is 

applying the Markov Switching models for forecasting the time series 

observations based on stock prices. The semi-parametric estimators for these 

models are a class of popular methods that have been used extensively by 

researchers to increase the accuracy of estimation. The main part of these 

estimators is based on kernel functions. Despite the existence of many kernel 
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functions that are capable in applications for forecasting the stock prices, there 

is a widely use of Gaussian kernel in these estimators. But there is a question if 

other types of kernel function can be used in these estimators. This paper tries 

to introduce the other kernel functions that can be a good replacement for this 

kernel function to increase the ability of Markov Switching models. We first 

test six popular kernel functions to find the best one based on simulation 

studies and then offer the new strategy of buying and selling stocks by the best 

kernel function selection on real data. 

.  
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Introduction                                                                          

The many investigations in economic and financial mathematics focused on 

what makes an investor profitable in the stock market. These studies can aid 

the researchers to decrease the investment risks and increase opportunities for a 

high return of gaining. One of the important questions in the stock market is 

when the investors can buy the stocks and when they can sell their stocks. In 

research economic papers, there are two aspects of analysis: fundamental and 

technical analysis. In fundamental aspects, the researchers find the reasons for 

changing stock prices, in response to reasons of changing prices caused by 

exogenous geopolitical events, supply disruptions or financial operation of the 

companies, etc. But technical analysis noted more the statistical and 

probabilities rules governed by processes of the data. In an aspect of technical 

analysis, there are a lot of models in time series to capture the stock prices. The 

Markov Switching models are the popular models in time series that are 

applied most widely in financial and economic data. These models exhibit 

abrupt changes in the behavior of time series data, called switches of regimes, 

where the switching between the regimes is controlled by a hidden Markov 

Chain process. (See Chang, Yongok, & Joon 2017; Von Ganske, 2016; Billio, 

Casarin, Ravazzolo, & Van Dijk, 2016; Di Persio,  & Frigo, 2016; Neale, 

Clark, Dolan, & Hunter, 2016; Nademi, & Nademi, 2019). 
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Recently, Markov switching AR–ARCH
1
 models have repeatedly applied 

for making switching regimes processes and every one of them offers an 

algorithm for estimating the parameters. The finding of the best algorithms for 

parameters estimation of these models has been the object of many expansions 

and usages over the last decade. Numerous algorithms based on parametric and 

nonparametric methods have been offered to capture the parameters of the 

modeling process. In this respect, the combination of parametric and 

nonparametric methods, called semi-parametric algorithms, are popular and 

most broadly applied. (See Chan, & Wang, 2017; Chang, Tang, & Wu, 2016; 

Chen, Shen, Wei, & Lin, 2017; Gupta, Cobre, Polpo, & Sinha, 2016; Gu, Ma, 

& Balasubramanian, 2015; Nademi, & Farnoosh, 2014). 

In a semi-parametric class of algorithms, a special function, called kernel 

function, is used. The selection of proper kernel function is an important item 

for estimating the parameters. Such that, if we apply the proper type, we can 

have a fast and unbiased estimating process. So, offering the best kernel 

functions for estimation algorithms can be essential for the modelling process. 

In this paper, we first focus on selecting the best kernel function in a special 

class of Markov switching models called semi-parametric Markov switching 

offered by Nademi & Farnoosh (2014) for modeling the time series data and 

then offer the new strategy of buying and selling stocks by the best-selected 

kernel function of this model on real data. 

In the next section, the model and its algorithm will be introduced. Section 3 

discuss the best selection of kernel function by a simulation study and offer the 

buying and selling strategy by comparing the different kernel functions and the 

feasibility of these kernels will be shown. Finally, section 4 conclude and 

introduce the opportunities for future studies. 

The model and EM algorithm 

This section consists of two subsections. In the first subsection, we introduce 

the Markov switching model introduced by Nademi & Farnoosh (2014) and in 

the second subsection, their algorithm for estimating the parameters will be 

reviewed. Note that, their semi-parametric algorithm is a part of a more general 

algorithm as EM algorithm that applies to the class of Markov switching 

models. 

 

                                                 
1 Autoregressive–Autoregressive Conditionally Heteroscedasticity models. 
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1. The model 

Suppose         are part of a strictly stationary time series that are generated 
by the following semi-parametric switching model  

   ∑     ( (            )   (                  )    ) 
 
                    (1) 

such that, 

 (            )    (    )    (       (    ))                                      (2) 

and 

  (                  )           
        

   

with 

    {
           
           

 

where switching between the regimes is controlled by a hidden Markov 

chain   , with values in {     }, and the residuals                
       are i.i.d. random variables with mean   and variance 1.    
(             )  are random variables which assume as values of the unit 

vectors              , i.e. exactly one of the     is 1, and the others are  . 

The stationary distribution of the hidden regime process is given by the     

transition probability matrix A, i.e,       (           ). We get the 

stationary probabilities      (     )    (    ) by equation     . 

  ( ) is considered as a semi-parametric function such that   ( )  
{ (    )  ( )     }, where   ( ) is a nonparametric adjustment factor and 

 (    ) is a known function of   and    and      is the parametric space. 

So, we can refer to mean function (2) and rewrite it by the following form: 

 (               )   (       )  (    )    (      (       )  (    ))  

2. The EM algorithm based on the semi-parametric method 

Supposing the definition of  ( )  (           ) and  ( )  
(            ), Nademi & Farnoosh (2014) applied a special class of log-

likelihood function, called "complete" log-likelihood function, by the following 

form 
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  (     ( )  ( ))

       
∑           

 

   

 ∑ ∑       
 

 (                  )
 (

    (               )

 (                  )
)

 

   

 

   

 

Where   (                                       )    

and  ( ) is the normal density with mean  ( ) and standard deviation  ( ) The 

word "complete" refers to this definition that if we would have observed the 

complete data ( ( )   ( )), instead of just  ( ), we could maximize the 

complete data log-likelihood (see Franke et al. [8]), instead of the ordinary log-

likelihood.  

Applying this method leads to the use of the Expectation and 

Maximization algorithm known as the EM algorithm. The EM algorithm 

repeats between drawing the unseen variables     by conditional expectations 

    given the seen data  ( ) and using an elementary estimate of the 

parameters on the one phase (E-step), and by maximizing   (     ( )   ( )) 

to get an update of approximations of   or   on the other phase (M-step). 

These two phases until assuring certain stopping criteria are iterated. The 

algorithm offered with the EM algorithm can be summarized in the following 

steps. 

 

E-step: Suppose  ̂     ̂   ̂     ̂   ̂     ̂   ̂     ̂   ̂     ̂  and 

  ̂     ̂  are given. S0, the conditional expectation of the unseen variables 

    given  ( )are calculated by  

           
( )  

  
   

 

∑   
   

  
   

                      

where   
  and   

  are estimated by following recursive relations 

  
     (      (             )  (                )) ∑      

 

 

   

  

and 
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  ∑   

   

 

   

 (      (             )  (                ))     

where  (      (             )  (                )) is the normal density 

with mean  ( ) And standard deviation  ( ). 

M-step: Suppose the approximations     for the unseen variables     are 

given. Then, the transition probabilities are calculated by 

 ̂   
∑    

      
   

∑    
 
   

  

where    
     

 are the joint conditional probability of      and         given 

the entire sequence of observations ( ( )) estimated by 

   
       (           | ( ))

 
  

    (      (             )  (                ))     
 

∑   
   

  
   

  

 

The probabilities         are approximated by 

    ̂  
 

 
∑    

 
           , 

and the functions  (         ) are estimated by 

 (     ̂   ̂ )   (   ̂ ) ̂ ( )   ̂ (   (   ̂ ) ̂ ( ))        

such that, ( ̂   ̂ ) gets from ( ̂   ̂ )          (     )              

  for          where   (     ) is  

  (     )  ∑    (    (       )    (      (       ))) 

 

   

  

and  ̂ ( ) is 

 ̂ ( )

 
∑    [ (

      
  

)  (      ̂ )    (
      

  
)  (      ̂ )    ]

 
   

∑    [ (
      

  
)   (      ̂ )   (

      
  

)   (      ̂ )] 
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where  ( ) is a Gaussian Kernel function and (        ) are estimated by 

( ̂   ̂   ̂ )

        ∑       
 

 (                  )
 (

 ̂  

 (                  )
)

 

   

  

for          where   ̂       (     ̂   ̂ ) denote the sample residuals. 
The optimal selection of the bandwidth    are also estimated by 

 ̂          
∑    [    (      ̂ ) ̂ (    )   ̂ (      

   

 (      ̂ ) ̂ (    ))]
 

. 

The estimate of the parameters are obtained by iterating these two steps (E-step 

and M-step) until convergence. 

In relation (3), they applied the Gaussian Kernel function for estimating  ̂ ( ) . 

But there is a question that if other types of kernel function can improve 

performance of the semi-parametric algorithm. By the definition of kernel 

function, a function  ( ), with compact support, is a kernel function satisfying 

 ( )     (  )   ( ) ∫  ( )      

So, by this definition, we can find other functions that have these conditions. 

We want to try some other types of kernel functions that are popular in the 

mathematics field. Table 1 shows several types of kernel functions that are 

commonly used. These functions consist of Uniform, Triangle, Epanechnikov, 

Bisquare and Triweight. We also apply the Gaussian kernel to compare this 

function with the candidate kernel functions. Figure 1 shows the plots of these 

functions. We apply these functions to compare their ability to the 

improvement of the EM algorithm.   

Table 1. The popular kernel functions. 

Name Kernel 

Uniform 
 

 
       ( ) 

Triangle (     )       ( ) 

Epanechnikov 
 

 
(    )       ( ) 

Bisquare 
  

  
(        )       ( ) 

Triweight 
  

  
(            )       ( ) 

Gaussian 
 

√  
    ( 

 

 
  ) 
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Figure 1. The six popular Kernel functions 

Research Background 

In this section, we first carry out a simulation study to examine the finite 

sample performance of the proposed kernel functions, and then the Semi-

parametric Markov Switching model with the selected kernel function will 

apply to financial observations, including the Automotive Industry Index of the 

Tehran Stock market data, to find the strategy of buying and selling in the 

stocks of industrial companies. Because there is a high correlation between the 

prices of stocks for automotive companies and the Automotive Industry Index, 

we focus on the Automotive Industry Index data to offer the strategy of buying 

and selling. 

1. Simulation study 

We intend to examine the feasibility of various kernel functions by estimating 

parameters in the semi-parametric model (1). We generated two sets of data 

with sample size N=500 based on nonlinear functions   
( )( ) and   

( )( ) by 

the following forms:  

  
( )( )        (   )        

  
( )( )     (   )       , 

and it was supposed that                                  
      and        . The transition probability matrix was considered by 
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  (
      
      

). 

We also chose the variance parameters as                     
                      and        . Figures 2(a) and (d) show the 

generated observations based on   
( )( ) and   

( )( ) respectively. Figure 1(b, 

c) and (e, f) show the corresponding scatter plot of     with      and       for 

two simulated data sets. These plots also indicate the degree of dependency of 

the data is 2. Such that, this degree of dependency is because of the structure of 

the model (1). 

For comparing the models, we apply two indices the square Root of Mean 

Squared Error (RMSE) by the following form: 

     √
 

 
∑(    ̂ )

 
 

   

  

and classifying index "Max            . The classifying index 

"Max             is defined by the following definition: 

"   is belonging to regime k if and only if                  ." 

This index is suitable for the evaluation of the models, such that the 

proper model is powerful in classifying the observations in the right regimes.  

Table 2 shows the estimated parameters of the simulated model based 

on   
( )( ). Comparing the measures of RMSE for the six kernel functions, we 

can find that the Triangle kernel with RMSE 0.0710 is more efficient than the 

others kernel functions. After that Triweight kernel with RMSE 0.0781 can be 

selected as the proper kernel. Figure 3 shows Max(        ) for six kernel 

functions in which for Triangle kernel, except for a few cases, almost all are at 

least greater than 0.8, i.e. there is a clear decision for one of the two phases in 

the large majority of cases and we find that high percentage of the data is 

correctly classified. With making change the nonlinear function   
( )( ) by 

  
( )( ) for the second simulated data, we founded the different order of the 

kernel functions (table 3). Such that, the Uniform kernel function 

(RMSE=0.0521) had the best performance among other kernel functions. Also, 

after the Uniform kernel function, The Gaussian kernel with RMSE 0.0584 is 

more proper than the others. Figure 4 shows     (        ) for the second 

simulation data set which indicates the ability of the Uniform kernel in 

classifying the data comparing the others. These results indicate the different 
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efficiency of kernel functions in various problems. This demonstrates in 

applying the semi-parametric algorithms based on selecting kernel functions, 

trying different kernel functions can help to get proper estimating. 

Table 2. The estimated parameters for the simulated data based on   
( )( ).    

The 

Parameters 
Uniform Triangle Epanechnikov Bisquare Triweight Gaussian 

   -3.0148 -2.0212 -2.9824 -2.3684 -2.0084 -2.0461 

   -4.9842 -5.9810 -5.2617 -6.8410 -6.0316 -4.1586 

   0.3245 0.4215 0.3874 0.3841 0.3848 0.4167 

   0.5120 0.5984 0.5361 0.4835 0.5549 0.5684 

   0.0104 0.0012 0.0022 0.0101 0.0010 0.0025 

   0.0032 0.0039 0.0024 0.0213 0.0026 0.0038 

   0.0201 0.0101 0.0191 0.0318 0.0013 0.0198 

   0.0215 0.0312 0.0234 0.0227 0.0301 0.0279 

   0.0110 0.0101 0.0150 0.0012 0.0027 0.0012 

   0.0318 0.0491 0.0284 0.0046 0.0394 0.0394 

   0.4462 0.4374 0.3976 0.4284 0.4504 0.4598 

   0.5538 0.5626 0.6024 0.5716 0.5496 0.5402 

    0.5107 0.4021 0.4462 0.4872 0.4138 0.4463 

    0.4115 0.3126 0.2945 0.3651 0.3391 0.3798 

   0.0262 0.0215 0.0371 0.0315 0.0259 0.0297 

   0.0334 0.0316 0.0502 0.0078 0.0298 0.0467 

     0.0889 0.0710 0.0885 0.0881 0.0781 0.0789 

 
Figure 2. For nonlinear function   

( )( ) : {(a). Simulated data, (b). Scater plot of (       ), 

(c). Scater plot of (       )}, For nonlinear function   
( )( ) : {(d). Simulated data, (e). Scater 

plot of (       ), (f). Scater plot of (       )}. 
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Table 3. The estimated parameters for the simulated data based on   
( )( ). 

The Parameters Uniform Triangle Epanechnikov Bisquare Triweight Gaussian 

   -2.1480 -3.5942 -3.4618 -4.1128 -2.9916 -2.1384 

   -5.9257 -4.3302 -4.5280 -5.2648 -3.5218 -6.7681 

   0.4635 0.6891 0.6457 0.5561 0.4691 0.4954 

   0.5549 0.4697 0.4630 0.6021 0.3559 0.6894 

   0.0017 0.0052 0.0036 0.0021 0.0649 0.0016 

   0.0029 0.0063 0.0074 0.0034 0.0529 0.0048 

   0.0138 0.0627 0.0108 0.0251 0.0024 0.0113 

   0.0204 0.0104 0.0371 0.0319 0.0031 0.0287 

   0.0157 0.0264 0.0349 0.0108 0.0013 0.0015 

   0.0313 0.0129 0.0137 0.0008 0.0062 0.0292 

   0.4462 0.4374 0.3976 0.4284 0.4504 0.4598 

   0.5538 0.5626 0.6024 0.5716 0.5496 0.5402 

    0.4410 0.5649 0.5410 0.4026 0.4952 0.4137 

    0.3217 0.2149 0.3619 0.2237 0.2237 0.4679 

   0.0149 0.0338 0.0246 0.0213 0.0150 0.0346 

   0.0226 0.0108 0.0117 0.0346 0.0357 0.0243 

     0.0521 0.0621 0.0602 0.0703 0.0648 0.0584 

 

 

 

Figure 3. Max(       ) for six kernel functions based on   
( )( ). 
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Figure 4. Max(       ) for six kernel functions based on   
( )( )  

Results 

We consider a data set of Automotive Industry Index of Tehran Stock market 

for the period March 25, 2018, to May 3, 2021, downloaded from 

"http://tse.ir/archive.html", where the sample size is 744. In the first step, we 

must determine the number of regimes in observations. This can determine by 

drawing the sample path of data and observing changes trends as increasing 

and decreasing function or by classifying the data in two classes of high and 

low volatility (see Nademi, & Farnoosh, 2014; Nademi, 2019 ). For sake of 

simplicity and good showing the regimes, we draw 200 observations of the 

data set. Figure 5 (blue line) shows the sample path of the data. According to 

this plot, we applied the step function (red line), the down step (regime=1) and 

the upper step (regime=2), to indicate the regimes such that we named 

increasing trends and decreasing trends by regimes =1 and regimes=2, 

respectively. So, we considered six Semi-parametric Markov Switching models 

(called MS-SEMI-K (i), i=1,…,6) based on six kernel functions and two 

regimes (M=2). 

 

http://tse.ir/archive.html
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Figure 5. Automotive Industry Index data and the regimes. 

In the second step, we define    as the stationary automotive industry 

index data in time   ( input variables) and apply the semiparametric model (1) 

to fit the observations in the following relation: 

   ∑     ( (            )   (                  )    ) 

 

   

 

where     ,     (            )  (                  ) and      are 

defined by section 2.1. In the third step, we apply the EM algorithm described 

in section 2.2 to estimate the parameters of the model. The EM algorithm is a 

numeric procedure and start by initial parameters and then iterating the E-step 

and M-step until the convergence of parameters. Note that, in one part of M-

step, we must select a kernel function to estimate  (
      

  
) and  (

      

  
) in 

function  ̂ ( ) (relation 3). So, we trial six kernel functions Gaussian, 

Uniform, Triangle, Epanechnikov, Bisquare and Triweight to get a proper 

result. This proper result can compare by the index RMSE. Such that, the best 

model has minimum RMSE. We also compare the ability of models in 

classifying the observation to regimes by the index of    (   ). Finally, in 
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the fourth step, the proper model will be selected for creating the strategy of 

buying and selling stocks by applying the estimated joint conditional 

probabilities    
     

 defined in M-step in section 2.2. 

Table 4 lists the estimated parameters for six different specifications of 

the semi-parametric Markov switching models in the Automotive Industry 

Index. The results of RMSE criteria for the forecasting indicate that in all of 

the six different specifications of the semi-parametric Markov switching 

models, the MS-SEMI-K(1) model is more accurate for the prediction of the 

Automotive Industry Index than other semi-parametric Markov switching 

models. After this model, the MS-SEMI-K(6), MS-SEMI-K(2), MS-SEMI-

K(5), MS-SEMI-K(4) and MS-SEMI-K(3) models have more accurate 

forecasting for Automotive Industry Index, respectively. Therefore, the proper 

kernel function for forecasting the data is Uniform. Figure 6 shows the 

transition probabilities based on index    (   ), The values of    (        ) 

for six models, which are all greater than 0.5, show the ability of semi-

parametric models in classifying the data. On the other hand, in the MS-SEMI-

K (1) model the belonging probabilities greater than 0.73 indicate that this 

model is more powerful than the other models in classifying the observations. 

Table 4. The estimated parameters for the Automotive Industry Index data 

The 

Parameters 
Uniform Triangle Epanechnikov Bisquare Triweight Gaussian 

   -0.0158 -0.0269 -2.2139 -0.3814 -0.4283 -0.1123 

   -1.3541 -1.2285 -1.3025 -5.1281 -3.2891 -1.0293 

   0.4128 0.4838 0.4123 0.5528 0.7138 0.5112 

   0.3984 0.3564 0.8236 0.6349 0.6318 0.4631 

   0.0001 0.0004 0.0102 0.0021 0.0124 0.0049 

   0.0002 0.0001 0.0219 0.0038 0.0104 0.0012 

   0.0031 0.0026 0.0113 0.0394 0.0129 0.0028 

   0.0101 0.0098 0.0518 0.0354 0.0163 0.0037 

   0.0128 0.0109 0.0321 0.0194 0.0142 0.0020 

   0.0142 0.0113 0.0584 0.0101 0.0028 0.0721 

   0.2665 0.1771 0.5079 0.4285 0.2158 0.3491 

   0.7335 0.8229 0.4921 0.5715 0.7842 0.6509 

    0.5214 0.5329 0.5023 0.4358 0.4138 0.5563 

    0.1894 0.1147 0.5184 0.3268 0.1139 0.2984 

   0.0001 0.0002 0.0049 0.0059 0.0091 0.0056 

   0.0003 0.0001 0.0108 0.0018 0.0065 0.0061 

     0.0520 0.0692 0.0918 0.0925 0.0711 0.0601 
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Figure 6. Max(       ) for (a). MS-SEMI-K (1) model, (b). MS-SEMI-K (2) model, (c). MS-

SEMI-K (3) model, (d). MS-SEMI-K (4) model, (e). MS-SEMI-K (5) model, (f). MS-SEMI-K 

(6) model. 

Now that, the appropriate model has been identified (MS-SEMI-K (1) 

model), we apply the estimated joint conditional probabilities to introduce the 

strategy of buying and selling stocks. For the sake of simplicity in showing the 

estimated joint conditional probabilities in the graphs, we chose 5 observations 

(T=739 to T=744) at the end of the Automotive Industry Index, including April 

29, 2021, to May 3, 2021. Table 5 lists the estimated joint conditional 

probabilities based on    
       (              ( )), such that, we can 

write the joint conditional probability matrix 

   
  (

 (             ( ))  (             ( ))

 (             ( ))  (             ( ))
), 

For the best model (MS-SEMI-K(1) model). This matrix can offer the 

strategy of buying and selling stock in financial markets. Such that, the 

probability elements of the matrix indicate the behavior of the data in passing 

time "t" to "t+1". Note that, we define regime 1 as decreasing trend and regime 

2 as an increasing trend. 
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Table 5. The estimated joint conditional probability matrix based on the six models 

 Time period 

The 

mod

el 

t=739, 

t+1=740 

t=740, 

t+1=741 

t=741, 

t+1=742 

t=742, 

t+1=743 

t=743, 

t+1=744 

MS-

SE

MI-

K(1) 

(
            
            

) (
            
            

) (
            
            

) (
            
            

) (
            
            

) 

Table 5 shows the estimated joint conditional probability matrix for the 

observations of the Automotive Industry Index for the selected time period 

based on the MS-SEMI-K(1) model. According to the result of this table for 

the best-selected model (MS-SEMI-K(1)), we can see the maximum 

probabilities among the elements of the matrices    
     

for period (t=739, 

t+1=740) and (t=740, t+1=741) are        and       , respectively, that are 

belong to the switching between the regimes from 1 to 2 (            ). 

So, we have an increasing trend. This offers that the strategy of buying the 

stocks in a period of time t=739.  

 

t=739, t+1=740 t=740, t+1=741 

(
            
            

) (
            
            

) 

On the other hand, the results indicate that the maximum probabilities 

among the elements of the matrices    
     

for period (t=741, t+1=742) 

are       . This shows the switching between the regimes is from 2 to 2 

(            ) that indicates the stock may go to a decreasing trend that 

offers the strategy of selling the stocks in a period of time t=741 to t= 742. 

 

t=741, t+1=742 

(
            
            

) 

Also, the maximum probabilities of matrices    
     

for period (t=742, 

t+1=743) and (t=743, t+1=744) are        and      , respectively, that are 

belong to the switching between the regimes from 2 to 1 (           ) 

and 1to 1 (           ). So, we have a decreasing trend. This offers that 

the strategy of buying the stocks at the end of a period of t= 744.  
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t=742, t+1=743 t=743, t+1=744 

(
            
            

) (
            
            

) 

 Figure 7 demonstrates the estimated elements of the joint conditional 

probability matrix for the best-selected model (MS-SEMI-K (1)). Figure 7(a) 

shows the sample path of the Automotive Industry Index, including April 29, 

2021, to May 3, 2021, which shows an increasing trend until lag 3 and 

decreasing trend to lag 6. Figure 7(b) indicates the estimated elements of the 

joint conditional probability matrix. Such that, the red line shows the switching 

between regimes from decreasing to increasing trend (            ) that 

was explained for a period (t=739, t+1=740) and (t=740, t+1=741). The blue 

line indicates the switching between regimes from an increasing trend to 

increasing one (            ) or staying in an increasing trend for two 

lags (t=741, t+1=742). The green line indicates the switching between regimes 

from increasing to decreasing trend (            ) that was explained for 

a period (t=742, t+1=743) and finally, the yellow line demonstrates the 

switching between regimes from a decreasing trend to decreasing one (   
         ) or staying in a decreasing trend that was explained for a period 

(t=743, t+1=744). We can find the maximum probability in every of lags (1-6).   

 

Figure 7. (a). The sample path of the Automotive Industry Index for the period of April 29, 

2021, to May 3, 2021, (b). the estimated elements of joint conditional probability matrix for the 

best selected model (MS-SEMI-K(1)), the colors of red, blue, green, and yellow  are the joint 

conditional probability of (           ), (           ), (           ) and 

(           ), respectively.  



125 

 

Developing a Strategy for Buying and Selling Stocks Based… 

Conclusion  

We have offered the strategy of buying and selling stock in financial markets 

by a special class of Markov switching models based on the joint conditional 

probability matrix. This strategy can be capable of selecting the various kernel 

functions. Such that, the best selection of this function, increase the accuracy of 

the joint conditional probability matrix.  We have compared a set of kernel 

functions with the semi-parametric Markov switching models in terms of their 

ability to capturing the parameters in simulation studies. The estimation results 

of the models have indicated that the proper kernel function for estimating the 

parameters refer to the nature of data and there is not a firm decision in 

selecting these functions. Such that we found the proper performance of the 

Triweight kernel in the first simulation data set. While we found Uniform 

kernel as the best kernel function in the second simulation one. This reveals 

that the Gaussian kernel function is not the best selection in every data 

modeling. This reality shows that the researchers in estimating processes must 

be trial some kernel functions to find the best performance of their algorithms 

and the use of Gaussian kernel function in every algorithm can be deceptive.   

We also suggest to academics that they compare these kernel functions 

with other semi-parametric and nonparametric models to improve the current 

knowledge about the better model for forecasting time series data. 
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